Молекулярная биология, 2023, T. 57, № 5, стр. 833-852

Продолжительность жизни Drosophila melanogaster регулируется экспрессией гена nejire в периферических тканях и нервной системе

Л. А. Коваль a, Е. Н. Прошкина a, Н. В. Земская a, И. А. Соловьёв ab, Е. В. Щеголева a, М. В. Шапошников a, А. А. Москалев acd*

a Институт биологии Коми научного центра Уральского отделения Российской академии наук
167982 Сыктывкар, Россия

b Сыктывкарский государственный университет им. Питирима Сорокина
167001 Сыктывкар, Россия

c Институт молекулярной биологии им. В.А. Энгельгардта Российской академии наук
119991 Москва, Россия

d Российский клинический научный центр геронтологии, Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Министерства здравоохранения Российской Федерации
129226 Москва, Россия

* E-mail: amoskalev@ib.komisc.ru

Поступила в редакцию 25.12.2022
После доработки 27.03.2023
Принята к публикации 28.03.2023

Аннотация

Гистонацетилтрансферазы семейства CBP/p300 участвуют в регуляции транскрипции и в осуществлении ряда биологических процессов (пролиферации и дифференцировки клеток, развитии организма, регуляции стресс-ответа и метаболизма). В исследовании на плодовой мушке Drosophila melanogaster нами впервые проанализировано влияние сверхэкспрессии и нокдауна гена nejire (nej), кодирующего ортолог белков CBP/p300 человека, в различных тканях (жировом теле, кишечнике, нервной системе) и на разных стадиях жизненного цикла (все стадии развития или только имаго) на продолжительность жизни. Активация nej оказывала, в зависимости от способа индукции, а также от половой принадлежности, как положительное, так и отрицательное влияние на продолжительность жизни мух. Установлен эффект увеличения продолжительности жизни (на 6–15%) самок при кондиционной сверхэкспрессии nej в кишечнике и конститутивной сверхэкспрессии nej в нервной системе. В остальных случаях наблюдали укорочение жизни (до 44%) либо отсутствие статистически значимых изменений. Кроме того, активация nej приводила к изменению экспрессии генов стресс-ответа (Sod1, Gadd45, Hsp27, Hsp68, Hif1). В то же время нокдаун nej в большинстве вариантов эксперимента приводил к выраженному отрицательному воздействию на длительность жизни дрозофил.

Ключевые слова: гистонацетилтрансфераза, CBP/p300, nejire, продолжительность жизни, стрессоустойчивость, Drosophila melanogaster

Список литературы

  1. Прошкина Е.Н., Соловьёв И.А., Шапошников М.В., Москалев А.А. 2020. Ключевые молекулярные механизмы старения, биомаркеры и потенциальные интервенции. Молекуляр. биология. 54(6), 883‒921.

  2. Bradshaw P.C. (2021) Acetyl-CoA metabolism and histone acetylation in the regulation of aging and lifespan. Antioxidants (Basel). 10, 572.

  3. Santos-Rosa H., Valls E., Kouzarides T., Martinez-Balbas M. (2003) Mechanisms of P/CAF auto-acetylation. Nucl. Acids Res. 31, 4285–4292.

  4. Dutto I., Scalera C., Prosperi E. (2018) CREBBP and p300 lysine acetyl transferases in the DNA damage response. Cell Mol. Life Sci. 75, 1325–1338.

  5. Xu Y., Wan W. (2023) Acetylation in the regulation of autophagy. Autophagy. 19, 379–387.

  6. Goodman R.H., Smolik S. (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577.

  7. Xue Y., Wen H., Shi X. (2018) CBP/p300: intramolecular and intermolecular regulations. Front. Biol. 13, 168–179.

  8. Sen P., Lan Y., Li C.Y., Sidoli S., Donahue G., Dou Z., Frederick B., Chen Q., Luense L.J., Garcia B.A., Dang W., Johnson F.B., Adams P.D., Schultz D.C., Berger S.L. (2019) Histone acetyltransferase p300 induces de novo super-enhancers to drive cellular senescence. Mol. Cell. 73, 684–698 e688.

  9. Vaziri H., West M.D., Allsopp R.C., Davison T.S., Wu Y.S., Arrowsmith C.H., Poirier G.G., Benchimol S. (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J. 16, 6018–6033.

  10. Huang W.S., Kuo Y.H., Kuo H.C., Hsieh M.C., Huang C.Y., Lee K.C., Lee K.F., Shen C.H., Tung S.Y., Teng C.C. (2017) CIL-102-Induced cell cycle arrest and apoptosis in colorectal cancer cells via upregulation of p21 and GADD45. PLoS One. 12, e0168989.

  11. Li T.Y., Sleiman M.B., Li H., Gao A.W., Mottis A., Bachmann A.M., El Alam G., Li X., Goeminne L.J.E., Schoonjans K., Auwerx J. (2021) The transcriptional coactivator CBP/p300 is an evolutionarily conserved node that promotes longevity in response to mitochondrial stress. Nat. Aging. 1, 165–178.

  12. Madeo F., Carmona-Gutierrez D., Kepp O., Kroemer G. (2018) Spermidine delays aging in humans. Aging (Albany NY). 10, 2209–2211.

  13. Marek K.W., Ng N., Fetter R., Smolik S., Goodman C.S., Davis G.W. (2000) A genetic analysis of synaptic development: pre- and postsynaptic dCBP control transmitter release at the Drosophila NMJ. Neuron. 25, 537–547.

  14. Smolik S., Jones K. (2007) Drosophila dCBP is involved in establishing the DNA replication checkpoint. Mol. Cell. Biol. 27, 135–146.

  15. Taylor J.P., Taye A.A., Campbell C., Kazemi-Esfarjani P., Fischbeck K.H., Min K.T. (2003) Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev. 17, 1463–1468.

  16. Tseng A.S., Hariharan I.K. (2002) An overexpression screen in Drosophila for genes that restrict growth or cell-cycle progression in the developing eye. Genetics. 162, 229–243.

  17. Osterwalder T., Yoon K.S., White B.H., Keshishian H. (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA. 98, 12596–12601.

  18. Duffy J.B. (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis. 34, 1–15.

  19. Landis G.N., Salomon M.P., Keroles D., Brookes N., Sekimura T., Tower J. (2015) The progesterone antagonist mifepristone/RU486 blocks the negative effect on life span caused by mating in female Drosophila. Aging (Albany NY). 7, 53–69.

  20. Xia B., de Belle J.S. (2016) Transgenerational programming of longevity and reproduction by post-eclosion dietary manipulation in Drosophila. Aging (Albany NY). 8, 1115–1134.

  21. Fleming T.R., O’Fallon J.R., O’Brien P.C., Harrington D.P. (1980) Modified Kolmogorov–Smirnov test procedures with application to arbitrarily right-censored data. Biometrics. 36, 607–625.

  22. Mantel N. (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163–170.

  23. Martinez R.L.M.C., Naranjo J.D. (2012) A pretest for choosing between logrank and wilcoxon tests in the two-sample problem. Metron. 68, 111–125.

  24. Wang C., Li Q., Redden D.T., Weindruch R., Allison D.B. (2004) Statistical methods for testing effects on “maximum lifespan”. Mech. Ageing Dev. 125, 629–632.

  25. Han S.K., Lee D., Lee H., Kim D., Son H.G., Yang J.S., Lee S.V., Kim S. (2016) OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget. 7, 56147–56152.

  26. Kruskal W.H., Wallis W.A. (1952) Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621.

  27. Ganner A., Gerber J., Ziegler A.K., Li Y., Kandzia J., Matulenski T., Kreis S., Breves G., Klein M., Walz G., Neumann-Haefelin E. (2019) CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Exp. Gerontol. 126, 110690.

  28. Wang D., Kon N., Lasso G., Jiang L., Leng W., Zhu W.G., Qin J., Honig B., Gu W. (2016) Acetylation-regulated interaction between p53 and SET reveals a widespread regulatory mode. Nature. 538, 118–122.

  29. Boija A., Mahat D.B., Zare A., Holmqvist P.H., Philip P., Meyers D.J., Cole P.A., Lis J.T., Stenberg P., Mannervik M. (2017) CBP regulates recruitment and release of promoter-proximal RNA polymerase II. Mol. Cell. 68, 491–503.e495.

  30. Li Y., Zhong H., Wu M., Tan B., Zhao L., Yi Q., Xu X., Pan H., Bi Y., Yang K. (2019) Decline of p300 contributes to cell senescence and growth inhibition of hUC-MSCs through p53/p21 signaling pathway. Biochem. Biophys. Res. Commun. 515, 24–30.

  31. Ghosh R., Kaypee S., Shasmal M., Kundu T.K., Roy S., Sengupta J. (2019) Tumor suppressor p53-mediated structural reorganization of the transcriptional coactivator p300. Biochemistry. 58, 3434–3443.

  32. Xu X., Zhang C., Xu H., Wu L., Hu M., Song L. (2020) Autophagic feedback-mediated degradation of IKKα requires CHK1- and p300/CBP-dependent acetylation of p53. J. Cell Sci. 133, jcs246868.

  33. Wondisford A.R., Xiong L., Chang E., Meng S., Meyers D.J., Li M., Cole P.A., He L. (2014) Control of Foxo1 gene expression by co-activator P300. J. Biol. Chem. 289, 4326–4333.

  34. Wu J., Jiang Z., Zhang H., Liang W., Huang W., Zhang H., Li Y., Wang Z., Wang J., Jia Y., Liu B., Wu H. (2018) Sodium butyrate attenuates diabetes-induced aortic endothelial dysfunction via P300-mediated transcriptional activation of Nrf2. Free Radic. Biol. Med. 124, 454–465.

  35. Xu D., Zalmas L.P., La Thangue N.B. (2008) A transcription cofactor required for the heat-shock response. EMBO Rep. 9, 662–669.

  36. Ruas J.L., Berchner-Pfannschmidt U., Malik S., Gradin K., Fandrey J., Roeder R.G., Pereira T., Poellinger L. (2010) Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J. Biol. Chem. 285, 2601–2609.

  37. Barrett L.N., Westerheide S.D. (2022) The CBP-1/p300 lysine acetyltransferase regulates the heat shock response in C. elegans. Front. Aging. 3, 861761.

  38. Hunt G., Boija A., Mannervik M. (2022) p300/CBP sustains Polycomb silencing by non-enzymatic functions. Mol. Cell. 82, 3580–3597 e3589.

  39. Siebold A.P., Banerjee R., Tie F., Kiss D.L., Moskowitz J., Harte P.J. (2010) Polycomb repressive complex 2 and Trithorax modulate Drosophila longevity and stress resistance. Proc. Natl. Acad. Sci. USA. 107, 169–174.

  40. Dasari V., Srivastava S., Khan S., Mishra R.K. (2018) Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology. 19, 33–45.

  41. Sharma S., Poetz F., Bruer M., Ly-Hartig T.B., Schott J., Séraphin B., Stoecklin G. (2016) Acetylation-dependent control of global Poly(A) RNA degradation by CBP/p300 and HDAC1/2. Mol. Cell. 63, 927–938.

  42. Ansari M.S.Z., Stagni V., Iuzzolino A., Rotili D., Mai A., Del Bufalo D., Lavia P., Degrassi F., Trisciuoglio D. (2023) Pharmacological targeting of CBP/p300 drives a redox/autophagy axis leading to senescence-induced growth arrest in non-small cell lung cancer cells. Cancer Gene Ther. 30, 124–136.

  43. Solovev I., Shaposhnikov M., Kudryavtseva A., Moskalev A. (2018) Drosophila melanogaster as a model for studying the epigenetic basis of aging. In: Epigenetics of Aging and Longevity. 4. Eds Moskalev A., Vaiserman A.M. Boston: Acad. Press, pp. 293–307.

  44. Lee I.H., Finkel T. (2009) Regulation of autophagy by the p300 acetyltransferase. J. Biol. Chem. 284, 6322–6328.

  45. Wan W., You Z., Xu Y., Zhou L., Guan Z., Peng C., Wong C.C.L., Su H., Zhou T., Xia H., Liu W. (2017) mTORC1 phosphorylates acetyltransferase p300 to regulate autophagy and lipogenesis. Mol. Cell. 68, 323–335.e326.

  46. Hao Y., Ren Z., Yu L., Zhu G., Zhang P., Zhu J., Cao S. (2022) p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis. Aging Cell. 21, e13677.

  47. Chen X., Li Y., Wang C., Tang Y., Mok S.A., Tsai R.M., Rojas J.C., Karydas A., Miller B.L., Boxer A.L., Gestwicki J.E., Arkin M., Cuervo A.M., Gan L. (2020) Promoting tau secretion and propagation by hyperactive p300/CBP via autophagy-lysosomal pathway in tauopathy. Mol. Neurodegener. 15, 2.

  48. Auwerx J., Li T.Y. (2020) A conserved role of CBP/p300 in mitochondrial stress response and longevity. FASEB J. 34, 1.https://doi.org/10.1096/fasebj.2020.34.s1.00128

  49. Hung H.C., Maurer C., Kay S.A., Weber F. (2007) Circadian transcription depends on limiting amounts of the transcription co-activator nejire/CBP. J. Biol. Chem. 282, 31349–31357.

  50. Lakshmanan M.D., Shaheer K. (2020) Endocrine disrupting chemicals may deregulate DNA repair through estrogen receptor mediated seizing of CBP/p300 acetylase. J. Endocrinol. Invest. 43, 1189–1196.

  51. Tezil T., Chamoli M., Ng C.P., Simon R.P., Butler V.J., Jung M., Andersen J., Kao A.W., Verdin E. (2019) Lifespan-increasing drug nordihydroguaiaretic acid inhibits p300 and activates autophagy. NPJ Aging Mech. Dis. 5, 7.

  52. Rao X., Tang P., Li Y., Fu G., Chen S., Xu X., Zhou Y., Li X., Zhang L., Mo S., Cai S., Peng J., Zhang Z., Gao J., Hua G. (2021) CBP/P300 Inhibitors mitigate radiation-induced GI syndrome by promoting intestinal stem cell-mediated crypt regeneration. Int. J. Radiat. Oncol. Biol. Phys. 110, 1210–1221.

  53. McCarroll S.A., Murphy C.T., Zou S., Pletcher S.D., Chin C.S., Jan Y.N., Kenyon C., Bargmann C.I., Li H. (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat. Genet. 36, 197–204.

  54. Landis G.N., Hilsabeck T.A.U., Bell H.S., Ronnen-Oron T., Wang L., Doherty D.V., Tejawinata F.I., Erickson K., Vu W., Promislow D.E.L., Kapahi P., Tower J. (2021) Mifepristone increases life span of virgin female Drosophila on regular and high-fat diet without reducing food intake. Front. Genet. 12, 751647.

  55. Kirfel P., Vilcinskas A., Skaljac M. (2020) Lysine acetyltransferase p300/CBP plays an important role in reproduction, embryogenesis and longevity of the pea aphid Acyrthosiphon pisum. Insects. 11, 265.

  56. Cai H., Dhondt I., Vandemeulebroucke L., Vlaeminck C., Rasulova M., Braeckman B.P. (2019) CBP-1 acts in GABAergic neurons to double life span in axenically cultured Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 74, 1198–1205.

  57. Bedford D.C., Kasper L.H., Wang R., Chang Y., Green D.R., Brindle P.K. (2011) Disrupting the CH1 domain structure in the acetyltransferases CBP and p300 results in lean mice with increased metabolic control. Cell Metab. 14, 219–230.

  58. Yao W., Wang T., Huang F. (2018) p300/CBP as a key nutritional sensor for hepatic energy homeostasis and liver fibrosis. Biomed. Res. Int. 2018, 8168791.

  59. Lai K.K.Y., Hu X., Chosa K., Nguyen C., Lin D.P., Lai K.K., Kato N., Higuchi Y., Highlander S.K., Melendez E., Eriguchi Y., Fueger P.T., Ouellette A.J., Chimge N.O., Ono M., Kahn M. (2021) P300 serine 89: a critical signaling integrator and its effects on intestinal homeostasis and repair. Cancers (Basel). 13(6), 1288.

  60. Lipinski M., Del Blanco B., Barco A. (2019) CBP/p300 in brain development and plasticity: disentangling the KAT’s cradle. Curr. Opin. Neurobiol. 59, 1–8.

  61. Lin W.H., Baines R.A. (2019) Myocyte enhancer factor-2 and p300 interact to regulate the expression of homeostatic regulator Pumilio in Drosophila. Eur. J. Neurosci. 50, 1727–1740.

  62. Caccamo A., Maldonado M.A., Bokov A.F., Majumder S., Oddo S. (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 107, 22687–22692.

  63. Song H., Moon M., Choe H.K., Han D.H., Jang C., Kim A., Cho S., Kim K., Mook-Jung I. (2015) Aβ-Induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer’s disease. Mol. Neurodegener. 10, 13.

  64. Iyer N.G., Özdag H., Caldas C. (2004) p300/CBP and cancer. Oncogene. 23, 4225–4231.

  65. Wang F., Marshall C.B., Ikura M. (2013) Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell. Mol. Life Sci. 70, 3989–4008.

  66. Waddell A.R., Huang H., Liao D. (2021) CBP/p300: critical co-activators for nuclear steroid hormone receptors and emerging therapeutic targets in prostate and breast cancers. Cancers (Basel). 13(12), 2872.

  67. Chen Q., Yang B., Liu X., Zhang X.D., Zhang L., Liu T. (2022) Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 12, 4935–4948.

  68. Ghosh A.K. (2020) p300 in cardiac development and accelerated cardiac aging. Aging Dis. 11, 916–926.

  69. Lazar A.G., Vlad M.L., Manea A., Simionescu M., Manea S.A. (2021) Activated histone acetyltransferase p300/CBP-related signalling pathways mediate up-regulation of NADPH oxidase, inflammation, and fibrosis in diabetic kidney. Antioxidants (Basel). 10, 1356.

  70. Xiong Y., Zhang M., Li Y. (2020) Recent advances in the development of CBP/p300 bromodomain inhibitors. Curr. Med. Chem. 27, 5583–5598.

  71. He Z.X., Wei B.F., Zhang X., Gong Y.P., Ma L.Y., Zhao W. (2021) Current development of CBP/p300 inhibitors in the last decade. Eur. J. Med. Chem. 209, 112861.

  72. Valor L.M., Viosca J., Lopez-Atalaya J.P., Barco A. (2013) Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr. Pharm. Des. 19, 5051–5064.

  73. Singh A.K., Neo S.H., Liwang C., Pang K.K.L., Leng J.C.K., Sinha S.H., Shetty M.S., Vasudevan M., Rao V.J., Joshi I., Eswaramoorthy M., Pavon M.V., Sheila A.R., Navakkode S., Kundu T.K., Sajikumar S. (2022) Glucose derived carbon nanosphere (CSP) conjugated TTK21, an activator of the histone acetyltransferases CBP/p300, ameliorates amyloid-beta 1–42 induced deficits in plasticity and associativity in hippocampal CA1 pyramidal neurons. Aging Cell. 21, e13675.

Дополнительные материалы

скачать ESM.zip
Приложение 1.
Таблица S1. Влияние сверхэкспрессии гена nej в различных тканях на выживаемость дрозофил в неблагоприятных условиях