Журнал неорганической химии, 2023, T. 68, № 7, стр. 904-912

Феррогранат Y2.5Ce0.5Fe2.5Ga2.5O12: синтез, ионный и фазовый составы

Ю. А. Тетерин ab, М. Н. Смирнова c, К. И. Маслаков a, А. Ю. Тетерин b, Г. Е. Никифорова c, Я. С. Глазкова a, А. Н. Соболев a, И. А. Пресняков a, В. А. Кецко c*

a Московский государственный университет им. М.В. Ломоносова, Химический факультет
119991 Москва, Ленинские горы, 1, Россия

b НИЦ “Курчатовский институт”
123182 Москва, пл. Академика Курчатова, 1, Россия

c Институт общей и неорганической химии им. Н.С. Курнакова РАН
119991 Москва, Ленинский пр-т, 31, Россия

* E-mail: ketsko@igic.ras.ru

Поступила в редакцию 25.01.2023
После доработки 14.03.2023
Принята к публикации 14.03.2023

Аннотация

Методами рентгенофазового анализа (РФА), рентгеновской фотоэлектронной (РФЭС) и мессбауэровской спектроскопии исследованы ионный и фазовый составы образцов порошкообразного феррограната Y2.5Ce0.5Fe2.5Ga2.5O12, полученного методом сжигания геля с последующей кристаллизацией в вакууме и дополнительным отжигом в атмосфере воздуха при 750°С. По данным РФЭС и мессбауэровской спектроскопии, катионы железа и церия в структуре гомогенного феррограната стабилизированы в формальной степени окисления Fe3+. В то же время на поверхности частиц Y2.5Ce0.5Fe2.5Ga2.5O12 наряду с Се3+ содержатся ионы Ce4+. Полученные результаты могут быть использованы при создании функциональных материалов для магнитооптических устройств нового поколения.

Ключевые слова: феррогранат Ce-ЖИГ, РФА, РФЭС, мессбауэровская спектроскопия

Список литературы

  1. Garskaite E., Gibson K., Leleckaite A. et al. // Chem. Phys. 2006. V. 323. P. 204. https://doi.org/10.1016/j.chemphys.2005.08.055

  2. Park M.B., Cho N.H. // J. Magn. Magn. Mater. 2001. V. 231. P. 253. https://doi.org/10.1016/S0304-8853(01)00068-3

  3. Onbasli M.C., Goto T., Sun X. et al. // Opt. Express. 2014. V. 22. P. 25183. https://doi.org/10.1364/OE.22.025183

  4. Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М.: Энергоатомиздат, 1990. 320 с.

  5. Shen T., Dai H., Song M. // J. Supercond. Nov. Magn. 2017. V. 30. P. 937. https://doi.org/10.1007/s10948-016-3880-9

  6. Huang M., Zhang S. // Appl. Phys. A. 2022. V. 74. P. 177. https://doi.org/10.1007/s003390100883

  7. Ibrahim N.B., Edwards C., Palmer S.B. // J. Magn. Magn. Mater. 2000. V. 220. P. 183. https://doi.org/10.1016/S0304-8853(00)00331-0

  8. Dastjerdi O.D., Shokrollahi H., Yang H. // Ceramics Int. 2020. V. 46 (315). P. 2709. https://doi.org/10.1016/j.ceramint.2019.09.261

  9. Xu H., Yang H. // J. Mater Sci: Mater Electron. 2008. V. 19. P. 589. https://doi.org/10.1007/s10854-007-9394-2

  10. Shannon R.D. // Acta Crystallogr. Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551

  11. Gilleo M.A., Geller S. // Phys. Rev. 1958. V. 110. Issue 1. P. 73. https://doi.org/10.1103/PhysRev.110.73

  12. Lisnevskaya I.V., Bobrova I.A., Lupeiko T.G. // J. Magn. Magn. Mater. 2016. V. 397. P. 86. https://doi.org/10.1016/j.jmmm.2015.08.084

  13. Smirnova M.N., Nikiforova G.E., Goeva L.V. // Ceramics Int. 2018. V. 45 (4). P. 4509. https://doi.org/10.1016/j.ceramint.2018.11.133

  14. Smirnova M.N., Glazkova I.S., Nikiforova G.E. et al. // Nanosystems: Phys. Chem. Mathem. 2021. V. 12. P. 210. https://doi.org/10.17586/2220-8054-2021-12-2-210-217

  15. Teterin Yu.A., Smirnova M.N., Maslakov K.I. et al. // Dokl. Phys. Chem. 2022. V. 503. Part 2. P. 45. https://doi.org/10.1134/S0012501622040029

  16. Смирнова М.Н., Гоева Л.В., Симоненко Н.П. и др. // Журн. неорган. химии. 2016. Т. 61. С. 1354. https://doi.org/10.1134/S0036023616100193

  17. Смирнова М.Н., Копьева М.А., Береснев Э.Н. и др. // Журн. неорган. химии. 2018. Т. 63. С. 411. https://doi.org/10.1134/S0036023618040198

  18. Shirley D. // Phys. Rev. B. 1972. V. 5. P. 4709. https://doi.org/10.1103/PhysRevB.5.4709

  19. Панов А.Д. Пакет программ обработки спектров SPRO и язык программирования. М.: Ин-т атом. энергии, 1997. 31 с.

  20. Matsnev M.E., Rusakov V.S. // AIP Conf. Proc. 2012. V. 1489. P. 178.

  21. Maslakov K.I., Teterin Yu.A., Popel A.J. et al. // Appl. Surf. Sci. 2018. V. 448. P. 154. https://doi.org/10.1016/j.apsusc.2018.04.077

  22. Maslakov K.I., Teterin Yu.A., Ryzhkov M.V. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 16167. https://doi.org/10.1134/S0036024421060212

  23. Teterin Yu.A., Teterin A.Yu. // Russ. Chem. Rev. 2002. V. 717. № 5. P. 347. https://doi.org/10.1070/RC2002v071n05ABEH00071

  24. Sawatzky G.A., van der Woude F., Morrish A.H. // Phys. Rev. 1969. V. 183. P. 383.

  25. Belogurov V.N., Bilinkin V. // Phys. Status Solid. (A). 1981. V. 63. P. 45.

Дополнительные материалы отсутствуют.