Неорганические материалы, 2023, T. 59, № 6, стр. 705-711

Самораспространяющийся высокотемпературный синтез сплава в системе Ti–Al–Mn

П. А. Лазарев 1*, М. Л. Бусурина 1, О. Д. Боярченко 1, Д. Ю. Ковалев 1, А. Е. Сычев 1

1 Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук
142432 Московская обл., Черноголовка, ул. Академика Осипьяна, 8, Россия

* E-mail: lazarev@ism.ac.ru

Поступила в редакцию 22.12.2022
После доработки 15.02.2023
Принята к публикации 16.02.2023

Аннотация

Методом самораспространяющегося высокотемпературного синтеза из смеси 34.8Ti + 45.2Al + + 20Mn (ат. %) получен сплав на основе фазы Лавеса Ti(Mn0.75Al1.25). Установлено влияние относительной плотности исходных образцов на фазовый состав сплава. В случае относительной плотности образцов ~0.75 получен однофазный интерметаллидный сплав с пористостью 45%, содержащий ~2 мас. % примесной фазы Al2O3. Синтез из смеси с относительной плотностью 0.55% приводит к образованию двухфазного сплава, содержащего фазу Лавеса и τ-фазу Ti(Al2.68Mn0.32). Сплав является неравновесным и его отжиг при 1000°C в течение 3 ч приводит к формированию однофазного сплава на основе фазы Лавеса Ti(Mn0.75Al1.25). Микротвердость сплава составила 7.96 ± 0.8 ГПа.

Ключевые слова: фаза Лавеса Ti(Mn,Al)2, горение, СВС, микроструктура

Список литературы

  1. Leyens C., Peters M. Titanium and Titanium Alloys: Fundamentals and Applications / Ed. Christoph L., Manfred P. Weinheim: WILEY-VCH Verlag, 2003. ISBN: 3-527-30534-3.

  2. Kunal K., Ramachandran R., Norman M. Advances in Gamma Titanium Aluminides and Their Manufacturing Techniques // Prog. Aerospace Sci. 2012. V. 55. P. 1–16. https://doi.org/10.1016/j.paerosci.2012.04.001

  3. Yogesha B., Bhattacharya S. Superplastic Behavior of a Ti–Al–Mn Alloy // J. Manuf. Sci. Prod. 2008. V. 9. № 1–2. P. 81–86. https://doi.org/10.1515/IJMSP.2008.9.1-2.81

  4. Mikhaylovskaya A., Mosleh A., Kotov A., Kwame J., Pourcelot T., Golovin I., Portnoy V. Superplastic Deformation Behavior and Microstructure Evolution of near-α-Ti-Al-Mn Alloy // Mater. Sci. Eng: A. 2017. V. 708. P. 469–477. https://doi.org/10.1016/j.msea.2017.10.017

  5. Luzhnikov L., Moiseyev V. Alloys of the Ti–Al–Mn System // Met. Sci. Heat Treat. 1961. V. 3. P. 310–314. https://doi.org/10.1007/BF00810382

  6. Kim Y.W., Dimiduk D.M. Progress in the Understanding of Gamma Titanium Aluminides // JOM. 1991. V. 43. P. 40–47. https://doi.org/10.1007/BF03221103

  7. Chan K.S. Understanding Fracture Toughness in Gamma TiAl // JOM. 1992. V. 44. P. 30–38. https://doi.org/10.1007/BF03223047

  8. Hashimoto K., Doi H., Kasahara K., Nakano O., Tsujimoto T., Suzuki T. Effects of Additional Elements on Mechanical Properties of TiAl-base Alloys // J. Jpn Inst. Met. 1988. V. 52. № 11. P. 1159–1166. https://doi.org/10.2320/jinstmet1952.52.11_1159

  9. Hashimoto K., Doi H., Kasahara K., Nakano O., Tsujimoto T., Suzuki T. Effects of Third Elements on the Structures of TiA1-Based Alloys // J. Jpn Inst. Met. 1988. V. 52. № 8. P. 816–825. https://doi.org/10.2320/jinstmet1952.52.8_816

  10. Dwight A. Alloying Behavior of Zirconium, Hafnium and the Actinides in Several Series of Isostructural Compounds // J. Less-Common Met. 1974. V. 34. P. 279–284. https://doi.org/10.1016/0022-5088(74)90170-2

  11. Chakrabarti D.J. Phase Stability in Ternary Systems of Transition Elements with Aluminum // Metall. Mater. Trans. B. 1977. V. 8. P. 121–123. https://doi.org/10.1007/BF02656360

  12. Sun J., Lee C., Hu G. The Dependence of Tensile Behaviour of Ll2 Compound AI67Ti25Mn8 on the Strain Rate at 1173 K // Scr. Mater. 1997. V. 37. № 5. P. 645–650.

  13. Mabuchi H., Kito A., Nakamoto A., Tsuda H., Nakayama Y. Effects of Manganese on the L12 Compound Formation in Al3Ti-based Alloys // Intermetallics. 1996. V. 4. P. 193–199. https://doi.org/10.1016/0966-9795(96)00005-2

  14. Xin-L., Xing Q., Grytsiv A., Rogl P., Podloucky R., Schmidt H., Giester G, Xue-Yong D. On the Ternary Laves Phases Ti(Mn1–xAlx)2 with MgZn2-type // Intermetallics. 2008. V. 16. P. 16–26. https://doi.org/10.1016/j.intermet.2007.07.005

  15. Chen Z., Jones I., Small C. Laves Phase in Ti-42Al-10Mn Alloy // Scr. Mater. 1996. V. 35. № 1. P. 23–27. https://doi.org/10.1016/1359-6462(96)00085-1

  16. Butler C.J., Mccartney D.G., Small C.J., Horrocks F.J., Saunders N. Solidification Microstructures and Calculated Phase Equilibria in the Ti-Al–Mn System // Acta Mater. 1997. V. 45. № 7. P. 2931–2947. https://doi.org/10.1016/S1359-6454(96)00391-6

  17. Chen L.Y., Li C.H., Qiu A.T., Lu X.G., Ding W.Z., Zhong Q.D. Calculation of Phase Equilibria in Ti–Al–Mn Ternary System Involving a New Ternary Intermetallic Compound // Intermetallics. 2010. V. 18. № 11. P. 2229–2237. https://doi.org/10.1016/j.intermet.2010.07.005

  18. Raghavan V. Al–Mn–Ti (Aluminum–Manganese–Titanium) // J. Phase Equilib. Diffus. 2011. V. 32. P. 465–467. https://doi.org/10.1007/s11669-011-9926-6

  19. Zhi L., Jiashi M., Renhai S., James C.W., Alan A.L. CALPHAD Modeling and Experimental Assessment of TiAlMn Ternary System // Calphad. 2018. V. 63. P. 126–133. https://doi.org/10.1016/j.calphad.2018.09.002

  20. Zhang S., Nic J., Mikkola D. New Cubic Phases Formed by Alloying Al3Ti with Mn and Cr // Scr. Metall. Mater. 1990. V. 24. P. 57–62.

  21. Toshimitsu T., Hiroshi H. The Influence of Oxygen Concentration and Phase Composition on the Manufacturability and High-Temperature Strength of Ti–42Al–5Mn (at %) Forged Alloy // J. Mater. Process. Technol. 2019. V. 213. P. 752–758. https://doi.org/10.1016/j.jmatprotec.2012.12.003

  22. Hongjian T., Xiaobing L., Yingche M., Chen B., Xing W., Zhao P., Lei S., Zhang M., Liu K. Multistep Evolution of βo Phase during Isothermal Annealing of Ti–42Al–5Mn Alloy: Formation of Laves Phase // Intermetallics. 2020. V. 126. https://doi.org/10.1016/j.intermet.2020.106932

  23. Лазарев П.А., Бусурина М.Л., Сычев А.Е. Самораспространяющийся высокотемпературный синтез в системе Ti–Al–Mn // Физика горения и взрыва. 2023. Т. 59. № 1. С. 1272–1278. https://doi.org/10.15372/FGV20230109

  24. Shu S., Qiu F., Xing B., Jin S., Wang J., Jiang Q. Effect of Strain Rate on the Compression Behavior of TiAl and TiAl–2Mn Alloys Fabricated by Combustion Synthesis and Hot Press Consolidation // Intermetallics. 2013. V. 43. P. 24–28. https://doi.org/10.1016/j.intermet.2013.07.003

  25. Bondarchuk Yu.V., Pityulin A.N., Sytschev A.E. SHS Compunction of Multilayer Solid Alloy/Metal Materials // Int. J. Self-Propag. High-Temp. Synth. 1993. V. 2. P. 75–83.

  26. Питюлин А.Н. Силовое компактирование в СВС-процессах // Самораспространяющийся высокотемпературный синтез: теория и практика / Под ред. Сычева А.Е. Черноголовка: Территория, 2001. С. 333–353.

  27. Kovalev D., Ponomarev V. Time-Resolved X-Ray Diffraction in SHS Research and Related Areas: An Overview // Int. J. Self-Propag. High-Temp. Synth. 2019. V. 28. № 2. P. 114–123.

  28. Yong D., Jiong W., Jingrui Z., Clemens J., Weitzer F., Schmid R., Munekazu O., Honghui X., Liu Z., Shunli S., Zhang W. Reassessment of the Al–Mn System and a Thermodynamic Description of the Al–Mg–Mn System // Int. J. Mater. Res. 2007. V. 98. № 9. P. 855–871. https://doi.org/10.3139/146.101547

  29. Shevyrtalov S., Zhukov A., Medvedeva S., Lyatun I., Zhukova V., Rodionova V. Radial Elemental and Phase Separation in Ni-Mn-Ga Glass-Coated Microwires // J. Appl. Phys. 2018. V. 123 № 17. P. 173–903. https://doi.org/10.1063/1.5028549

Дополнительные материалы отсутствуют.