Проблемы машиностроения и надежности машин, 2023, № 4, стр. 26-33

Роль скважности импульсного тока при растяжении титана

В. В. Столяров *

Институт машиноведения им. А.А. Благонравова РАН
Москва, Россия

* E-mail: vlstol@mail.ru

Поступила в редакцию 27.02.2023
После доработки 07.04.2023
Принята к публикации 20.04.2023

Аннотация

Рассмотрено воздействие импульсного тока на деформационное поведение при растяжении титана, полученного постдеформационным отжигом после холодной прокатки крупнозернистого и ультрамелкозернистого состояний. Исследовано влияние скважности импульсного тока в широком интервале на форму кривых “напряжение–деформация” и механические свойства. Показано, что снижение скважности вызывает увеличение теплового эффекта тока, снижение напряжений течения, прочности и пластичности, а также усиленное шейкообразование. Повышение скважности приводит к отсутствию нагрева и проявлению электропластического эффекта, повышению прочности и пластичности, которое зависит от структурного состояния крупнозернистого титана и способа его получения. Рассмотрены возможные физические механизмы упрочнения, связанные с двойникованием, деформационным старением и малоцикловой усталостью.

Ключевые слова: титан, импульсный ток, скважность, растяжение, микроструктура, упрочнение

Список литературы

  1. Троицкий O.A., Баранов Ю.В., Авраамов Ю.С., Шляпин А.Д. Физические основы и технологии обработки современных материалов (теория, технология, структура и свойства). В 2-х томах. Т. 1. Москва–Ижевск: Институт компьютерных технологий, 2004. 590 с.

  2. Conrad H. Effects of electric current on solid state phase transformations in metals // Mater. Sci. Eng. A. 2000. 287 (2). P. 227.

  3. Troitskii O.A. Electromechanical effect in metals // JETP Letters. 1969. № 1. P. 18.

  4. Varma S.K., Cornwell L.R. The Electroplastic Effect in Aluminum // Scr. Metall. 1979. V. 13. P. 733.

  5. Roh J.H., Seo J.J., Hong S.T., Kim M.J., Han H.N., Roth J.T. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current // Inter. J. of Plasticity 58. 2014. P. 84. https://doi.org/10.1016/j.ijplas.2014.02.002

  6. Xu X., Zhao Y., Ma B., Zhang M. Rapid precipitation of  T-phase in the 2024 aluminum alloy via cyclic electropulsing treatment // J. of Alloys and Compounds. 2014. V. 610. P. 506. https://doi.org/10.1016/j.jallcom.2014.05.063

  7. Wu W., Wang Y., Wang J., Wei S. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy // Mater. Sci. Eng. A. 2014. V. 608. P. 190. https://doi.org/10.1016/j.msea.2014.04.071

  8. Li X., Tang G., Kuang J., Li X., Zhu J. Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling // Mater. Sci. Eng. A. 2014. V. 612. P. 406. https://doi.org/10.1016/j.msea.2014.06.075

  9. Sánchez Egea A.J., González Rojas H.A., Celentano D.J., Travieso-Rodríguez J.A., Llumà i Fuentes J. Electroplasticity-assisted bottom bending process // J. Mater. Process. Technol. 2014. V. 214. P. 2261. https://doi.org/10.1016/j.jmatprotec.2014.04.031

  10. Guo D., Deng W., Song P., Lv X., Shi Y., Qu Z., Zhang G. Effect of Strain Rate on Microstructure and Mechanical Properties of Electroplastic Rolled ZrTi Alloym // Adv. Eng. Mater. 2022. V. 24 (7). https://doi.org/10.1002/adem.202101366

  11. Sheng Y., Hua Y., Wang X., Zhao X., Chen L., Zhou H., Wang J., Berndt C.C. Li W. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials:Mechanisms, Microstructure and Properties // Materials. 2018. V. 11. P. 185. https://doi.org/10.3390/ma11020185

  12. Kim M.J., Lee M.G., Hariharan K., Hong S.T., Choi I.S., Kim D., Oh K.H., Han H.N. Electric current-assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension // Int. J. Plast. 2017. V. 94. P. 148. https://doi.org/. 09.010.https://doi.org/10.1016/j.ijplas.2016

  13. Indhiarto I., Shimizu T., Furushima T., Yang M. Effect of DC pulsed-current on deformation behavior of magnesium alloy thin sheets // Procedia Manufact. 2018. V. 15. P. 1663. https://doi.org/10.1016/j.promfg.2018.07.270

  14. Stolyarov V., Korolkov O., Pesin A., Raab G. Deformation Behavior under Tension with Pulse Current of Ultrafine-Grain and Coarse-Grain CP Titanium // Materials. 2023. V. 16. P. 191. https://doi.org/10.3390/ma16010191

  15. Rudolf C., Goswami R., Kang W., Thomas J. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium // Acta Mater. 2021. V. 209 (1). P. 116776. https://doi.org/10.1016/j.actamat.2021.116776

  16. Stolyarov V.V., Zhu Y.T., Alexandrov I.V., Lowe T.C., Valiev R.Z. Influence of ECAP routes on the microstructure and properties of pure Ti // Mater. Sci. Eng. A. 2001. V. 299. P. 59.

  17. Rudolf C., Goswami R., Kang W., Thomas J. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium // Acta Mater. 2021. V. 209. P. 116776. https://doi.org/10.1016/j.actamat.2021.116776

  18. Демлер О., Герштейн Г., Далингер А., Нюрнбергер Ф., Епишин А., Молодов Д.А. Влияние импульсов электрического тока на деформационное поведение монокристаллов никелевого жаропрочного сплава cmsx-4 и подвижность малоугловой границы зерен в бикристаллах алюминия // Изв. РАН. Серия физическая. 2018. Т. 82. № 9. С. 1189. https://doi.org/10.1134/S0367676518090065

  19. Савенко В.С., Троицкий О.А., Гуненко А.В. Физические аспекты электропластической деформации металлов // Вестник Брестского университета, Серия 4, Физика. Математика. 2018. № 1. Р. 40.

  20. Zhao S., Zhang R., Chong Y. et al. Defect reconfiguration in a Ti–Al alloy via electroplasticity // Nat. Mater. 2021. V. 20. P. 468. https://doi.org/10.1038/s41563-020-00817-z

  21. Pakhomov M.A., Stolyarov V.V. Specific features of electroplastic effect in mono- and polycrystalline aluminum // Metal Sci. Heat Treat. 2021. V. 63. P. 236. https://doi.org/10.1007/s11041-021-00677-7

  22. Lee H.P., Esling C., Bunge H.J. Development of the Rolling Texture in Titanium // Textures and Microstructures. 1988. V. 7. P. 317.

  23. Zherebtsov S.V., Dyakonov G.S., Salem A.A., Malysheva S.P., Salishchev G.A., Semiatin S.L. Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium // Mater. Sci. Eng. A. 2011. V. 528 (9). P. 3474. https://doi.org/10.1016/j.msea.2011.01.039

  24. Stolyarov V.V., Zeipper L., Mingler B., Zehetbauer M. Influence of post-deformation on CP-Ti processed by equal channel angular pressing // Mater. Sci. Eng. A. 2008. V. 476. P. 98. https://doi.org/10.1016/j.msea.2007.04.069

  25. Lee T., Magargee J., Kwan Ng.M., Cao J. Constitutive analysis of electrically-assisted tensile deformation of CP-Ti based on non-uniform thermal expansion, plastic softening and dynamic strain aging // Int. J. Plast. 2017. V. 94. P. 44. https://doi.org/10.1016/j.ijplas.2017.02.012

Дополнительные материалы отсутствуют.