Журнал неорганической химии, 2023, T. 68, № 9, стр. 1217-1225

Строение и термические свойства бензоилтрифторацетоната скандия(III)

А. В. Сартакова ab, А. М. Макаренко a, Н. В. Куратьева a, Д. П. Пищур a, С. В. Сысоев a, Е. С. Викулова a, К. В. Жерикова a*

a Институт неорганической химии им. А.В. Николаева СО РАН
630090 Новосибирск, пр-т Академика Лаврентьева, 3, Россия

b Новосибирский государственный университет
630090 Новосибирск, ул. Пирогова, 1, Россия

* E-mail: ksenia@niic.nsc.ru

Поступила в редакцию 28.04.2023
После доработки 13.05.2023
Принята к публикации 20.05.2023

Аннотация

Синтезирован, очищен и изучен методами элементного анализа и ПМР-спектроскопии бензоилтрифторацетонат скандия(III) [Sc(btfac)3]. Методом РСА при 150 K определена его структура. Комплекс имеет молекулярное строение и является ос-изомером. Все лиганды координированы по бидентатно-циклическому типу, скандий находится в искаженно-октаэдрическом окружении, d(Sc–O) = = 2.0681(2)–2.094(2) Å. Реализуются два вида стэкинг-взаимодействий. Термические свойства в конденсированной фазе исследованы методами термического анализа и дифференциальной сканирующей калориметрии, определены температура (399.1 ± 0.5 K), энтальпия (${{\Delta }_{{{\text{пл}}}}}H_{{{{T}_{{{\text{пл}}}}}}}^{^\circ }$ = 36.8 ± 1.3 кДж/моль) и энтропия плавления (${{\Delta }_{{{\text{пл}}}}}S_{{{{T}_{{{\text{пл}}}}}}}^{^\circ }$ = 92.2 ± 3.3 Дж/(K моль)) комплекса. Методом потока (переноса) получена температурная зависимость давления насыщенного пара [Sc(btfac)3] в интервале температур 413–443 K, на основании которой рассчитаны термодинамические характеристики процесса испарения при средней температуре: ${{{{\Delta }}}_{{{\text{исп}}}}}H_{{430}}^{^\circ }$ = 135 ± 4 кДж/моль, ${{{{\Delta }}}_{{{\text{исп}}}}}S_{{430}}^{^\circ }$ = 212 ± 9 Дж/(K моль). Проведено сравнение строения и термических свойств бензоилтрифторацетоната скандия(III) с трис-β-дикетонатными комплексами скандия.

Ключевые слова: β-дикетонат скандия, синтез, рентгеноструктурный анализ, термический анализ, давление насыщенного пара

Список литературы

  1. Song X., Chang M.H., Pecht M. // JOM. 2013. V. 65. P. 1276. https://doi.org/10.1007/s11837-013-0737-6

  2. Xu Z., Daga A., Chen H. // Appl. Phys. Lett. 2001. V. 79. P. 3782. https://doi.org/10.1063/1.1424072

  3. Al-Kuhaili M.F. // Thin Solid Films. 2003. V. 426. № 1–2. P. 178. https://doi.org/10.1016/S0040-6090(03)00015-4

  4. Takaichi K., Yagi H., Becker P. et al. // Laser Phys. Lett. 2007. V. 4. P. 507. https://doi.org/10.1002/lapl.200710020

  5. Lupei V., Pavel N., Lupei A. // Laser Phys. 2014. V. 24. № 4. P. 045801. https://doi.org/10.1088/1054-660X/24/4/045801

  6. Selvakumar J., Raghunathan V.S., Nagaraja K.S. // Chem. Vap. Depos. 2009. V. 15. № 10–12. P. 262. https://doi.org/10.1002/cvde.200906792

  7. Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // Phys. Procedia. 2013. V. 46. P. 200. https://doi.org/10.1016/j.phpro.2013.07.068

  8. Kong P., Pu Y., Ma P. et al. // Thin Solid Films. 2020. V. 714. P. 138357. https://doi.org/10.1016/j.tsf.2020.138357

  9. Karavaev I.A., Savinkina E.V., Grigor’ev M.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1178. https://doi.org/10.1134/S0036023622080186

  10. De Rouffignac P., Yousef A.P., Kim K.H. et al. // Electrochem. Solid State Lett. 2006. V. 9. № 6. P. F45. https://doi.org/10.1149/1.2191131

  11. Smirnova T.P., Yakovkina L.V., Borisov V.O. et al. // J. Struct. Chem. 2017. V. 58. P. 1573. https://doi.org/10.1134/S0022476617080145

  12. Jeong D., Kim J., Kwon O. et al. // Appl. Sci. 2018. V. 8. № 11. P. 2217. https://doi.org/10.3390/app8112217

  13. Jung E.Y., Park C.S., Hong T.E. et al. // Jap. J. Appl. Phys. 2014. V. 53. № 3. P. 036002. https://doi.org/10.7567/JJAP.53.036002

  14. Anderson T.J., Neuman M.A., Melson G.A. // Inorg. Chem. 1973. V. 12. № 4. P. 927. https://doi.org/10.1021/ic50122a046

  15. Bennett D.W., Siddiquee T.A., Haworth D.T. et al. // J. Chem. Crystallogr. 2007. V. 37. P. 207. https://doi.org/10.1007/s10870-006-9171-8

  16. Zherikova K.V., Kuratieva N.V. // J. Struct. Chem. 2019. V. 60. P. 1622. https://doi.org/10.1134/S002247661910007X

  17. Smolentsev A.I., Zherikova K.V., Trusov M.S. et al. // J. Struct. Chem. 2011. V. 52. P. 1070. https://doi.org/10.1134/S0022476611060059

  18. Makarenko A.M., Kuratieva N.V., Pischur D.P. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 2. P. 183. https://doi.org/10.1134/S0036023622602215

  19. Rossini A.J., Schurko R.W. // J. Am. Chem. Soc. 2006. V. 128. № 32. P. 10391. https://doi.org/10.1021/ja060477w

  20. Makarenko A.M., Zaitsau D.H., Zherikova K.V. // Coatings. 2023. V. 13. P. 535. https://doi.org/10.3390/coatings13030535

  21. Fadeeva V.P., Tikhova V.D., Nikulicheva O.N. // J. Anal. Chem. 2008. V. 63. P. 1094. https://doi.org/10.1134/S1061934808110142

  22. Sheldrick G.M. // Acta Crystallogr. 2015. V. C71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218

  23. Vikulova E.S., Cherkasov S.A., Nikolaeva N.S. et al. // J. Therm. Anal. Calorim. 2019. V. 135. P. 2573. https://doi.org/10.1007/s10973-018-7371-z

  24. Eisentraut K., Sievers R., Coucouvanis D. et al. // Inorganic syntheses. USA: McGraw-Hill, 1968. P. 94. https://doi.org/10.1002/9780470132425.ch17

  25. Zherikova K.V., Zelenina L.N., Chusova T.P. et al. // J. Chem. Thermodyn. 2016. V. 101. P. 162. https://doi.org/10.1016/j.jct.2016.05.020

  26. Zelenina L.N., Zherikova K.V., Chusova T.P. et al. // Thermochim. Acta. 2020. V. 689. P. 178639. https://doi.org/10.1016/j.tca.2020.178639

  27. Stathatos E., Lianos P., Evgeniou E. et al. // Synth. Met. 2003. V. 139. № 2. P. 433. https://doi.org/10.1016/S0379-6779(03)00204-2

  28. Matsubara N., Kuwamoto T. // Inorg. Chem. 1985. V. 24. № 17. P. 2697. https://doi.org/10.1021/ic00211a022

Дополнительные материалы отсутствуют.