Неорганические материалы, 2023, T. 59, № 5, стр. 521-528

Экспериментальное изучение двойной системы Mg3(PO4)2–Mg4Na(PO4)3

И. И. Преображенский 1*, Я. Ю. Филиппов 12, П. В. Евдокимов 134, В. И. Путляев 13

1 Московский государственный университет им. М.В. Ломоносова, Факультет наук о материалах
119991 Москва, Ленинские горы, 1, стр. 73, Россия

2 Московский государственный университет им. М.В. Ломоносова, Научно-исследовательский институт механики
119991 Москва, Мичуринский пр., 1, Россия

3 Московский государственный университет им. М.В. Ломоносова, Химический факультет
119991 Москва, Ленинские горы, 1, стр. 3, Россия

4 Институт общей и неорганической химии имени Н.С. Курнакова Российской академии наук
119991 Москва, Ленинский пр., 31, Россия

* E-mail: preo.ilya@yandex.ru

Поступила в редакцию 07.12.2022
После доработки 28.02.2023
Принята к публикации 28.02.2023

Аннотация

В работе исследована система Mg3(PO4)2–Mg4Na(PO4)3 методами термического анализа, РФА и РСМА. Показано, что в случае обжига компонентов системы при 800°C не происходит фазовых изменений, в то время как при обжиге выше 1000°C образуется однофазный образец, что связано с инконгруэнтным плавлением двойного ортофосфата магния-натрия Mg4Na(PO4)3. Для соединений системы Mg3(PO4)2–Mg4Na(PO4)3 с различным соотношением компонентов исследована область гомогенности методом РСМА. Микроструктура керамических материалов на основе Mg3–xNa2x(PO4)2 характеризуется средним размером зерна менее 10 мкм при спекании при температуре 1000°C. Синтезированные биокерамические материалы могут быть перспективны для дальнейшего их применения в качестве имплантатов при регенерации костной ткани.

Ключевые слова: фосфаты магния, фазовая диаграмма, биокерамика, регенеративная медицина

Список литературы

  1. Сафронова Т.В. Неорганические материалы для регенеративной медицины // Неорган. материалы. 2021. Т. 57. № 5. С. 467–499. https://doi.org/10.31857/S0002337X21050067

  2. Фадеева И.В., Фомин А.С., Баринов С.М., Давыдова Г.А., Селезнева И.И., Преображенский И.И., Русаков М.К., Фомина А.А., Волченкова В.А. Синтез и свойства марганецсодержащих кальцийфосфатных материалов // Неорган. материалы. 2020. Т. 56. № 7. С. 738–745. https://doi.org/10.31857/S0002337X20070052

  3. Wang X., Zhai D., Yao X., Wang Y., Ma H., Yu X., Du L., Lin H., Wu C. 3D Printing of Pink Bioceramic Scaffolds for Bone Tumor Tissue Therapy // Appl. Mater. Today. 2022. V. 27. P. 101443. https://doi.org/10.1016/j.apmt.2022.101443

  4. Голованова О.А. Формирование гранул фосфаты кальция/хитозан // Неорган. материалы. 2021. Т. 57. № 9. С. 999–1007. https://doi.org/10.31857/S0002337X21090098

  5. Preobrazhenskiy I.I., Tikhonov A.A., Evdokimov P.V., Shibaev A.V., Putlyaev V.I. DLP Printing of Hydrogel/Calcium Phosphate Composites for the Treatment of Bone Defects // Open Ceram. 2021. V. 6. P. 100115. https://doi.org/10.1016/j.oceram.2021.100115

  6. Солоненко А.П., Блесман А.И., Полонянкин Д.А., Горбунов В.А. Синтез композитов на основе фосфатов и силикатов кальция // Журн. неорган. химии. 2018. Т. 63. № 8. С. 953–960. https://doi.org/10.1134/S0044457X18080214

  7. Преображенский И.И., Тихонов А.А., Климашина Е.С., Евдокимов П.В., Путляев В.И. Набухание акрилатных гидрогелей, наполненных брушитом и октакальциевым фосфатом // Изв. АН. Сер. хим. 2020. № 8. С. 1601–1603. https://elibrary.ru/item.asp?id=43862779

  8. Преображенский И.И., Путляев В.И. Трехмерная печать биосовместимых материалов на основе гидрогелей // Журн. прикл. химии. 2022. Т. 95. № 6. С. 685–699. https://doi.org/10.31857/S0044461822060020

  9. Sun H., Zhang C., Zhang B., Song P., Xu X., Gui X., Chen X., Lu G., Li X., Liang J., Sun J., Jiang Q., Zhou C., Fan Y., Zhou X., Zhang X. 3D Printed Calcium Phosphate Scaffolds with Controlled Release of Osteogenic Drugs for Bone Regeneration // Chem. Eng. J. 2022. V. 427. P. 130961. https://doi.org/10.1016/j.cej.2021.130961

  10. Fadeeva I.V., Goldberg M.A., Preobrazhensky I.I., Mamin G.V., Davidova G.A., Agafonova N.V., Fosca M., Russo F., Barinov S.M., Cavalu S., Rau J.V. Improved Cytocompatibility and Antibacterial Properties of Zinc-Substituted Brushite Bone Cement Based on β-Tricalcium Phosphate // J. Mater. Sci.: Mater. Med. 2021. V. 32. № 9. P. 1–12. https://doi.org/10.1007/s10856-021-06575-x

  11. Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Tao H., Zhang Y., He Y., Jiang Y., Bian Y. Research on an Mg–Zn Alloy as a Degradable Biomaterial // Acta Biomater. 2010. V. 6. № 2. P. 626–640. https://doi.org/10.1016/j.actbio.2009.06.028

  12. Salimi M.H., Heughebaert J.C., Nancollas G.H. Crystal Growth of Calcium Phosphates in the Presence of Magnesium Ions // Langmuir. 1985. V. 1. № 1. P. 119–122. https://doi.org/10.1021/la00061a019

  13. Liu M., Liu H., Feng F., Xie A., Kang G.J., Zhao Y., Hou C.R., Zhou X., DudleyJr S.C. Magnesium Deficiency Causes a Reversible, Metabolic, Diastolic Cardiomyopathy // J. Am. Heart Assoc. 2021. P. e020205. https://doi.org/10.1161/JAHA.120.020205

  14. Gronowicz G., McCarthy M.B. Response of Human Osteoblasts to Implant Materials: Integrin-Mediated Adhesion // J. Orthop. Res. 1996. V. 14. № 6. P. 878–887. https://doi.org/10.1002/jor.1100140606

  15. Zhao X., Yang Z., Liu Q., Yang P., Wang P., Wei S., Liu A., Zhao Z. Potential Load-Bearing Bone Substitution Material: Carbon-Fiber-Reinforced Magnesium-Doped Hydroxyapatite Composites with Excellent Mechanical Performance and Tailored Biological Properties // ACS Biomater. Eng. 2022. https://doi.org/10.1021/acsbiomaterials.1c01247

  16. Chau C., Qiao F., Li Z. Potentiometric Study of the Formation of Magnesium Potassium Phosphate Hexahydrate // J. Mater. Civil Eng. 2012. V. 24. № 5. P. 586–591. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000410

  17. Ewald A., Helmschrott K., Knebl G., Mehrban N., Grover L.M., Gbureck U. Effect of Cold-Setting Calcium- and Magnesium Phosphate Matrices on Protein Expression in Osteoblastic Cells // J. Biomed. Mater. Res. Part B: Appl. Biomater. 2011. V. 96. № 2. P. 326–332. https://doi.org/10.1002/jbm.b.31771

  18. Никитина Ю.О., Петракова Н.В., Ашмарин А.А., Титов Д.Д., Шевцов С.В., Пенкина Т.Н., Кувшинова Е.А., Баринов С.М., Комлев В.С., Сергеева Н.С. Получение и исследование свойств порошков и керамики медьзамещенного гидроксиапатита // Неорган. материалы. 2019. Т. 55. № 10. С. 1123–1129. https://doi.org/10.1134/S0002337X19100117

  19. Преображенский И.И., Путляев В.И. Синтез и фазовые превращения соединений системы Mg4Na(PO4)3–Mg3(PO4)2 в качестве перспективных фаз для изготовления биокерамики // Неорган. материалы. 2022. Т. 58. № 4. С. 367–373. https://doi.org/10.31857/S0002337X22030125

  20. Abbona F., Madsen H.L., Boistelle R. Crystallization of Two Magnesium Phosphates, Struvite and Newberyite: Effect of pH and Concentration // J. Cryst. Growth. 1982. V. 57. № 1. P. 6–14. https://doi.org/10.1016/0022-0248(82)90242-1

  21. PDF-4+ 2010 (Database). Newtown Square: International Centre for Diffraction Data, 2010. http://www.icdd.com/products/pdf2.htm

  22. Majling J., Hanic F. Phase Coexistence in the System Mg3(PO4)2–Ca3(PO4)2–Na3PO4 // Chem. Zv. 1976. V. 30. № 2. P. 145–152.

  23. Kushkevych I., Abdulina D., Dordević D., Rozehnalová M., Vítězová M., Černý M., Svoboda P., Rittmann M.R. Basic Bioelement Contents in Anaerobic Intestinal Sulfate-Reducing Bacteria // Appl. Sci. 2021. V. 11. № 3. P. 1152. https://doi.org/10.3390/app11031152

  24. Martínez-Moreno D., Jiménez G., Chocarro-Wrona C., Carrillo E., Montañez E., Galocha-León C., Clares-Naveros B., Gálvez-Martín P., Rus G., de Vicente J., Marchal J.A. Pore Geometry Influences Growth and Cell Adhesion of Infrapatellar Mesenchymal Stem Cells in Biofabricated 3D Thermoplastic Scaffolds Useful for Cartilage Tissue Engineering // Mater. Sci. Eng., C. 2021. V. 122. P. 111933. https://doi.org/10.1016/j.msec.2021.111933

Дополнительные материалы отсутствуют.