Неорганические материалы, 2023, T. 59, № 10, стр. 1079-1088

Люминесценция квантовых точек PbS, пассивированных тиогликолевой кислотой, в присутствии йодида калия

И. Г. Гревцева 1, К. С. Чирков 1, О. В. Овчинников 1, М. С. Смирнов 1*

1 Воронежский государственный университет
394006 Воронеж, Университетская пл., 1, Россия

* E-mail: smirnov_m_s@mail.ru

Поступила в редакцию 03.07.2023
После доработки 31.08.2023
Принята к публикации 04.09.2023

Аннотация

В работе обсуждаются закономерности ИК-люминесценции для коллоидных квантовых точек PbS со средним размером 3 нм, покрытых молекулами тиогликолевой кислоты (КТ PbS/TGA). Обнаружено, что обработка КТ PbS/TGA раствором KI приводит к коротковолновому смещению максимума сложной полосы люминесценции при 1120 нм к 1060 нм, увеличению квантового выхода ее коротковолновой компоненты, связанной с экситонным свечением с 1 до 10% и тушению длинноволновой компоненты, связанной с излучательной рекомбинацией на уровнях дефектов. При этом кубическая кристаллическая структура PbS не претерпевает изменений. Установлено также незначительное уменьшение среднего размера КТ PbS/TGA – на 0.2–0.3 нм. Сделан вывод о том, что рост квантового выхода экситонного свечения КТ PbS/TGA при воздействии KI обусловлен более эффективной пассивацией интерфейсных дефектов, являющихся каналами как рекомбинационной люминесценции, так и безызлучательной рекомбинации носителей заряда. Методом термостимулированной люминесценции в диапазоне температур от 80 до 350 K показано существование двух типов мелких локализованных состояний с глубинами 0.17 и 0.25 эВ, концентрация которых слабо чувствительна к обработке КТ PbS/TGA раствором KI. Предполагается, что часть регистрируемых ловушек обусловлена не оборванными связями поверхностных атомов свинца и серы, а собственными дефектами нанокристалла – межузельными ионами свинца или серы.

Ключевые слова: сульфид свинца, люминесценция, йодирование

Список литературы

  1. Shehab M., Ebrahim S., Soliman M. Graphene Quantum Dots Prepared from Glucose as Optical Sensor for Glucose // J. Lumin. 2017. V. 184. P. 110–116. https://doi.org/10.1016/j.jlumin.2016.12.006

  2. Chen F., Lin Q., Shen H., Tang A. Blue Quantum Dot-Based Electroluminescent Light-Emitting Diodes // Mater. Chem. Front. 2020. V. 4. P. 1340–1365. https://doi.org/10.1039/D0QM00029A

  3. Bai Z., Ji W., Han D., Chen L., Chen B., Shen H., Zou B., Zhong H. Hydroxyl-Terminated CuInS2 Based Quantum Dots: Toward Efficient and Bright Light Emitting Diodes // Chem. Mater. 2016. P. 28. № 4. P. 1085–1091. https://doi.org/10.1021/acs.chemmater.5b04480

  4. Peng Y., Wang G., Yuan C., He J., Ye S., Luo X. Influences of Oxygen Vacancies on the Enhanced Nonlinear Optical Properties of Confined ZnO Quantum Dots // J. Alloys Compd. 2018. V. 739. P. 345–352. https://doi.org/10.1016/j.jallcom.2017.12.250

  5. Xu G., Zeng S., Swihart M., Yong K.-T., Prasad P. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine // Chem. Rev. 2016. V. 116. P. 12234–12327. https://doi.org/10.1021/acs.chemrev.6b00290

  6. Zebibula A., Alifu N., Xia L., Sun C., Yu X., Xue D., Liu L., Li G., Qian J. Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging // Adv. Funct. Mater. 2018. V. 28. P. 1703451. https://doi.org/10.1002/adfm.201703451

  7. Yin X., Zhang C., Guo Y., Yang Y., Xing Y., Que W. PbS QD-Based Photodetectors: Future-Oriented Near-Infrared Detection Technology // J. Mater. Chem. C. 2021. V. 9. P. 417–438. https://doi.org/10.1039/D0TC04612D

  8. Scanlon W.W. Recent Advances in the Optical and Electronic Properties of PbS, PbSe, PbTe and Their Alloys // J. Phys. Chem. Solids. 1959. V. 8. P. 423–428. https://doi.org/10.1016/0022-3697(59)90379-8

  9. Warner J.H., Thomsen E., Watt A.R., Heckenberg N.R., Rubinsztein-Dunlop H. Time-Resolved Photoluminescence Spectroscopy of Ligand-Capped PbS Nanocrystals // Nanotech. 2005. V. 16. P. 175–179. https://doi.org/10.1088/0957-4484/16/2/001

  10. Torres-Gomez N., Garcia-Gutierrez D.F., Lara-Canche A.R., Triana-Cruz L., Arizpe-Zapata J.A., Garcia-Gutierrez D.I. Absorption and Emission in the Visible Range by Ultra-Small PbS Quantum Dots in the Strong Quantum Confinement Regime with S-Terminated Surfaces Capped with Diphenylphosphine // J. Alloys Compd. 2021. V. 860. P. 158443–158454. https://doi.org/10.1016/j.jallcom.2020.158443

  11. Kim D., Kuwabara T., Nakayama M. Photoluminescence Properties Related to Localized States in Colloidal PbS Quantum Dots // J. Lumin. 2006. V. 119–120. P. 214–218. https://doi.org/10.1016/j.jlumin.2005.12.033

  12. Gilmore R.H., Liu Y., Shcherbakov-Wu W., Dahod N.S., Lee E.M.Y., Weidman M.C., Jean H.Li.J., Bulovic V., Willard A.P., Grossman J.C., Tisdale W.A. Epitaxial Dimers and Auger-Assisted Detrapping in PbS Quantum Dot Solids // Matter. 2019. V. 1. № 1. P. 250–265. https://doi.org/10.1016/j.matt.2019.05.015

  13. Nakashima S., Hoshino A., Cai J., Mukai K. Thiol-Stabilized PbS Quantum Dots With Stable Luminescence in the Infrared Spectral Range // J. Cryst. Growth. 2013. V. 378 P. 542–545. https://doi.org/10.1016/j.jcrysgro.2012.11.024

  14. Loiko P.A., Rachkovskaya G.E., Zacharevich G.B., Yumashev K.V. Wavelength-Tunable Absorption and Luminescence of SiO2–Al2O3–ZnO–Na2O–K2O–NaF Glasses With PbS Quantum Dots // J. Lumin. 2013. V. 143. P. 418–422. https://doi.org/10.1016/j.jlumin.2013.05.057

  15. Kolobkova E., Lipatova Z., Abdrshin A., Nikonorov N. Luminescent Properties of Fluorine Phosphate Glasses Doped with PbSe and PbS Quantum Dots // Opt. Mater. 2017. V. 65. P. 124–128. https://doi.org/10.1016/j.optmat.2016.09.033

  16. Sadovnikov S.I., Rempel A.A. Nonstoichiometric Distribution of Sulfur Atoms in Lead Sulfide Structure // Dokl. Phys. Chem. 2009. V. 428. № 1. P. 167–171. https://doi.org/10.1134/S0012501609090024

  17. Hu L., Lei Q., Guan X., Patterson R., Yuan J., Lin C.-H., Kim J., Gang X., Younis A., Wu X., Liu X., Wan T., Chu D., Wu T., Huang S. Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells via Chemical Binding // Adv. Sci. 2021. V. 8. P. 2003138. https://doi.org/10.1002/advs.202003138

  18. Stavrinadis A., Pradhan S., Papagiorgis P., Itskos G., Konstantatos G. Suppressing Deep Traps in PbS Colloidal Quantum Dots via Facile Iodide Substitutional Doping for Solar Cells with Efficiency >10% // ACS Energy Lett. 2017. V. 2. № 4. P. 739–744. https://doi.org/10.1021/acsenergylett.7b00091

  19. Ip A.H., Thon S.M., Hoogland S., Voznyy O., Zhitomirsky D., Debnath R., Lavina L., Rollny L.R., Carey G.H., Fisher A., Kemp K.W., Kramer I.J., Ning Z., Labelle A.J., Chou K.W., Amassian A., Sargent E.H. Hybrid Passivated Colloidal Quantum Dot Solids // Nat. Nanotech. 2012. V. 7. P. 577–582. https://doi.org/10.1038/nnano.2012.127

  20. Li P., Lan Y., Zhang Q., Zhao Z., Pullerits T., Zheng K., Zhou Y. Iodinated SnO2 Quantum Dots: A Facile and Efficient Approach to Increase Solar Absorption for Visible-Light Photocatalysis // J. Phys. Chem. C. 2016. V. 120. № 17. P. 9253–9262. https://doi.org/10.1021/acs.jpcc.6b01530

  21. Dasog M., Bader K., Veinot J.G.C. Influence of Halides on the Optical Properties of Silicon Quantum Dots // Chem. Mater. 2015. V. 27. P. 1153–1156. https://doi.org/10.1021/acs.chemmater.5b00115

  22. Маскаева Л.Н., Марков В.Ф., Воронин В.И., Поздин А.В., Борисова Е.С., Анохина И.А. Структурные характеристики и фотоэлектрические свойства химически осажденных пленок PbS, легированных йодом // Неорган. материалы. 2023. Т. 59. № 4. С. 363–373. https://doi.org/10.31857/S0002337X23040061

  23. Smirnov M.S., Ovchinnikov O.V. IR luminescence Mechanism in Colloidal Ag2S Quantum Dots // J. Lumin. 2020. V. 227. P. 117526. https://doi.org/10.1016/j.jlumin.2020.117526

  24. Kondratenko T.S., Smirnov M.S., Ovchinnikov O.V., Zvyagin A.I., Vinokur Y.A. Size-Dependent Optical Properties of Colloidal CdS Quantum Dots Passivated by Thioglycolic Acid // Semiconductors. 2018. V. 52. № 9. P. 1137–1144. https://doi.org/10.1134/S1063782618090087

  25. Ovchinnikov O.V., Grevtseva I.G., Smirnov M.S., Kondratenko T.S., Perepelitsa A.S., Aslanov S.V., Khokhlov V.U., Tatyanina E.P., Matsukovich A.S. Effect of Thioglycolic Acid Molecules on Luminescence Properties of Ag2S Quantum Dots // Opt. Quant. Electron. 2020. V. 52. P. 198-1-23. https://doi.org/10.1007/s11082-020-02314-8

  26. Kedenburg S., Vieweg M., Gissibl T., Giessen H. Linear Refractive Index and Absorption Measurements of Nonlinear Optical Liquids in the Visible and Near-Infrared Spectral Region // Opt. Mater. Express. 2012. V. 2. № 11. P. 1588–1611. https://doi.org/10.18419/opus-5686

  27. van Leeuwen F.W.B., Cornelissen B., Caobelli F., Evangelista L., Rbah-Vidal L., Vecchio D., Xavier C., Barbet J., de Jong M. Generation of Fluorescently Labeled Tracers – which Features Influence the Translational Potential? // EJNMMI Radiopharm. Chem. 2017. V. 2. № 15. https://doi.org/10.1186/s41181-017-0034-8

  28. Kozma I.Z., Krok P., Riedle E. Direct Measurement of the Group-Velocity Mismatch and Derivation of the Refractive-Index Dispersion for a Variety of Solvents in the Ultraviolet // J. Opt. Soc. Am. B. 2005. V. 22. № 7. P. 1479–1485. https://doi.org/10.1364/JOSAB.22.001479

  29. Perepelitsa A.S., Smirnov M.S., Ovchinnikov O.V., Latyshev A.N., Kotko A.S. Thermostimulated Luminescence of Colloidal Ag2S Quantum Dots // J. Lumin. 2018. V. 198. P. 357–363. https://doi.org/10.1016/j.jlumin.2018.02.009

  30. Ovchinnikov O.V., Perepelitsa A.S., Smirnov M.S., Aslanov S.V. Control the Shallow Trap States Concentration During the Formation of Luminescent Ag2S and Ag2S/SiO2 Core/Shell Quantum Dots // J. Lumin. 2022. V. 243. P. 118616-1-7. https://doi.org/10.1016/j.jlumin.2021.118616

  31. Smirnov M.S., Buganov O.V., Tikhomirov S.A., Ovchinnikov O.V., Shabunya-Klyachkovskaya E.V., Grevtseva I.G., Kondratenko T.S. Decay of Electronic Excitations in Colloidal Thioglycolic Acid (TGA)-Capped CdS/ZnS Quantum Dots // J. Nanopart. Res. 2017. V. 19. № 11. P. 376-1-13. https://doi.org/10.1007/s11051-017-4067-4

  32. Hwang G.W., Kim D., Cordero J.M., Wilson M.W.B., Chuang C.-H.M., Grossman J.C., Bawendi M.G. Identifying and Eliminating Emissive Sub-bandgap States in Thin Films of PbS Nanocrystals // Adv. Mater. 2015. V. 27. P. 4481–4486. https://doi.org/10.1002/adma.201501156

  33. Giansante C., Infante I. Surface Traps in Colloidal Quantum Dots: A Combined Experimental and Theoretical Perspective // J. Phys. Chem. Lett. 2017. V. 8. № 20. P. 5209–5215. https://doi.org/10.1021/acs.jpclett.7b02193

  34. Voznyy O., Thon S.M., Ip A.H., Sargent E.H. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots // J. Phys. Chem. Lett. 2013. V. 4. P. 987−992. https://doi.org/10.1021/jz400125r

  35. Sherrer P. Bestimmung der Grosse und der Inneren Struktur Con Kolloidteilchen Mittels Rontgenstrahlen // Nachr. Ges. Wiss. Gott. 1918. V. 26. P. 98–100.

  36. Гревцева И.Г., Овчинников О.В., Смирнов М.С., Чирков К.С. Рекомбинационная и экситонная люминесценция коллоидных квантовых точек PbS, покрытых молекулами тиогликолевой кислоты // Конденс. среды межфаз. границ. 2023. Т. 25. № 2. С. 182–189. https://doi.org/10.17308/kcmf.2023.25/11099

  37. Caram J.R., Bertram S.N., Utzat H., Hess W.R., Carr J.A., Bischof T.S., Beyler A.P., Wilson M.W.B., Bawendi M.G. PbS Nanocrystal Emission Is Governed by Multiple Emissive States // Nano Lett. 2016. V. 16. P. 6070–6077. https://doi.org/10.1021/acs.nanolett.6b02147

  38. Grevtseva I., Chevychelova T., Ovchinnikov O., Smirnov M., Kondratenko T., Khokhlov A., Astashkina M., Chirkov K. Size Effect Features and Mechanism of Luminescence of Colloidal PbS Quantum Dots, Passivated with Thioglicolic Acid // Opt. Quant. Electron. 2023. V. 55. № 433. https://doi.org/10.1007/s11082-023-04658-3

  39. Moreels I., Lambert K., Smeets D., De Muynck D., Nollet T., C. Martins J., Vanhaecke F., Vantomme A., Delerue C., Allan G., Hens Z. Size-Dependent Optical Properties of Colloidal PbS Quantum Dots // ACS Nano. 2009. V. 3. № 10. P. 302–3030. https://doi.org/10.1021/nn900863a

Дополнительные материалы отсутствуют.