Неорганические материалы, 2023, T. 59, № 9, стр. 1053-1059

Механические свойства градиентной макропористой кальцийфосфатной биокерамики с заданной архитектурой

П. В. Евдокимов 12*, С. А. Тихонова 1, В. И. Путляев 1

1 Московский государственный университет им. М.В. Ломоносова
119991 Москва, Ленинские горы, 1, Россия

2 Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук
119991 Москва, Ленинский пр., 31, Россия

* E-mail: pavel.evdokimov@gmail.com

Поступила в редакцию 11.05.2023
После доработки 11.09.2023
Принята к публикации 11.09.2023

Аннотация

В работе изучены механические характеристики градиентных макропористых керамических материалов на основе β-Ca3(PO4)2, полученных методом стереолитографической 3D-печати. Показаны возможности использования фотоотверждаемых эмульсий для получения керамических материалов пористостью более 80%, а также возможность регулирования распределения пор по размерам. Получены градиентные керамические материалы с заданным размером пор с использованием трехмерной печати фотоотверждаемых эмульсий на основе трикальциевого фосфата. Описано влияние содержания эмульгатора на средний размер пор в керамическом каркасе заданной архитектуры. Изучено влияние пористости, среднего размера пор и архитектуры трехмерной конструкции на прочностные характеристики макропористых керамических материалов.

Ключевые слова: биокерамика, регенерация костной ткани, фосфаты кальция, макропористость, 3D-печать, механические свойства

Список литературы

  1. Zhang B., Pei X., Song P., Sun H., Li H., Fan Y., Jiang Q., Zhou Ch., Zhang X. Porous Bioceramics Produced by Inkjet 3D Printing: Effect of Printing Ink Formulation on the Ceramic Macro and Micro Porous Architectures Control // Composites. Part B. 2018. V. 155. P. 112–121. https://doi.org/10.1016/j.compositesb.2018.08.047

  2. Tang D., Tare R.S., Yang L.-Y., Williams D.F., Ou K.-L., Oreffo R.O.C. Biofabrication of Bone Tissue: Approaches, Challenges and Translation for Bone Regeneration // Biomaterials. 2016. V. 83. P. 363–382. https://doi.org/10.1016/j.biomaterials.2016.01.024

  3. Hench L.L., Thompson I. Twenty-First Century Challenges for Biomaterials // J. R. Soc. Interface. 2010. V. 7. № 4. P. 379–391. https://doi.org/10.1098/rsif.2010.0151.focus

  4. Habraken W., Habibovic P., Epple M., Bohner M. Calcium Phosphates in Biomedical Applications: Materials for the Future? // Mater. Today. 2016. V. 19. № 2. P. 69–87. https://doi.org/10.1016/j.mattod.2015.10.008

  5. Lu J., Yu H., Chen C. Biological Properties of Calcium Phosphate Biomaterials for Bone Repair: A Review // R. Soc. Chem. Adv. 2018. V. 8. № 4. P. 2015–2033. https://doi.org/10.1039/C7RA11278E

  6. Lu H., Zhou Y., Ma Y., Xiao L., Ji W., Zhang Y., Wang X. Current Application of Beta-Tricalcium Phosphate in Bone Repair and Its Mechanism to Regulate Osteogenesis // Front. Mater. 2021. V. 8. P. 698915. https://doi.org/10.3389/fmats.2021.698915

  7. Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Li B., Shu W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering // Bioact. Mater. 2018. V. 3. № 3. P. 278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001

  8. Albrektsson T., Johansson C. Osteoinduction, Osteoconduction and Osseointegration // Eur. Spine J. 2001. V. 10. P. 96–101. https://doi.org/10.1007/s005860100282

  9. Chen X., Fan H., Deng X., Wu L., Yi T., Gu L., Zhou C., Fan Y., Zhang X. Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications // Nanomaterials. 2018. V. 8. P. 960. https://doi.org/10.3390/nano8110960

  10. Jodati H., Yılmaz B., Evis Z. A Review of Bioceramic Porous Scaffolds for Hard Tissue Applications: Effects of Structural Features // Ceram. Int. 2020. V. 46. P. 15725–15739. https://doi.org/10.1016/j.ceramint.2020.03.192

  11. Cheng Mq., Wahafu T., Jiang Gf., Liu W., Qiao Yu., Peng X., Cheng T., Zhang X., He G., Liu X. A Novel Open-Porous Magnesium Scaffold with Controllable Microstructures and Properties for Bone Regeneration // Sci. Rep. 2016. V. 6. P. 24134. https://doi.org/10.1038/srep24134

  12. Pei X., Ma L., Zhang B., Sun J., Sun Y., Fan Y., Gou Zh., Zhou Ch., Zhang X. Creating Hierarchical Porosity Hydroxyapatite Scaffolds with Osteoinduction by Three-Dimensional Printing and Microwave Sintering // Biofabrication. 2017. V. 9. № 4. A. 045008. https://doi.org/10.1088/1758-5090/aa90ed

  13. Zhao C., Xia L., Zhai D., Zhang N., Liu J., Fang B., Chang J., Lin K. Designing Ordered Micropatterned Hydroxyapatite Bioceramics to Promote the Growth and Osteogenic Differentiation of Bone Marrow Stromal Cells // J. Mater. Chem., B. 2015. V. 3. № 6. P. 968–976. https://doi.org/10.1039/C4TB01838A

  14. Torres-Sanchez C., Norrito M., Almushref F.R., Conway P.P. The Impact of Multimodal Pore Size Considered Independently from Porosity on Mechanical Performance and Osteogenic Behaviour of Titanium Scaffolds // Mater. Sci. Eng., C. 2021. V. 124. P. 112026. https://doi.org/10.1016/j.msec.2021.112026

  15. Khodaei M., Valanezhad A., Watanabe I. Fabrication and Characterization of Porous β-Tricalcium Phosphate Scaffold for Bone Regeneration // J. Environ. Friend. Mater. 2018. V. 2. № 2. P. 1–4.

  16. Zhou J., Fan J., Sun G., Zhang J., Liu X., Zhang D., Wang H. Preparation and Properties of Porous Silicon Nitride Ceramics with Uniform Spherical Pores by Improved Pore-Forming Agent Method // J. Alloys Compd. 2015. V. 632. P. 655–660. https://doi.org/10.1016/j.jallcom.2015.01.305

  17. Jariwala S.H., Lewis G.S., Bushman Z.J., Adair J.H., Donahue H.J. 3D Printing of Personalized Artificial Bone Scaffolds // 3D Print. Addit. Manuf. 2015. V. 2. № 2. P. 56–64. https://doi.org/10.1089/3dp.2015.0001

  18. Lee J.-B., Maeng W.-Y., Koh Y.-H., Kim H.-E. Porous Calcium Phosphate Ceramic Scaffolds with Tailored Pore Orientations and Mechanical Properties Using Lithography-Based Ceramic 3D Printing Technique // Materials. 2018. V. 11. P. 1711. https://doi.org/10.3390/ma11091711

  19. Putlyaev V.I., Evdokimov P.V., Safronova T.V., Klimashina E.S., Orlov N.K. Fabrication of Osteoconductive Ca3–xM2x(PO4)2 (M = Na, K) Calcium Phosphate Bioceramics by Stereolithographic 3D Printing // Inorg. Mater. 2017. V. 53. № 5. P. 529–535. https://doi.org/10.1134/S0020168517050168

  20. Schmidleithner C., Malferrari S., Palgrave R., Bomze D., Schwentenwein M., Kalaskar D.M. Application of High Resolution DLP Stereolithography for Fabrication of Tricalcium Phosphate Scaffolds for Bone Regeneration // Biomed. Mater. 2019. V. 14. № 4. P. 045018. https://doi.org/10.1088/1748-605X/ab279d

  21. Lim H.-K., Hong S.-J., Byeon S.-J., Chung S.-M., On S.-W., Yang B.-E., Lee J.-H., Byun S.-H. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures // Int. J. Mol. Sci. 2020. V. 21. P. 6942. https://doi.org/10.3390/ijms21186942

  22. Minas C., Carnelli D., Tervoort E., Studart A.R. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics // Adv. Mater. 2016. V. 28. № 45. P. 9993–9999. https://doi.org/10.1002/adma.201603390

  23. Huang K., Elsayed H., Franchin G., Colombo P. 3D Printing of Polymer-Derived SiOC with Hierarchical and Tunable Porosity // Addit. Manuf. 2020. V. 36. P. 101549. https://doi.org/10.1016/j.addma.2020.101549

  24. Kleger N., Minas C., Bosshard P., Mattich I., Masania K., Studart A.R. Hierarchical Porous Materials Made by Stereolithographic Printing of Photo-Curable Emulsions // Sci. Rep. 2021. V. 11. P. 22316. https://doi.org/10.1038/s41598-021-01720-6

  25. Roman-Manso B., Muth J., Gibson L.J., Ruettinger W., Lewis J.A. Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams // ACS Appl. Mater. Interfaces. 2021. V. 13. № 7. P. 8976–8984. https://doi.org/10.1021/acsami.0c22292

  26. Moore D.G., Barbera L., Masania K., Studart A.R. Three-Dimensional Printing of Multicomponent Glasses Using Phase-Separating Resins // Nat. Mater. 2020. V. 19. P. 212–217. https://doi.org/10.1038/s41563-019-0525-y

Дополнительные материалы отсутствуют.