Неорганические материалы, 2023, T. 59, № 6, стр. 677-681

Формирование нанорешеток и перезапись двулучепреломляющих структур в нанопористом стекле

С. С. Федотов 1*, А. С. Липатьев 1, Т. О. Липатьева 1, Ю. В. Михайлов 1, С. В. Лотарев 1, И. С. Глебов 1, В. Н. Сигаев 1

1 Российский химико-технологический университет им. Д.И. Менделеева
125047 Москва, Миусская пл., 9, Россия

* E-mail: fedotov.s.s@muctr.ru

Поступила в редакцию 08.12.2022
После доработки 20.01.2023
Принята к публикации 23.01.2023

Аннотация

Изучена динамика развития структуры двулучепреломляющих лазерно-индуцированных модификаций в нанопористом стекле в зависимости от количества записывающих фемтосекундных импульсов. Обнаружена трансформация эллиптической полости, вытянутой перпендикулярно поляризации записывающего лазерного пучка, в двулучепреломляющую нанорешетку, которая сопровождается увеличением фазовой задержки. Продемонстрирована возможность перезаписи структур путем изменения ориентации их медленной оси двулучепреломления, что обуславливает перспективность применения высококремнеземистых нанопористых стекол в качестве носителей информации с возможностью перезаписи.

Ключевые слова: нанопористое стекло, двулучепреломление формы, лазерная микрообработка, фемтосекундный лазер

Список литературы

  1. Hood H.P., Nordberg M.E. US Patent 2106744. 1934.

  2. Janowski F., Enke D. Porous Glasses. Part of Handbook of Porous Solids. N.Y.: Wiley-VCH, 2002.

  3. Антропова Т.В., Вейко В.П., Костюк Г.К., Гирсова М.А., Анфимова И.Н., Чуйко В.А., Яковлев Е.Б. Особенности формирования планарных микрооптических элементов на подложках из пористого стекла под действием лазерного излучения и последующего спекания // Физика и химия стекла. 2012. Т. 38. № 6. С. 699–717.

  4. Xia J., Chen D., Qiu J., Zhu C. Rare-Earth-Doped Silica Microchip Laser Fabricated by Sintering Nanoporous Glass // Opt. Lett. 2005. V. 30. № 1. P. 47–49. https://doi.org/10.1364/OL.30.000047

  5. Veiko V.P., Zakoldaev R.A., Sergeev M.M., Danilov P.A., Kudryashov S.I., Kostiuk G.K., Sivers A.N., Ionin A.A., Antropova T.V., Medvedev O.S. Direct Laser Writing of Barriers with Controllable Permeability in Porous Glass // Opt. Express. 2018. V. 26. № 21. P. 28150–28160. https://doi.org/10.1364/OE.26.028150

  6. Lijing Z., Zakoldaev R.A., Sergeev M.M., Petrov A.B., Veiko V.P., Alodjants A.P. Optical Sensitivity of Waveguides Inscribed in Nanoporous Silicate Framework // Nanomaterials. 2021. V. 11. P. 123 1–14. https://doi.org/10.3390/nano11010123

  7. Lijing Z., Zakoldaev R.A., Sergeev M.M., Veiko V.P. Fluorescent Bulk Waveguide Sensor in Porous Glass: Concept, Fabrication, and Testing // Nanomaterials. 2020. V. 10. P. 2169. 1–12. https://doi.org/10.3390/nano10112169

  8. Liao Y., Ni J., Qiao L., Huang M., Bellouard Y., Sugioka K., Cheng Y. Formation of Nanogratings in a Porous Glass Immersed in Water by Femtosecond Laser Irradiation // Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX. 2015. V. 9350. P. 93500G. https://doi.org/10.1117/12.2076905

  9. Liao Y., Cheng Y., Liu C., Song J., He F., Shen Y., Chen D., Xu Z., Fan X., Wei X., Sugioka K., Midorikawa K. Direct Laser Writing of sub-50 nm Nanofluidic Channels Buried in Glass for Three-Dimensional Micro-Nanofluidic Integration // Lab Chip. 2013. V. 8. P. 1626–1631. https://doi.org/10.1039/C3LC41171K

  10. Liao Y., Song J., Li E., Luo Y., Shen Y., Chen D., Xu Z., Sugioka K., Midorikawa K. Rapid Prototyping of Three-Dimensional Microfluidic Mixers in Glass by Femtosecond Laser Direct Writing // Lab Chip. 2012. V. 12. P. 746–749. https://doi.org/10.1039/C2LC21015K

  11. Lipatiev A.S., Fedotov S.S., Okhrimchuk A.G., Lotarev S.V., Vasetsky A.M., Stepko A.A., Shakhgildyan G.Yu., Piyanzina K.I., Glebov I.S., Sigaev V.N. Multilevel data writing in nanoporous glass by a few femtosecond laser pulses // Appl. Opt. 2018. V. 57. P. 978–982. https://doi.org/10.1364/AO.57.000978

  12. Fedotov S.S., Okhrimchuk A.G., Lipatiev A.S., Stepko A.A., Piyanzina K.I., Shakhgildyan G.Yu., Glebov I.S., Lotarev S.V., Sigaev V.N. 3-Bit Writing of Information in Nanoporous Glass by a Single Sub-Microsecond Burst of Femtosecond Pulses // Opt. Lett. 2018. V. 43. P. 851–854. https://doi.org/10.1364/OL.43.000851

  13. Shimotsuma Y., Kazansky P.G., Qiu J., Hirao K. Self-Assembled Nanogratings in Glass Irradiated by Ultrashort Light Pulses. Physical Review Letters // Phys. Rev. Lett. 2003. V. 91. P. 247405. https://doi.org/10.1103/PhysRevLett.91.247405

  14. Bricchi E., Klappauf B.G., Kazansky P.G. Form Birefringence and Negative Index Change Created by Femtosecond Direct Writing in Transparent Materials // Opt. Lett. 2004. V. 29. P. 119–121. https://doi.org/10.1364/OL.29.000119

  15. Zhang J., Gecevicius M., Beresna M., Kazansky P.G. Seemingly Unlimited Lifetime Data Storage in Nanostructured Glass // Phys. Rev. Lett. 2014. V. 112. P. 033901. https://doi.org/10.1103/PhysRevLett.112.033901

  16. Fedotov S.S., Lipatiev A.S., Presniakov M.Yu., Shakhgildyan G.Yu., Okhrimchuk A.G., Lotarev S.V., Sigaev V.N. Laser-Induced Cavities with a Controllable Shape in Nanoporous Glass // Opt. Lett. 2020. V. 45. P. 5424–5427. https://doi.org/10.1364/OL.398090

  17. Sakakura M., Lei Y., Wang L., Yu Y., Kazansky P.G. Ultralow-Loss Geometric Phase and Polarization Shaping by Ultrafast Laser Writing in Silica Glass // Light Sci. Appl. 2020. V. 9. P. 1–10. https://doi.org/10.1038/s41377-020-0250-y

  18. Rudenko A., Colombier J.-P., Itina T.E. From Random Inhomogeneities to Periodic Nanostructures Induced in Bulk Silica by Ultrashort Laser // Phys. Rev. B. 2016. V. 93. P. 075427. https://doi.org/10.1103/PhysRevB.93.075427

  19. Bhardwaj V.R., Simova E., Rajeev P.P., Hnatovsky C., Taylor R.S., Rayner D.M., Corkum P.B. Optically Produced Arrays of Planar Nanostructures inside Fused Silica // Phys. Rev. Lett. 2006. V. 96. P. 057404. https://doi.org/10.1103/PhysRevLett.96.057404

  20. Taylor R.S., Hnatovsky C., Simova E., Rajeev P.P., Rayner D.M., Corkum P.B. Femtosecond Laser Erasing and Rewriting of Self-Organized Planar Nanocracks in Fused Silica Glass // Opt. Lett. 2007. V. 32. P. 2888–2890. https://doi.org/10.1364/OL.32.002888

Дополнительные материалы отсутствуют.