Неорганические материалы, 2023, T. 59, № 11, стр. 1253-1261

Влияние иттрия на свойства композитов ZrB2–SiC, армированных углеродным волокном

Р. А. Орбант 12, А. В. Уткин 12*, Д. А. Банных 1, М. А. Голосов 1, Н. И. Бакланова 1

1 Институт химии твердого тела и механохимии СО Российской академии наук
630090 Новосибирск, ул. Кутателадзе, 18, Россия

2 Новосибирский государственный университет
630090 Новосибирск, ул. Пирогова, 1, Россия

* E-mail: utkin@solid.nsc.ru

Поступила в редакцию 28.06.2023
После доработки 01.09.2023
Принята к публикации 01.09.2023

Аннотация

Предложен способ, позволяющий снизить температуру проведения жидкофазного силицирования при формировании керамических композитов с матрицей на основе карбида кремния и диборида циркония с помощью формирования легкоплавкой эвтектики кремния и иттрия. С помощью термодинамических расчетов проведено обоснование и показана целесообразность введения иттрия в силицирующий агент. Впервые проведено жидкофазное силицирование композитов при температуре ниже температуры плавления кремния, что привело к снижению степени деградации углеродного волокна и при этом позволило сохранить высокую плотность и однородность получаемой матрицы.

Ключевые слова: диборид циркония, карбид кремния, иттрий, углеродное волокно, силицирование

Список литературы

  1. Zhao J., Cai R., Ma Z., Zhang K., Liang H., Qiu H., Liu S., Xie W. Preparation and Properties of C/SiC Composites Reinforced by High Thermal Conductivity Graphite Films // Diamond Relat. Mater. 2021. V. 116. P. 108376. https://doi.org/10.1016/j.diamond.2021.108376

  2. Cheng L., Xu Y., Zhang L., Luan X. Oxidation and Defect Control of CVD SiC Coating on Three-Dimensional C/SiC Composites // Carbon. 2002. V. 40. № 12. P. 2229–2234. https://doi.org/10.1016/S0008-6223(02)00103-3

  3. Asl M.S., Nayebi B., Ahmadi Z., Zamharir M.J., Shokouhimehr M. Effect of Carbon Additives on the Properties of ZrB2-based Composites: A Review // Ceram. Int. 2018. V. 44. P. 7334–7348. https://doi.org/10.1016/j.ceramint.2018.01.214

  4. Bansal N.P., Lamon J., Narottam P. Ceramic Matrix Composites: Materials, Modeling and Technology. Hoboken: Wiley, 2014. 725 p.

  5. Уткин А.В., Прокип В.Э., Банных Д.А., Голосов М.А., Бакланова Н.И. Микроструктура и механические свойства композитов C/(ZrB2-SiC), полученных из керамических лент // Неорган. материалы. 2022. Т. 58. № 2. С. 192–199. https://doi.org/10.31857/S0002337X22020142

  6. Xiao Y., Che J., Ji F. Study on Oxidation Resistance of Tyranno/C Composite Fiber // Mater. Chem. Phys. 2004. V. 83. № 1. P. 104–106. https://doi.org/10.1016/j.matchemphys.2003.09.007

  7. Yang D., Dong S., Hong C., Zhang X. Preparation, Modification, and Coating for Carbon-Bonded Carbon Fiber Composites: A Review // Ceram. Int. 2022. V. 48. № 11. P. 14935–14958. https://doi.org/10.1016/j.ceramint.2022.03.055

  8. Shukla A., Kang Y.-B., Pelton A.D. Thermodynamic Assessment of the Ce–Si, Y–Si, Mg–Ce–Si and Mg–Y–Si Systems // Int. J. Mater. Res. 2009. V. 100. № 2. P. 208–217. https://doi.org/10.3139/146.110003

  9. Кузнецов Ф.А. Фундаментальные основы процессов химического осаждения пленок и структур для наноэлектроники. Новосибирск: Издательство СО РАН, 2013. 176 с.

  10. Matthews F.L., Rawlings R.D. Composite Materials: Engineering and Science. Cambridge: Woodhead, 1999. 486 p.

  11. Williams P.A., Sakidja R., Perepezko J.H., Ritt P. Oxidation of ZrB2–SiC Ultra-High Temperature Composites Over a Wide Range of SiC Content // J. Eur. Ceram. Soc. 2012. V. 32. № 14. P. 3875–3883. https://doi.org/10.1016/j.jeurceramsoc.2012.05.021

  12. Blanton T., Gates-Rector S. The Powder Diffraction File: A Quality Materials Characterization Database // Powder Diffr. 2019. V. 34. № 4. P. 352–360. https://doi.org/10.1017/S0885715619000812

  13. Levin I. NIST Inorganic Crystal Structure Database (ICSD). National Institute of Standards and Technology. 2018. https://doi.org/10.18434/M32147

Дополнительные материалы отсутствуют.