Неорганические материалы, 2023, T. 59, № 6, стр. 610-617

Морфология поверхности, фазовый состав и локальные электрические свойства пленок фуллерита с разной атомной долей олова и висмута

Л. В. Баран *

Белорусский государственный университет
220030 Минск, пр. Независимости, 4, Беларусь

* E-mail: baran@bsu.by

Поступила в редакцию 26.12.2022
После доработки 24.03.2023
Принята к публикации 25.03.2023

Аннотация

Методами сканирующей зондовой и электронной микроскопии, рентгеноспектрального и рентгенофазового анализа, КР- и Фурье-спектроскопии исследованы морфология поверхности, элементный и фазовый составы, локальные электрические свойства пленок фуллерита с разной атомной долей олова и висмута. Пленки получены из совмещенного атомно-молекулярного потока методом резистивного испарения в вакууме на подложках из окисленного монокристаллического кремния. Толщина пленок составила 1 мкм. Установлено, что свежесконденсированные пленки состоят из частиц разных размеров – от 30 до 200 нм, на рентгенограммах наблюдаются отражения фуллерита С60 с гранецентрированной кубической решеткой, находящейся в напряженном состоянии из-за внедрения атомов примеси, а также отражения чистых олова и висмута. С помощью оптической спектроскопии выявлено образование комплексов фуллеренов с атомами Sn и Bi. Электросиловая микроскопия показала значительное уменьшение поверхностного потенциала пленок фуллерита, легированных оловом и висмутом, и неоднородное распределение градиента поверхностной емкости.

Ключевые слова: тонкие пленки, фуллерит, легирование оловом и висмутом, морфология поверхности, твердофазное взаимодействие

Список литературы

  1. Сидоров Л.Н., Юровская М.А., Борщевский А.Я., Трушков И.В., Иоффе И.Н. Фуллерены. М.: Экзамен, 2005. 688 с.

  2. Баран Л.В. Влияние атомной доли металла на шероховатость поверхности и электросопротивление пленок фуллерит–висмут // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 1. С. 38–44. https://doi.org/10.31857/S004418562201003X

  3. Gothard N., Spowart J.E., Tritt T.M. Thermal Conductivity Reduction in Fullerene-Enriched P-Type Bismuth Telluride Composites // Phys. Status Solidi A. 2010. V. 207. № 1. P. 157–162. https://doi.org/10.1002/pssa.200925145

  4. Ke N., Cheung W.Y., Wong S.P., Peng S.Q. Electrical and Defect Properties of Sn–Doped C60 Thin Films // Carbon. 1997. V. 35. № 6. P. 759–762. https://doi.org/10.1016/S0008-6223(97)00032-8

  5. Баран Л.В. Электросиловая микроскопия локальных электрических свойств пленок олово-фуллерит // Перспективные материалы. 2009. № 5. С. 86–90.

  6. Баран Л.В. Твердофазное взаимодействие в пленках фуллерит-висмут при термическом отжиге // Поверхность. Рентген. синхротр. и нейтрон. исследования. 2019. № 8. С. 30–34. https://doi.org/10.1134/S0207352819080031

  7. Дроздов А.Н., Вус А.С., Пуха В.Е., Пугачев А.Т. Особенности формирования дифракционных картин кристаллами металлофуллеренов // ФТТ. 2010. Т. 52. Вып. 9. С. 1861–1866.

  8. Баран Л.В. Структурные и фазовые изменения в пленках олово-фуллерит при отжиге // Поверхность. Рентген. синхротр. и нейтрон. исследования. 2010. № 8. С. 89–94.

  9. Cornelius B., Treivish S., Rosenthal Y., Pecht M. The Phenomenon of Tin Pest: A Review // Microelectron. Reliab. 2017. V. 79. P. 175–192. https://doi.org/10.1016/j.microrel.2017.10.030

  10. Baran L.V. Spontaneous Growth of Petal Crystals in Fullerite Films // Nanosyst.: Phys., Chem., Math. 2018. V. 9. № 2. P. 295–299.

  11. Россошинский А.А., Лапшов Б.П., Яценко Ю.К. Олово в процессах пайки. Киев: Навукова думка, 1985. 195 с.

  12. Tanigaki K., Zhou O. Conductivity and Superconductivity in C60 Fullerides // J. Phys. I. 1996. V. 6. № 12. P. 2159–2173. https://doi.org/10.1051/jp1:1996212. jpa-00247304

  13. Захарова И.Б., Зиминов В.М., Романов Н.М., Квятковский О.Е., Макарова Т.Л. Оптические и структурные свойства пленок фуллерена с добавлением теллурида кадмия // ФТТ. 2014. Т. 56. Вып. 5. С. 1024–1029.

  14. Кульбачинский В.А., Кытин В.Г., Бланк В.Д., Буга С.Г., Попов М.Ю. Термоэлектрические свойства нанокомпозитов теллурида висмута с фуллеренами // ФТП. 2011. Т. 45. Вып. 9. С. 1241–1245.

  15. Баран Л.В. Структурно-фазовое состояние и локальные механические свойства пленок фуллерит – алюминий с разной атомной долей металла // Перспективные материалы. 2014. № 12. С. 51–58.

  16. Popescu R., Macovei D., Devenyi A., Manaila R., Barna P.B., Kovacs A., Labar J.L. Metal Clusters in Metal/C60 Thin Film Nanosystems // Eur. Phys. J. B. 2000. V. 13. P. 737–743. https://doi.org/10.1007/s100510050093

  17. Chen N., Yu P., Guo K., Lu X. Rubrene-Directed Structural Transformation of Fullerene (C60) Microsheets to Nanorod Arrays with Enhanced Photoelectrochemical Properties // Nanomaterials. 2022. V. 12. № 6. P. 954 (1–13). https://doi.org/10.3390/nano12060954

  18. Lei Y., Wang S., Lai Z., Yao X., Zhao Y., Zhang H., Chen H. Two-dimensional C60 Nano-meshes: Via Crystal Transformation // Nanoscale. 2019. V. 11. № 18. P. 8692–8698. https://doi.org/10.1039/c8nr09329f

  19. Баран Л.В. Самопроизвольный рост монокристаллов различной формы в пленках олово–фуллерит // Кристаллография. 2006. Т. 51. № 4. С. 736–741.

  20. Баран Л.В. Структура и условия образования кристаллитов фуллерита в пленках Sn–C60 // Кристаллография. 2009. Т. 54. № 1. С. 112–115.

  21. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Raman Scattering in Fullerenes // J. Raman Spectrosc. 1996. V. 27. P. 351. https://doi.org/10.1002/(SICI)1097-4555(199603)27: 3/4%3C351::AID-JRS969%3E3.0.CO;2-N

  22. Kuzmany H., Matus M., Burger B., Winter J. Raman Scattering in C60 Fullerenes and Fullerides // Adv. Mater. 1994. V. 6. № 10. P. 731–745. https://doi.org/10.1002/adma.19940061004

  23. Hare J.P., Dennis T.J., Kroto H.W., Taylor R., Allaf A.W., Balm S., Walton D.R.M. The IR Spectra of Fullerene-60 and -70 // J. Chem. Soc., Chem. Commun. 1991. № 6. P. 412–413. https://doi.org/10.1039/C39910000412

  24. Wilson William L., Hebard A.F., Narasimhan L.R., Haddon R.C. Doping-Induced Spectral Evolution in C60: Evidence of Immiscible Stoichiometric Phases in AxC60 (A = K, Rb; X = 0, 3, and 6) Thin Films // Phys. Rev. B. 1993. V. 46. № 4. P. 2591–2594. https://doi.org/10.1103/PhysRevB.48.2738

  25. Титова С.Н., Домрачев Г.А., Хоршев С.Я., Объедков А.М., Калакутская Л.В., Кетков С.Ю., Черкасов В.К., Каверин Б.С., Жогова К.Б., Лопатин М.А., Карнацевич В.Л., Горина Е.А. Стехиометрический синтез соединений фуллерена с литием и натрием, анализ их ИК и ЭПР спектров // ФТТ. 2004. Т. 46. № 7. С. 1323–1327.

  26. Sun Y.-P., Ma B., Bunker Christ E., Liu Bing. All-Carbon Polymers (Polyfullerenes) from Photochemical Reactions of Fullerene Clusters in Room-Temperature Solvent Mixtures // J. Am. Chem. Soc. 1995. V. 117. P. 12705–12711.

  27. Shuichi Osawa, Jun Onoe, Kazuo Takeuchi. Coalesced C60 Molecules in Toluene under Ultrahigh Pressure // Fullerene Sci. Technol. 1998. V. 6. № 2. P. 301–308.

  28. Казаченко В.П., Рязанов И.В. Структура полимерных покрытий из С60, полученных методом электронно-лучевого диспергирования фуллерита // ФТТ. 2009. Т. 51. № 4. С. 822–827.

Дополнительные материалы отсутствуют.