Неорганические материалы, 2023, T. 59, № 7, стр. 796-800

Состав и структура Mn,Sr-замещенного трикальцийфосфата, полученного методом твердофазного синтеза

И. В. Фадеева 1*, А. А. Форысенкова 1, А. С. Фомин 1, А. Б. Михайлова 1, Н. А. Андреева 1, Т. Н. Пенкина 1, О. С. Антонова 1, С. М. Баринов 1

1 Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук
119334 Москва, Ленинский пр., 49, Россия

* E-mail: fadeeva_inna@mail.ru

Поступила в редакцию 02.02.2023
После доработки 07.04.2023
Принята к публикации 10.04.2023

Аннотация

Твердофазным синтезом при 1200°С получены трикальцийфосфат и Mn,Sr-замещенный трикальцийфосфат (ТКФ). Синтезированные соединения охарактеризованы методами РФА, ИК-спектроскопии, СЭМ. Показано, что в результате твердофазного синтеза ТКФ и Mn,Sr-ТКФ формируются соединения со структурой витлокита. Определены параметры кристаллической решетки и установлен факт внедрения ионов марганца и стронция в структуру ТКФ.

Ключевые слова: трикальцийфосфат, двойное замещение, твердофазный синтез

Список литературы

  1. Eliaz N., Metoki N. Calcium Phosphate Bioceramics: a Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications // Materials. 2017. V. 10. № 4. P. 334. https://doi.org/10.3390/ma10040334

  2. Bohner M., Santoni B.L.G., Döbelin N. β-tricalcium Phosphate for Bone Substitution: Synthesis and Properties // Act. Biomater. 2020. V.113. P. 23–41. https://doi.org/10.1016/j.actbio.2020.06.022

  3. Schumacher M., Gelinsky M. Strontium Modified Calcium Phosphate Cements – Approaches Towards Targeted Stimulation of Bone Turnover // J. Mater. Chem. B. 2015. V. 3. № 23. P. 4626–4640. https://doi.org/10.1039/c5tb00654f

  4. Schumacher M., Wagner A.S., Kokesch-Himmelreich J., Bernhardt A., Rohnke M., Wenisch S., Gelinsky M. Strontium Substitution in Apatitic CaP Cements Effectively Attenuates Osteoclastic Resorption but Does not Inhibit Osteoclastogenesis // Act. Biomater. 2016. V. 37. P. 184–194. https://doi.org/10.1016/j.actbio.2016.04.016

  5. Montesi M., Panseri S., Dapporto M., Tampieri A., Sprio S. Sr-Substituted Bone Cements Direct Mesenchymal Stem Cells, Osteoblasts and Osteoclasts Fate // PLoS One. 2017. V. 12. № 2. P. 1–13. https://doi.org/10.1371/journal.pone.0172100

  6. Laskus A., Kolmas J. Ionic Substitutions in Non-Apatitic Calcium Phosphates // Int. J. Mol. Sci. 2017. V. 18. № 12. P. 2542. https://doi.org/10.3390/ma10040334

  7. Kannan S., Goetz-Neunhoeffer F., Neubauer J., Pina S., Ferreira J. M. F. Synthesis and Structural Characterization of Strontium- and Magnesium-Co-Substituted β-Tricalcium Phosphate // Act. Biomater. 2010. V. 6. № 2. P. 571–576.https://doi.org/10.1016/j.actbio.2009.08.009

  8. He F., Qiu C., Wang Y., Lu T., Ye J. Synthesis, Characterization and Cell Response of Silicon/Gallium Co-Substituted Tricalcium Phosphate Bioceramics // J. Mater. Sci. 2022. V. 57. P. 1302–1313. https://doi.org/doi.org/10.1007/s10853-021-06584-9

  9. Kannan S., Goetz-Neunhoeffer F., Neubauer J., Ferreira J.M. Cosubstitution of Zinc and Strontium in β-Tricalcium Phosphate: Synthesis and Characterization // J. Am. Ceram. Soc. 2011. V. 94. № 1. P. 230–235. https://doi.org/10.1111/j.1551-2916.2010.04070.x

  10. Sinusaite L., Popov A., Antuzevics A., Mazeika K., Baltrunas D., Yan, J.-Ch., Horng J.L., Shi Sh., Sekino T., Ishikawa K., Kareiva A., Zarkov A. Fe and Zn Co-Substituted Beta-Tricalcium Phosphate (β-TCP): Synthesis, Structural, Magnetic, Mechanical and Biological Properties // Mater. Sci. Eng. C. 2020. V. 112. P. 110918. https://doi.org/10.1016/j.msec.2020.110918

  11. Parra J., Garcia Paez I.H., De Aza A.H., Baudin C., Rocio Martin M., Pena P. In Vitro Study of the Proliferation and Growth of Human Fetal Osteoblasts on Mg and Si Co-Substituted Tricalcium Phosphate Ceramics // J. Biomed. Mater. Res. A. 2017. V. 105. № 8. P. 2266–2275.https://doi.org/10.1002/jbm.a.36093

  12. Braux J., Velard F., Guillaume C., Bouthors S., Jallot E., Nedelec J.M., Laurent-Maquin D., Laquerrière P. A New Insight into the Dissociating Effect of Strontium on Bone Resorption and Formation // Act. Biomater. 2011. V. 7. № 6. P. 2593–603. https://doi.org/10.1016/j.actbio.2011.02.013

  13. Rau J.V., Fadeeva I.V., Fomin A.S., Barbaro K., Galvano E., Ryzhov A.P., Murzakhanov F., Gafurov M., Orlinskii S., Antoniac I., Uskokovic V. Sic Parvis magna: Manganese-Substituted Tricalcium Phosphate and Its Biophysical Properties // ACS Biomater. Sci. Eng. 2019. V. 5. № 12. P. 6632–6644. https://doi.org/10.1021/acsbiomaterials.9b01528

  14. Fadeeva I.V., Kalita V.I., Komlev D.I., Radiuk A.A., Fomin A.S., Davidova G.A., Fursova N.K., Murzakhanov F.F., Gafurov M.R., Fosca M., Antoniac I.V., Barinov S.M., Rau J. V. In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma // Materials. 2020. V. 13. № 19. P. 4411–4414. https://doi.org/10.3390/ma13194411

  15. Rau J.V., Fadeeva I.V., Forysenkova A.A., Davydova G.A., Fosca M., Filippov Y.Y., Antoniac I.V., Antoniac A., D’Arco A., Di Fabricio M., Petrarca M., Lupi S., Di Menno Di Bucchianico M., Yankova V.G., Putlyaev V.I., Cristea M.B. Strontium Substituted Tricalcium Phosphate Bone Cement: Short and Long-Term Time-Resolved Studies and In Vitro Properties // Adv. Mater. Interf. 2022. V. 9. № 21. P. 2200803. https://doi.org/10.1002/admi.202200803

Дополнительные материалы отсутствуют.