Молекулярная биология, 2023, T. 57, № 6, стр. 916-924

Оксид азота(II) в биологии Chlorophyta

Е. В. Ермилова *

Санкт-Петербургский государственный университет
199034 Санкт-Петербург, Россия

* E-mail: e.ermilova@spbu.ru

Поступила в редакцию 01.03.2023
После доработки 20.03.2023
Принята к публикации 22.03.2023

Аннотация

NO представляет собой газообразную сигнальную редокс-молекулу, функционирующую в клетках эукариот. Однако некоторые аспекты синтеза, оборота и эффектов NO специфичны для растений. В отличие от высших растений роль NO у Chlorophyta изучена еще недостаточно. Тем не менее, некоторые механизмы контроля уровня этой сигнальной молекулы охарактеризованы на модельных представителях зеленых водорослей. Так, в клетках Chlamydomonas reinhardtii синтез NO осуществляется с помощью двойной системы, включающей нитратредуктазу и NO-формирующую нитритредуктазу. Другие механизмы, с помощью которых NO образуется из нитрита, связаны с компонентами электрон-транспортной цепи митохондрий. Кроме того, образование NO у некоторых зеленых водорослей происходит по окислительному механизму, сходному с механизмом у млекопитающих. Недавнее выявление L-аргининзависимого синтеза NO у бесцветной водоросли Polytomells parva предполагает существование комплекса белков с ферментативной активностью, сходной по действию с синтазой оксида азота у животных. Это открытие прокладывает путь к дальнейшему изучению потенциальных членов семейства NO-синтаз у Chlorophyta. Неотъемлемой частью функционирования NO в клетках является не только его синтез, но и регуляторные процессы, участвующие в поддержании внутриклеточного уровня NO. Члены семейства усеченных гемоглобинов с диоксигеназной активностью могут превращать NO в нитрат, как у C. reinhardtii. Описано также участие NO-редуктаз в нейтрализации NO. Еще более интригующим является тот факт, что зеленые водоросли, в отличие от животных, по-видимому, не используют типичный сигнальный модуль NO-сGMP. S-нитрозированный глутатион, который считается основным резервуаром NO в клетках, передает сигналы NO белкам. S-нитрозирование белков Chlorophyta считается одним из ключевых механизмов действия редокс-молекулы. В представленной работе обсуждается современное состояние и перспективные направления исследований, связанных с биологией NO у зеленых водорослей.

Ключевые слова: Chlorophyta, NO, нитратредуктаза, NO-синтаза, S-нитрозирование

Список литературы

  1. Wendehenne D., Durner J., Klessig D.F. (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr. Opin. Plant Biol. 7(4), 449–455.

  2. Wendehenne D., Pugin A., Klessig D.F., Durner J. (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci6(4), 177–183.

  3. Bredt D.S., Snyder S.H. (1992) Nitric oxide, a novel neuronal messenger. Neuron8(1), 3–11.

  4. Ignarro L.J., Buga G.M., Wood K.S., Byrns R.E., Chaudhuri G. (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA84(24), 9265–9269.

  5. Palmer R.M., Ferrige A.G., Moncada S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 327(6122), 524–526.

  6. Cox M.A., Bassi C., Saunders M.E., Nechanitzky R., Morgado-Palacin I., Zheng C., Mak T.W. (2020) Beyond neurotransmission: acetylcholine in immunity and inflammation. J. Intern. Med. 287(2), 120–133.

  7. Astier J., Gross I., Durner J. (2018) Nitric oxide production in plants: an update. J. Exp. Bot. 69(14), 3401–3411.

  8. Kolbert Z.S., Barroso J.B., Brouquisse R., Corpas F.J., Gupta K.J., Lindermayr C., Loake G.J., Palma J.M., Petřivalský M., Wendehenne D., Hancock J.T. (2019) A forty year journey: the generation and roles of NO in plants. Nitric Oxide. 93, 53–70.

  9. Yu M., Lamattina L., Spoel S.H., Loake G.J. (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol202(4), 1142–1156.

  10. He Y., Tang R.H., Hao Y., Stevens R.D., Cook C.W., Ahn S.M., Jing L., Yang Z., Chen L., Guo F., Fiorani F., Jackson R.B., Crawford N.M., Pei Z.M. (2004) Nitric oxide represses the Arabidopsis floral transition. Science305(5692), 1968–1971.

  11. Bethke P.C., Libourel I.G., Jones R.L. (2006) Nitric oxide reduces seed dormancy in Arabidopsis. J. Exp. Bot. 57(3), 517–526.

  12. Sun C., Lu L., Liu L., Liu W., Yu Y., Liu X., Hu Y., Jin C., Lin X. (2014) Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). New Phytol. 201(4), 1240–1250.

  13. Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. (2008) Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 59(2), 165–176.

  14. Qiao W., Fan L.M. (2008) Nitric oxide signaling in plant responses to abiotic stresses. J. Integr. Plant Biol. 50(10), 1238–1246.

  15. Fancy N.N., Bahlmann A.K., Loake G.J. (2017) Nitric oxide function in plant abiotic stress. Plant Cell Environ. 40(4), 462–472.

  16. González-Gordo S., Bautista R., Claros M.G., Cañas A., Palma J.M., Corpas F.J. (2019) Nitric oxide-dependent regulation of sweet pepper fruit ripening. J. Exp. Bot. 70(17), 4557–4570.

  17. Berger A., Boscari A., Frendo P., Brouquisse R. (2019) Nitric oxide signaling, metabolism and toxicity in nitrogen-fixing symbiosis. J. Exp. Bot. 70(17), 4505–4520.

  18. Gupta K.J., Fernie A.R., Kaiser W.M., van Dongen J.T. (2011) On the origins of nitric oxide. Trends Plant Sci. 16(3), 160–168.

  19. Astier J., Lindermayr C. (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int. J. Mol. Sci. 13(11), 15193–15208.

  20. Corpas F.J., Chaki M., Leterrier M., Barroso J.B. (2009) Protein tyrosine nitration: a new challenge in plants. Plant Signal. Behav. 4(10), 920–923.

  21. Corpas F.J., Palma J.M., Río L.A.D., Barroso J.B. (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol. 184, 9–14.

  22. Foresi N., Correa-Aragunde N., Parisi G., Calo G., Salerno G., Lamattina L. (2010) Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell. 22(11), 3816–3830.

  23. Lapina T., Statinov V., Puzanskiy R., Ermilova E. (2022) Arginine-dependent nitric oxide generation and S-nitrosation in the non-photosynthetic unicellular alga Polytomella parva. Antioxidants. 11(5), 949.

  24. Astier J., Mounier A., Santolini J., Jeandroz S., Wendehenne D. (2019) The evolution of nitric oxide signalling diverges between animal and green lineages. J. Exp. Bot. 70(17), 4355–4364.

  25. Chamizo-Ampudia A., Sanz-Luque E., Llamas A., Galvan A., Fernandez E. (2017) Nitrate reductase regulates plant nitric oxide homeostasis. Trends Plant Sci. 22(2), 163–174.

  26. Mallick N., Rai L.C., Mohn F.H., Soeder C.J. (1999) Studies on nitric oxide (NO) formation by the green alga Scenedesmus obliquus and the diazotrophic cyanobacterium Anabaena doliolum. Chemosphere. 39(10), 1601–1610.

  27. Stuehr D.J., Santolini J., Wang Z.Q., Wei C.C., Adak S. (2004) Update on mechanism and catalytic regulation in the NO synthases. J. Biol. Chem. 279(35), 36167–36170.

  28. Daff S. (2010) NO synthase: structures and mechanisms. Nitric Oxide. 23(1), 1–11.

  29. Li H., Poulos T.L. (2005) Structure–function studies on nitric oxide synthases. J. Inorg. Biochem. 99(1), 293–305.

  30. Di Dato V., Musacchia F., Petrosino G., Patil S., Montresor M., Sanges R., Ferrante M.I. (2015) Transcriptome sequencing of three pseudo-nitzschia species reveals comparable gene sets and the presence of nitric oxide synthase genes in diatoms. Sci. Rep. 5(1), 12329.

  31. Kumar A., Castellano I., Patti F.P., Palumbo A., Buia M.C. (2015) Nitric oxide in marine photosynthetic organisms. Nitric Oxide. 47, 34–39.

  32. Weisslocker-Schaetzel M., André F., Touazi N., Foresi N., Lembrouk M., Dorlet P., Frelet-Barrand A., Lamattina L., Santolini J. (2017) The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci. 265, 100–111.

  33. Jeandroz S., Wipf D., Stuehr D.J., Lamattina L., Melkonian M., Tian Z., Zhu Y., Carpenter E.J., Wong G.K.S., Wendehenne D. (2016) Occurrence, structure, and evolution of nitric oxide synthase-like proteins in the plant kingdom. Sci. Signal. 9(417), re2.

  34. Santolini J., André F., Jeandroz S., Wendehenne D. (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide. 63, 30–38.

  35. Foresi N., Mayta M.L., Lodeyro A.F., Scuffi D., Correa-Aragunde N., García-Mata C., Casalongué C., Carrillo N., Lamattina L. (2015) Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis. Plant J. 82(5), 806–821.

  36. Chatelain P., Astier J., Wendehenne D., Rosnoblet C., Jeandroz S. (2021) Identification of partner proteins of the algae Klebsormidium nitens NO synthases: toward a better understanding of NO signaling in eukaryotic photosynthetic organisms. Front. Plant Sci. 12, 3068.

  37. Tun N.N., Santa-Catarina C., Begum T., Silveira V., Handro W., Floh E.I.S., Scherer G.F. (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 47(3), 346–354.

  38. Campbell M.G., Smith B.C., Potter C.S., Carragher B., Marletta M.A. (2014) Molecular architecture of mammalian nitric oxide synthases. Proc. Natl. Acad. Sci. USA. 111(35), E3614–E3623.

  39. Desikan R., Griffiths R., Hancock J., Neill S. (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 99(25), 16314–16318.

  40. Yamasaki H., Sakihama Y., Takahashi S. (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci. 4(4), 128–129.

  41. Rockel P., Strube F., Rockel A., Wildt J., Kaiser W.M. (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53(366), 103–110.

  42. Tejada-Jimenez M., Llamas A., Galván A., Fernández E. (2019) Role of nitrate reductase in NO production in photosynthetic eukaryotes. Plants. 8(3), 56.

  43. Tischner R., Planchet E., Kaiser W.M. (2004) Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Lett. 576(1–2), 151–155.

  44. Chamizo-Ampudia A., Sanz-Luque E., Llamas Á., Ocaña-Calahorro F., Mariscal V., Carreras A., Barroso J.B., Galván A., Fernández E. (2016) A dual system formed by the ARC and NR molybdoenzymes mediates nitrite-dependent NO production in Chlamydomonas. Plant Cell Environ. 39(10), 2097–2107.

  45. Minaeva E., Zalutskaya Z., Filina V., Ermilova E. (2017) Truncated hemoglobin 1 is a new player in Chlamydomonas reinhardtii acclimation to sulfur deprivation. PLoS One. 12(10), e0186851.

  46. Zalutskaya Z., Korkina S., Ermilova E. (2023) Second nitrate reductase of Dunaliella salina: functional redundancy or greatly? Protistology. 17(1), 16–29.

  47. Hemschemeier A., Düner M., Casero D., Merchant S.S., Winkler M., Happe T. (2013) Hypoxic survival requires a 2-on-2 hemoglobin in a process involving nitric oxide. Proc. Natl. Acad. Sci. USA. 110(26), 10854–10859.

  48. Gupta K.J., Igamberdiev A.U. (2011) The anoxic plant mitochondrion as a nitrite: NO reductase. Mitochondrion. 11(4), 537–543.

  49. Vishwakarma A., Kumari A., Mur L.A., Gupta K.J. (2018) A discrete role for alternative oxidase under hypoxia to increase nitric oxide and drive energy production. Free Radic. Biol. Med. 122, 40–51.

  50. Ostroukhova M., Ermilova E. (2019) New insights into NO generation and AOX1 upregulation in Chlamydomonas. Protistology. 13(1), 19–25.

  51. Sanz-Luque E., Chamizo-Ampudia A., Llamas A., Galvan A., Fernandez E. (2015) Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 6, 899.

  52. Stewart J.J., Coyne K.J. (2011) Analysis of raphidophyte assimilatory nitrate reductase reveals unique domain architecture incorporating a 2/2 hemoglobin. Plant Mol. Biol. 77, 565–575.

  53. Filina V., Grinko A., Ermilova E. (2019) Truncated hemoglobins 1 and 2 are implicated in the modulation of phosphorus deficiency-induced nitric oxide levels in Chlamydomonas. Cells. 8(9), 947.

  54. Grinko A., Alqoubaili R., Lapina T., Ermilova E. (2021) Truncated hemoglobin 2 modulates phosphorus deficiency response by controlling of gene expression in nitric oxide-dependent pathway in Chlamydomonas reinhardtii. Planta. 254, 1–15.

  55. Plouviez M., Wheeler D., Shilton A., Packer M.A., McLenachan P.A., Sanz-Luque E., Ocaña-Calahorro F., Fernández E., Guieysse B. (2017) The biosynthesis of nitrous oxide in the green alga Chlamydomonas reinhardtii. Plant J. 91(1), 45–56.

  56. Plouviez M., Shilton A., Packer M.A., Guieysse B. (2019) Nitrous oxide emissions from microalgae: potential pathways and significance. J. Appl. Phycol. 31, 1–8.

  57. Burlacot A., Richaud P., Gosset A., Li-Beisson Y., Peltier G. (2020) Algal photosynthesis converts nitric oxide into nitrous oxide. Proc. Natl. Acad. Sci. USA. 117(5), 2704–2709.

  58. Zalutskaya Z., Dukhnov S., Leko N., Ermilova E. (2021) Nitric oxide levels and CYP55 expression in Chlamydomonas reinhardtii under normoxia and hypoxia. Protistology. 15(3), 153–160.

  59. Frungillo L., Skelly M.J., Loake G.J., Spoel S.H., Salgado I. (2014) S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat. Commun. 5(1), 5401.

  60. Jahnová J., Luhová L., Petřivalský M. (2019) S-nitrosoglutathione reductase – the master regulator of protein S-nitrosation in plant NO signaling. Plants. 8(2), 48.

  61. Tagliani A., Rossi J., Marchand C.H., De Mia M., Tedesco D., Gurrieri L., Meloni M., Falini G., Trost P., Lemaire S.D., Fermani S., Zaffagnini M. (2021) Structural and functional insights into nitrosoglutathione reductase from Chlamydomonas reinhardtii. Redox Biol. 38, 101806.

  62. Martínez-Ruiz A., Cadenas S., Lamas S. (2011) Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic. Biol. Med. 51(1), 17–29.

  63. de Montaigu A., Sanz-Luque E., Galvan A., Fernandez E. (2010) A soluble guanylate cyclase mediates negative signaling by ammonium on expression of nitrate reductase in Chlamydomonas. Plant Cell. 22(5), 1532–1548.

  64. Horst B.G., Stewart E.M., Nazarian A.A., Marletta M.A. (2019) Characterization of a carbon monoxide-activated soluble guanylate cyclase from Chlamydomonas reinhardtii. Biochemistry. 58(17), 2250–2259.

  65. Astier J., Rossi J., Chatelain P., Klinguer A., Besson-Bard A., Rosnoblet C., Jeandroz S., Nicolas-Francès V., Wendehenne D. (2021) Nitric oxide production and signalling in algae. J. Exp. Bot. 72(3), 781–792.

  66. Smith B.C., Marletta M.A. (2012) Mechanisms of S‑nitrosothiol formation and selectivity in nitric oxide signaling. Curr. Opin. Chem. Biol. 16(5–6), 498–506.

  67. Morisse S., Zaffagnini M., Gao X.H., Lemaire S.D., Marchand C.H. (2014) Insight into protein S-nitrosylation in Chlamydomonas reinhardtii. Antioxid. Redox Signal. 21(9), 1271–1284.

  68. Zaffagnini M., Michelet L., Sciabolini C., di Giacinto N., Morisse S., Marchand C.H., Trost P., Fermani S., Lemaire S.D. (2014) High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii. Mol. Plant. 7(1), 101–120.

  69. Berger H., De Mia M., Morisse S., Marchand C.H., Lemaire S.D., Wobbe L., Kruse O. (2016) A light switch based on protein S-nitrosylation fine-tunes photosynthetic light harvesting in Chlamydomonas. Plant Physiol. 171(2), 821–832.

  70. Sanz-Luque E., Ocaña-Calahorro F., Llamas A., Galvan A., Fernandez E. (2013) Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. J. Exp. Bot. 64(11), 3373–3383.

  71. Zalutskaya Z., Kochemasova L., Ermilova E. (2018) Dual positive and negative control of Chlamydomonas PII signal transduction protein expression by nitrate/nitrite and NO via the components of nitric oxide cycle. BMC Plant Biol. 18, 1–10.

  72. Wei L., Derrien B., Gautier A., Houille-Vernes L., Boulouis A., Saint-Marcoux D., Malnoë A., Rappaport F., de Vitry C., Vallon O., Choquet Y., Wollman F.A. (2014) Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. Plant Cell. 26(1), 353–372.

  73. De Mia M., Lemaire S.D., Choquet Y., Wollman F.A. (2019) Nitric oxide remodels the photosynthetic apparatus upon S-starvation in Chlamydomonas reinhardtii. Plant Physiol. 179(2), 718–731.

  74. Zalutskaya Z., Derkach V., Puzanskiy R., Ermilova E. (2020) Impact of nitric oxide on proline and putrescine biosynthesis in Chlamydomonas via transcriptional regulation. Biol. Plant. 64, 653–659.

  75. Chen X., Tian D., Kong X., Chen Q., Ef A., Hu X., Jia A. (2016) The role of nitric oxide signalling in response to salt stress in Chlamydomonas reinhardtii. Planta. 244, 651–669.

Дополнительные материалы отсутствуют.