Неорганические материалы, 2023, T. 59, № 7, стр. 721-725

Исследование фазовых равновесий в системе Al–Ga–As–Bi при 900°C

В. П. Хвостиков 1*, О. А. Хвостикова 1, Н. С. Потапович 1, А. С. Власов 1

1 Физико-технический институт им. А.Ф. Иоффе Российской академии наук
194021 Санкт-Петербург, Политехническая ул., 26, Россия

* E-mail: vlkhv@scell.ioffe.ru

Поступила в редакцию 20.03.2023
После доработки 24.05.2023
Принята к публикации 25.05.2023

Аннотация

Для начальной температуры эпитаксии 900°C, которая необходима для выращивания относительно толстых градиентных слоев AlxGa1–xAs (50–100 мкм), были смоделированы изотермы солидусa и ликвидусa в системе Al–Ga–As–Bi. Теоретические изотермы подтверждены экспериментальными данными. Обнаружено, что для выращивания толстых (более 50 мкм) слоев AlGaAs целесообразно использовать смешанныe Ga–Bi-расплавы с содержанием висмута не более 20 ат. %.

Ключевые слова: фазовое равновесие, жидкофазная эпитаксия, смешанный расплав Ga–Bi

Список литературы

  1. Хвостиков В.П., Покровский П.В., Хвостикова О.А., Паньчак А.Н., Андреев В.М. Высокоэффективные AlGaAs/GaAs фотоэлектрические преобразователи с торцевым вводом лазерного излучения // ПЖТФ. 2018. Т. 44. № 17. С. 42–48. https://doi.org/10.21883/PJTF.2018.17.46569.17400

  2. Panchak A., Khvostikov V., Pokrovskiy P. AlGaAs Gradient Waveguides for Vertical p/n Junction GaAs Laser Power Converters // Opt. Laser Technol. 2021. V. 136. P. 106735. https://doi.org/10.1016/j.optlastec.2020.106735

  3. Khvostikov V.P., Vlasov A.S., Pokrovskiy P.V., Khvostikova O.A., Panchak A.N., Marukhina E.P., Kalyuzhnyy N.A., Andreev V.M. Characterization of Ultra High Power Laser Beam PV Converters // AIP Conf. Proc. Morocco. 2019. V. 2149. P. 080003. https://doi.org/10.1063/1.5124213

  4. Khvostikov V.P., Panchak A.N., Khvostikova O.A., Pokrovskiy P.V. Side-Input GaAs Laser Power Converters with Gradient AlGaAs Waveguide // IEEE Electron Device Lett. 2022. V. 43. P. 1717–1719. https://doi.org/10.1109/LED.2022.3202987

  5. Zinovchuk V., Malyutenko O., Malyutenko V., Podoltsev A., Vilisov A. The Effect of Current Crowding on the Heat and Light Pattern in High-Power AlGaAs Light Emitting Diodes // J. Appl. Phys. 2008. V. 104. P. 033115. https://doi.org/10.1063/1.2968220

  6. Kitabayashi H., Ishihara K., Kawabata Y., Matsubara H., Miyahara K., Morishita T., Tanaka S. Development of Super High Brightness Infrared LEDs // SEI Tech. Rev. 2011. V. 72. P. 86–89.

  7. Zhao X., Montgomery K., Woodall J. Hall Effect Studies of AlGaAs Grown by Liquid-Phase Epitaxy for Tandem Solar Cell Applications // J. Electron. Mater. 2014. V. 43. № 11. P. 3999–4002. https://doi.org/10.1007/s11664-014-3340-x

  8. Якушева Н.А., Журавлев К.С., Шегай О.А. Об “очистке” арсенида галлия висмутом // ФТП. 1988. Т. 22. № 11. С. 2083–2086.

  9. Yakusheva N.A., Zhuravlev K.S., Chikichev S.I., Shegay O.A. Liquid Phase Epitaxial Growth of Undoped Gallium Arsenide from Bismuth and Gallium Melts // Cryst. Res. Technol. 1989. V. 24. № 2. P. 235–246. https://doi.org/10.1002/crat.2170240221.

  10. Бирюлин Ю.Ф., Воробьева В.В., Голубев В.Г. и др. Механизм “очистки” арсенида галлия висмутом // ФТП. 1987. Т. 21. № 12. С. 2201–2208.

  11. Saravanan S., Jeganathan K., Baskar K. et al. High Quality GaAs Epitaxial Layers Grown from Ga–As–Bi Solutions by Liquid Phase Epitaxy // Jpn. J. Appl. Phys. 1997. V. 36. № 6A. P. 3385–3388. https://doi.org/10.1143/JJAP.36.3385

  12. Антощенко В.С., Лаврищев Ю.В., Францев Ю.В., Антощенко Е.В. Расчет фазовой диаграммы системы Bi–Ga–Al–As // Вестн. КазНУ. Сер. физ. 2012. Т. 41. № 2. С. 8–13.

  13. Антощенко В.С., Францев Ю.В., Лаврищев Ю.В., Антощенко Е.В. Изучение фазового равновесия в пятикомпонентной системе Sn–Bi–Al–Ga–As // Вестник КазНУ. Сер. физ. 2013. Т. 44. № 1. С. 11–17.

  14. Panish M.B. Phase Equilibria in the System Al–Ga–As–Sn and Electrical Properties of Sn-Doped Liquid Phase Epitaxial AlxGa1–xAs // J. Appl. Phys. 1973. V. 44. P. 2667–2675. https://doi.org/10.1063/1.1662631

  15. Кейси Х., Паниш М. Лазеры на гетероструктурах. Т. 2. Глава 6. М.: Мир, 1981. С. 88–108.

  16. Jourdan A.S. Calculation of Phase Equilibria in the Ga-Bi and Ga-P-Bi Systems Based on a Theory of Regular Associated Solutions // Metall. Trans. B. 1976. V. 7. P. 191–201. https://doi.org/10.1007/BF02654917

  17. Hurle D.T.J. A Thermodynamic Analysis of Native Point Defect and Dopant Solubilities in Zinc-Blende III–V Semiconductors // J. Appl. Phys. 2010. V. 107. P. 121301. https://doi.org/10.1063/1.3386412

  18. Khvostikov V., Khvostikova O., Potapovich N., Vlasov A., Salii R. Estimation of Interaction Parameters in the Al–Ga–As–Sn–Bi System // Heliyon. 2023. V. 9. P. e18063. https://doi.org/10.1016/j.heliyon.2023.e18063

  19. Safarian J., Kolbeinsen L., Tangstad M. Liquidus of Silicon Binary Systems // Metall. Mater. Trans. B. 2011. V. 42. P. 852–874. https://doi.org/10.1007/s11663-011-9507-4

  20. Акчурин Р.Х., Ле Динь Као, Нишанов Д.Н., Фистуль В.И. Гетерогенные равновесия в квазибинарной системе Bi–GaAs // Изв. АН СССР. Неорган. материалы. 1986. Т. 22. № 1. С. 9–12.

  21. Milanova M., Terziyska P. Low-Temperature Liquid-Phase Epitaxy Growth from Ga–As–Bi Solution // Thin Solid Films. 2006. V. 500. P. 15–18. https://doi.org/10.1016/j.tsf.2005.10.049

  22. Panek M., Paszkiewicz R., Tlaczala M. et al. Liquid Phase Epitaxy (LPE) of GaAs from the Ga-Bi Solutions // Proc. SPIE. Optoelectron. Integrated Circuit Mater., Phys., Devices. 1995. V. 2397. P. 661–665. https://doi.org/10.1117/12.206913

Дополнительные материалы отсутствуют.