Неорганические материалы, 2023, T. 59, № 5, стр. 540-547

Примесное поглощение ионами меди(II) в висмутсодержащем теллуритно-цинкатном стекле

М. В. Краснов 1, О. А. Замятин 1*

1 Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского
603950 Нижний Новгород, пр. Гагарина, 23, Россия

* E-mail: xef7@mail.ru

Поступила в редакцию 09.11.2022
После доработки 22.12.2022
Принята к публикации 25.12.2022

Аннотация

Оптическое пропускание многокомпонентных стекол системы TeO2−ZnO–Bi2O3, легированных ионами Cu2+, исследовано методом УФ-спектроскопии. Показано, что в диапазоне длин волн от 350 до 2700 нм присутствует интенсивная полоса с максимумом при ~810 нм. По серии образцов стекол с заданным содержанием Cu2+ в рассматриваемом интервале длин волн был рассчитан удельный коэффициент поглощения, равный в максимуме полосы 5200 ± 220 дБ/(км ppm), а также установлена его спектральная зависимость.

Ключевые слова: теллуритное стекло, примесное поглощение, ионы Cu2+, удельный коэффициент поглощения

Список литературы

  1. Rivera V.A.G., Manzani D. Technological Advances in Tellurite Glasses. Cham: Springer, 2017.

  2. El-Mallawany R.A.H. Tellurite Glasses Handbook. Boca Raton Taylor & Francis, 2011.

  3. Jose R., Arai Y., Ohishi Y. Raman Scattering Characteristics of the TBSN-Based Tellurite Glass System as a New Raman Gain Medium // J. Opt. Soc. Am. B: Opt. Phys. 2007. V. 24. № 7. P. 1517. https://doi.org/10.1364/JOSAB.24.001517.xe

  4. Qin G., Jose R., Ohishi Y. Design of Ultimate Gain-Flattened O-, E-, and S + C + L Ultrabroadband Fiber Amplifiers Using a New Fiber Raman Gain Medium // J. Lightwave Technol. 2007. V. 25. № 9. P. 2727–2738. https://doi.org/10.1109/JLT.2007.902767

  5. Stegeman R., Jankovic L., Kim H., Rivero C., Stegeman G., Richardson K., Delfyett P., Guo Y., Schulte A., Cardinal T. Tellurite Glasses with Peak Absolute Raman Gain Coefficients up to 30 Times that of Fused Silica // Opt. Lett. 2003. V. 28. № 13. P. 1126–1128. https://doi.org/10.1364/OL.28.001126

  6. Denker B.I., Dorofeev V.V., Galagan B.I., Koltashev V.V., Motorin S.E., Plotnichenko V.G., Sverchkov S.E. 2.3 µm Laser Action in Tm3+-Doped Tellurite Glass Fiber // Laser. Phys. Lett. 2019. V. 16. № 1. P. 15101. https://doi.org/10.1088/1612-202X/aaeda4

  7. Dorofeev V.V., Moiseev A.N., Churbanov M.F., Plotnichenko V.G., Kosolapov A.F., Dianov E.M. Characterization of High-Purity Tellurite Glasses for Fiber Optics // Specialty Optical Fibers: Advanced Photonics. Washington: OSA. SOMC4.

  8. Zamyatin O.A., Plotnichenko V.G., Churbanov M.F., Zamyatina E.V., Karzanov V.V. Optical Properties of Zinc Tellurite Glasses Doped with Cu2+ Ions // J. Non-Cryst. Solids. 2018. V. 480. P. 81–89. https://doi.org/10.1016/j.jnoncrysol.2017.08.025

  9. Замятин О.А., Чурбанов М.Ф., Плотниченко В.Г., Сибиркин А.А., Федотова И.Г., Гаврин С.А. Удельный коэффициент поглощения меди в стекле (TeO2)0.80(MoO3)0.20 // Неорган. материалы.2015. Т. 51. № 12. С. 1380–1384. https://doi.org/10.7868/S0002337X15110160

  10. Marzuki A., Ega F.D., Saraswati A. Effect of B2O3 Addition on Thermal and Optical Properties of TeO2–ZnO–Bi2O3–TiO2 Glasses // Mater. Res. Express. 2022. V. 9. № 2. P. 25203. https://doi.org/10.1088/2053-1591/ac55c5

  11. Wang Y., Dai S., Chen F., Xu T., Nie Q. Physical Properties and Optical Band Gap of New Tellurite Glasses within the TeO2–Nb2O5–Bi2O3 System // Mater. Chem. Phys. 2009. V. 113. № 1. P. 407–411. https://doi.org/10.1016/j.matchemphys.2008.07.117

  12. Kundu R.S., Dhankhar S., Punia R., Nanda K., Kishore N. Bismuth Modified Physical, Structural and Optical Properties of mid-IR Transparent Zinc Boro-Tellurite Glasses // J. Alloys Compd. 2014. V. 587. № 1. P. 66–73. https://doi.org/10.1016/j.jallcom.2013.10.141

  13. Lin S.-B., Wang P.-F., She J.-B., Guo H.-T., Xu S.-N., Zhao P.-F., Yu C.-L., Liu C.-X., Peng B. Spectroscopic and Thermal Properties of Yb3+ Doped TeO2–Bi2O3–Nb2O5 Based Tellurite Glasses // J. Lumin. 2014. V. 153. P. 29–33. https://doi.org/10.1016/j.jlumin.2014.02.031

  14. Gao G., Hu L., Fan H., Wang G., Li K., Feng S., Fan S., Chen H., Pan J., Zhang J. Investigation of 2.0μm Emission in Tm3+ and Ho3+ co-Doped TeO2–ZnO–Bi2O3 Glasses // Opt. Mater. 2009. V. 32. № 2. P. 402–405. https://doi.org/10.1016/j.optmat.2009.07.003

  15. Kozak A.J., Wieczorek-Ciurowa K., Kozak A. The Thermal Transformations in Zn(NO3)2‒H2O (1 : 6) System // J. Therm. Anal. Calorim. 2003. V. 74. № 2. P. 497–502. https://doi.org/10.1023/B:JTAN.0000005186.15474.be

  16. Małecki A., Gajerski R., Łabuś S., Prochowska-Klisch B., Wojciechowski K.T. Mechanism of Thermal Decomposition of d-Metals Nitraes Hydrates // J. Therm. Anal. Calorim. 2000. V. 60. № 1. P. 17–23. https://doi.org/10.1023/A:1010155931266

  17. Živković Ž.D., Živković D.T., Grujičić D.B. Kinetics and Mechanism of the Thermal Decomposition of M(NO3)2·nH2O (M=Cu, Co, Ni) // J. Therm. Anal. Calorim. 1998. V. 53. № 2. P. 617–623. https://doi.org/10.1023/A:1010170231923

  18. Nikolic R., Zec S., Maksimovic V., Mentus S. Physico-Chemical Characterization of Thermal Decomposition Course in Zinc Nitrate-Copper Nitrate Hexahydrates // J. Therm. Anal. Calorim. 2006. V. 86. № 2. P. 423–428. https://doi.org/10.1007/s10973-005-7237-z

  19. Ahmed M.A.K., Fjellvåg H., Kjekshus A. Synthesis, Structure and Thermal Stability of Tellurium Oxides and Oxide Sulfate Formed from Reactions in Refluxing Sulfuric Acid // J. Chem. Soc., Dalton Trans. 2000. № 24. P. 4542–4549. https://doi.org/10.1039/B005688J

  20. Rosick J., Loub J., Pavel J. ber die Thermische Zersetzung der Orthotellursure und die Verbindung Te2O5 // Z. Anorg. Allg. Chem. 1965. V. 334. № 5–6. P. 312–320. https://doi.org/10.1002/zaac.19653340512

  21. Bart J.C.J., Bossi A., Perissinoto P., Castellan A., Giordano N. Some Observations on the Thermochemistry of Telluric Acid // J. Therm. Anal. 1975. V. 8. № 2. P. 313–327. https://doi.org/10.1007/BF01904009

  22. Bayer G. On the Polymorphism of Orthotelluric Acid, H6TeO6 // J. Less-Common Met. 1968. V. 16. № 3. P. 215–222. https://doi.org/10.1016/0022-5088(68)90017-9

  23. Missen O.P., Mills S.J., Canossa S., Hadermann J., Nénert G., Weil M., Libowitzky E., Housley R.M., Artner W., Kampf A.R., Rumsey M.S., Spratt J., Momma K., Dunstan M.A. Polytypism in Mcalpineite: a Study of Natural and Synthetic Cu3TeO6 // Acta Crystallogr., Sect. B: Struct. Sci. 2022. V. 78. № Pt 1. P. 20–32. https://doi.org/10.1107/S2052520621013032

  24. Falck L., Lindqvist O., Mark W., Philippot E., Moret J. The Crystal Structure of CuTeO4 // Acta Crystallogr., Sect. B: Struct. Sci. 1978. V. 34. № 5. P. 1450–1453. https://doi.org/10.1107/S0567740878005889

  25. Zhu X., Wang Z., Su X., Vilarinho P.M. New Cu3TeO6 Ceramics: Phase Formation and Dielectric Properties // ACS Appl. Mater Interfaces. 2014. V. 6. № 14. P. 11326–11332. https://doi.org/10.1021/am501742z

  26. Kamalaker V., Upender G., Prasad M., Mouli V.C. Infrared, ESR and Optical Absorption Studies of Cu2+ Ions Doped in TeO2−ZnO−NaF Glass System // Indian J. Pure Appl. Phys. 2010. V. 48. № 10. P. 709–715.

  27. Gayathri Pavani P., Vijaya Kumar R., Chandra Mouli V. Characterization of ZnO Based Boro Tellurite Glass System // Phys. Chem. Glasses. 2016. V. 57. № 2. P. 104–110. https://doi.org/10.13036/17533562.57.2.013

  28. Hosono H., Kawazoe H., Kanazawa T. ESR and Optical Absorption of Cu2+ in Na2O·SiO2 Glasses // J. Non-Cryst. Solids. 1979. V. 33. № 1. P. 103–115. https://doi.org/10.1016/0022-3093(79)90099-1

  29. Upender G., Devi C.S., Kamalaker V., Mouli V.C. The Structural and Spectroscopic Investigations of Ternary Tellurite Glasses, Doped with Copper // J. Alloys Compd. 2011. V. 509. № 19. P. 5887–5892. https://doi.org/10.1016/j.jallcom.2011.03.001

  30. Ramadevudu G., Shareefuddin M., Sunitha Bai N., Lakshmipathi Rao M., Narasimha Chary M. Electron Paramagnetic Resonance and Optical Absorption Studies of Cu2+ Spin Probe in MgO–Na2O–B2O3 Ternary Glasses // J. Non-Cryst. Solids. 2000. V. 278. № 1–3. P. 205–212. https://doi.org/10.1016/S0022-3093(00)00255-6

  31. Sreedhar B., Rao J.L., Lakshman S.V.J. Electron Spin Resonance and Optical Absorption Spectra of Cu2+ Ions in Alkali Zinc Borosulphate Glasses // J. Non-Cryst. Solids. 1990. V. 124. № 2–3. P. 216–220. https://doi.org/10.1016/0022-3093(90)90265-N

  32. Narendra G.L., Sreedhar B., Rao J.L., Lakshman S.V.J. Electron Spin Resonance and Optical Absorption Spectra of Cu2+ Ions in Na2SO4–ZnSO4 Glasses // J. Mater. Sci. 1991. V. 26. № 19. P. 5342–5346. https://doi.org/10.1007/BF01143231

  33. Bae B.-S., Weinberg M.C. Optical Absorption of Copper Phosphate Glasses in the Visible Spectrum // J. Non-Cryst. Solids. 1994. V. 168. № 3. P. 223–231. https://doi.org/10.1016/0022-3093(94)90333-6

  34. Chakradhar R.P.S., Ramesh K.P., Rao J.L., Ramakrishna J. Mixed Alkali Effect in Borate Glasses – Electron Paramagnetic Resonance and Optical Absorption Studies in Cu2+ Doped xNa2O–(30–x)K2O–70B2O3 Glasses // J. Mater. Sci. 2003. V. 15. № 9. P. 1469–1486. https://doi.org/10.1088/0953-8984/15/9/311

  35. Rao L.S., Reddy M.S., Rao D.K., Veeraiah N. Influence of Eedox Behavior of Copper Ions on Dielectric and Spectroscopic Properties of Li2O–MoO3–B2O3: CuO Glass System // Solid State Sci. 2009. V. 11. № 2. P. 578–587. https://doi.org/10.1016/j.solidstatesciences.2008.06.022

  36. Rayan D.A., Elbashar Y.H., Rashad M.M., El-Korashy A. Optical Spectroscopic Analysis of Cupric Oxide Doped Barium Phosphate Glass for Bandpass Absorption Filter // J. Non-Cryst. Solids. 2013. V. 382. P. 52–56. https://doi.org/10.1016/j.jnoncrysol.2013.10.002

  37. Stefan R., Culea E., Pascuta P. The Effect of Copper Ions Addition on Structural and Optical Properties of Zinc Borate Glasses // J. Non-Cryst. Solids. 2012. V. 358. № 4. P. 839–846. https://doi.org/10.1016/j.jnoncrysol.2011.12.079

  38. Takebe H., Nishimoto S., Kuwabara M. Thermal and Optical Properties of CuO–BaO–B2O3–P2O5 Glasses // J. Non-Cryst. Solids. 2007. V. 353. № 13–15. P. 1354–1357. https://doi.org/10.1016/j.jnoncrysol.2006.09.044

  39. Schultz P.C. Optical Absorption of the Transition Elements in Vitreous Silica // J. Am. Ceram. Soc. 1974. V. 57. № 7. P. 309–313. https://doi.org/10.1111/j.1151-2916.1974.tb10908.x

  40. Newns G.R., Pantelis P., Wilson J.L., Uffen R.W.J., Worthington R. Absorption Losses in Glasses and Glass Fibre Waveguides // Opto-electronics. 1973. V. 5. № 4. P. 289–296. https://doi.org/10.1007/BF02057128

  41. Spierings G.A.C.M. Optical Absorption of Transition Metals in Alkali Lime Germanosilicate Glasses // J. Mater. Sci. 1979. V. 14. № 10. P. 2519–2521. https://doi.org/10.1007/BF00737045

  42. Upender G., Prasad M., Mouli V.C. Vibrational, EPR and Optical Spectroscopy of the Cu2+ Doped Glasses with (90–x)TeO2–10GeO2xWO3 (7.5 ≤ x ≤ 30) Composition // J. Non-Cryst. Solids. 2011. V. 357. № 3. P. 903–909. https://doi.org/10.1016/j.jnoncrysol.2010.12.001

  43. France P.W., Carter S.W., Williams J.R. Effects of Atmosphere Control on the Oxidation States of 3d Transition Metals in ZrF4 Based Glasses // Mater. Sci. Forum. 1985. V. 5–6. P. 353–359. https://doi.org/10.4028/www.scientific.net/MSF.5-6.353

  44. Замятин О.А., Лексаков Д.А., Носов З.К. Примесное поглощение ионами меди(II) в молибденсодержащем теллуритно-цинкатном стекле // Неорган. материалы. 2021. Т. 57. № 11. С. 1246–1252. https://doi.org/10.31857/S0002337X21110142

Дополнительные материалы отсутствуют.