Неорганические материалы, 2023, T. 59, № 7, стр. 740-749

Влияние длительности разрядов на характеристики покрытий из металлического стекла FeCrWMoCB

А. А. Бурков 1, Л. А. Коневцов 1*, В. О. Крутикова 2

1 Институт материаловедения ДВО Российской академии наук – обособленное подразделение Хабаровского федерального исследовательского центра Дальневосточного отделения Российской академии наук
680000 Хабаровск, ул. Тихоокеанская, 153, Россия

2 Институт тектоники и геофизики им. Ю.А. Косыгина ДВО Российской академии наук
680000 Хабаровск, ул. Ким Ю. Чена, 65, Россия

* E-mail: konevts@narod.ru

Поступила в редакцию 27.03.2023
После доработки 04.07.2023
Принята к публикации 05.07.2023

Аннотация

Исследовано влияние длительности разрядных импульсов при электроискровом легировании стали 35 на структуру и свойства покрытий из металлического стекла FeCrWMoCB. С ростом длительности импульсов толщина покрытий увеличивалась от 19.1 до 39 мкм. Жаростойкость образцов с покрытиями за 100 ч испытаний при 700°С была от 27 до 176 раз выше по сравнению со сталью, причем она увеличивалась с ростом длительности импульсов. Твердость покрытий находилась в интервале 11.3‒11.9 ГПa. Нанесение покрытий снижает коэффициент трения и износ стали до 3.7 раз и улучшает ее коррозионную стойкость.

Ключевые слова: металлическое стекло, электроискровое легирование, покрытие, сталь 35, жаростойкость, износ

Список литературы

  1. Greer A.L. Metallic Glasses on the Threshold // Mater. Today. 2009. V. 12 № 1–2. P. 14–22. https://doi.org/10.1016/S1369-7021(09)70037-9

  2. Garcia-Herrera J.E., Henao J., Espinosa-Arbelaez D.G., Gonzalez-Carmona J.M., Felix-Martinez C., Santos-Fernandez R., Alvarado-Orozco J.M. Laser Cladding Deposition of a Fe-Based Metallic Glass on 304 Stainless Steel Substrates // J. Therm. Spray Technol. 2022. V. 31 № 4. P. 968–979. https://doi.org/10.1007/s11666-022-01325-z

  3. Kruzic J.J. Bulk Metallic Glasses as Structural Materials: A Review // Adv. Eng. Mater. 2016. V. 18. № 8. P. 1308–1331.

  4. Parsons R., Ono K., Li Z., Kishimoto H., Shoji T., Kato A., Suzuki K. Prediction of Density in Amorphous and Nanocrystalline Soft Magnetic Alloys: A Data Mining Approach // J. Alloys Compd. 2021. V. 859. P. 157845.

  5. Nabiałek M., Jeż B., Błoch K., Pietrusiewicz P., Gondro J. The Effect of the Cobalt-Content on the Magnetic Properties of Iron-Based Amorphous Alloys // J. Magn. Magn. Mater. 2019. V. 477. P. 214–219. https://doi.org/10.1016/j.jmmm.2019.01.073

  6. Guo H., Wu N.C., Zhang Y.L., Zhang S.D., Sun W.H., Wang J.Q. Influence of Coating Thickness on the Impact Damage Mode in Fe-Based Amorphous Coatings // Surf. Coat. Technol. 2020. V. 390. P. 125650. https://doi.org/10.1016/j.surfcoat.2020.125650

  7. Namazi H., Akrami A., Haghighi R., Delaviz A., Kulish V.V. Analysis of the Influence of Element’s Entropy on the Bulk Metallic Glass (BMG) Entropy, Complexity, and Strength // Metall. Mater. Trans. 2017. V. 48. № 2. P. 780–788.

  8. Louzguine-Luzgin D.V., Greer A.L., Lu A.K.A., Trifonov A.S., Ivanov Y.P., Lubenchenko A.V. Shear-Induced Chemical Segregation in a Fe-Based Bulk Metallic Glass at Room Temperature // Sci. Rep. 2021. V. 11. № 1. https://doi.org/10.1038/s41598-021-92907-4

  9. Kumar A., Nayak S.K., Laha T. Comparative Study on Wear and Corrosion Behavior of Plasma Sprayed Fe73Cr2Si11B11C3 and Fe63Cr9P5B16C7 Metallic Glass Composite Coatings // J. Therm. Spray Technol. 2022. P. 1–15. https://doi.org/10.1007/s11666-021-01280-1

  10. Lin T., Sheu H., Lee C., Lee H. The Study of Mechanical Properties and Corrosion Behavior of the Fe-Based Amorphous Alloy Coatings Using High Velocity Oxygen Fuel Spraying // J. Alloys Compd. 2021. V. 867. P. 159132. https://doi.org/10.1016/j.jallcom.2021.159132

  11. Liang D., Zhou Y., Liu X., Zhou Q., Huang B., Zhang E.,Chen Q., Shen J. Wettability and Corrosion Performance of Arc-Sprayed Fe-Based Amorphous Coatings // Surf. Coat. Technol. 2022. V. 433. P. 128129. https://doi.org/10.1016/j.surfcoat.2022.128129

  12. Jiang L., Chen Z.Q., Lu H.B., Ke H.B., Yuan Y., Dong Y.M., Meng X.K. Corrosion Protection of NiNb Metallic Glass Coatings for 316SS by Magnetron Sputtering // J. Mater. Sci. Technol. 2021. V. 79. P. 88–98. https://doi.org/10.1016/j.jmst.2020.12.004

  13. Chen Q.J., Guo S.B., Yang X.J., Zhou X.L., Hua X.Z., Zhu X.H., Duan Z. Study on Corrosion Resistance of Fe-Based Amorphous Coating by Laser Cladding in Hydrochloric Acid // Phys. Procedia. 2013. V. 50. P. 297–303. https://doi.org/10.1016/j.phpro.2013.11.048

  14. Burkov A.A., Chigrin P.G. Effect of Tungsten, Molybdenum, Nickel and Cobalt on the Corrosion and Wear Performance of Fe-based Metallic Glass Coatings // Surf. Coat. Technol. 2018. V. 351. P. 68–77. https://doi.org/10.1016/j.surfcoat.2018.07.078

  15. Бурков А.А., Зайцев А.В. Синтез электродных материалов на основе железа методом порошковой металлургии // Бюллетень научных сообщений. 2016. № 21. С. 36–40.

  16. Бурков А.А., Кулик М.А., Крутикова В.О. Электроискровое осаждение высокоэнтропийных CrFeCoNiCu покрытий на сталь 35 в смеси гранул из чистых металлов // Сварочное производство. 2019. № 10. С. 21–27.

  17. Пячин С.А., Бурков А.А., Каминский О.И., Зайкова Е.Р. Плавление титанового сплава под действием электрических разрядов различной длительности // Изв. вузов. Физика. 2018. Т. 61. № 12 (732). С. 83–89.

  18. Nikolenko S.V., Syui N.A. Investigation of Coatings Produced by the Electrospark Machining Method of Steel 45 with Electrodes Based on Carbides of Tungsten and Titanium // Prot. Met. Phys. Chem. Surf. 2017. V. 53. № 5. P. 889–894. https://doi.org/10.1134/S207020511705015X

  19. Hasanabadi M.F., Ghaini F.M., Ebrahimnia M., Shahverdi H.R. Production of Amorphous and Nanocrystalline Iron Based Coatings by Electro-Spark Deposition Process // Surf. Coat. Technol. 2015. V. 270. P. 95–101. https://doi.org/10.1016/j.surfcoat.2015.03.016

  20. Korkmaz K. Investigation and Characterization of Electrospark Deposited Chromium Carbide-Based Coating on the Steel // Surf. Coat. Technol. 2015. V. 272. P. 1–7. https://doi.org/10.1016/j.surfcoat.2015.04.033

  21. Kumar A., Nayak S.K., Laha T. Comparative Study on Wear and Corrosion Behavior of Plasma Sprayed Fe73Cr2Si11B11C3 and Fe63Cr9P5B16C7 Metallic Glass Composite Coatings // J. Therm. Spray Technol. 2022. P. 1–15. https://doi.org/10.1007/s11666-021-01280-1

  22. Ma H., Li D., Li J. Effect of Spraying Power on Microstructure, Corrosion and Wear Resistance of Fe-Based Amorphous Coatings // J. Therm. Spray Technol. 2022. V. 31. № 5. P. 1683-1694. https://doi.org/10.1007/s11666-022-01403-2

  23. Li Y.C., Zhang W.W., Wang Y., Zhang X.Y., Sun L.L. Effect of Spray Powder Particle Size on the Bionic Hydrophobic Structures and Corrosion Performance of Fe-Based Amorphous Metallic Coatings // Surf. Coat. Technol. 2022. V. 37. P. 128377. https://doi.org/10.1016/j.surfcoat.2022.128377

  24. Бурков А.А. Влияние энергии разрядных импульсов при электроискровом осаждении аморфных покрытий // Физикохимия поверхности и защита материалов. 2022. Т. 58. № 5. С. 526–536.

Дополнительные материалы отсутствуют.