Приборы и техника эксперимента, 2023, № 4, стр. 21-35

ИЗУЧЕНИЕ РАБОТЫ МАТРИЦ КРЕМНИЕВЫХ ФОТОУМНОЖИТЕЛЕЙ ПРИ КРИОГЕННОЙ ТЕМПЕРАТУРЕ

А. Е. Бондарь ab, Е. О. Борисова ab*, А. Ф. Бузулуцков ab, В. В. Носов ab, В. П. Олейников ab, А. В. Соколов ab, Е. А. Фролов ab

a Институт ядерной физики им. Г.И. Будкера СО РАН
630090 Новосибирск, просп. Акад. Лаврентьева, 11, Россия

b Новосибирский государственный университет
630090 Новосибирск, ул. Пирогова, 1, Россия

* E-mail: E.O.Shemyakina@inp.nsk.su

Поступила в редакцию 24.11.2022
После доработки 27.12.2022
Принята к публикации 29.12.2022

Аннотация

Исследована работа матриц Si-ФЭУ MPPC S13360-6050PE с параллельным и последовательным подключением элементов в условиях эксперимента с двухфазным детектором, а также выполнены теоретические расчеты характеристик сигналов таких матриц. Показано, что длительность сигнала при последовательном соединении Si-ФЭУ с хорошей точностью не изменяется, а при параллельном соединении увеличивается с увеличением числа Si-ФЭУ в матрице. В пределах ошибок интегральная амплитуда сигнала при параллельном соединении не зависит от числа элементов в матрице, а при последовательном соединении наблюдается ее ожидаемое падение, обратно пропорциональное числу элементов в матрице. По результатам данной работы для дальнейшего использования в двухфазном криогенном детекторе темной материи выбрана матрица Si-ФЭУ, состоящая из четырех элементов, соединенных параллельно, так как для такой матрицы продемонстрирована надежная регистрация однофотоэлектронных импульсов, при этом длительность сигнала остается приемлемой.

Список литературы

  1. Akimov D.Y., Bolozdynya A.I., Buzulutskov A.F., Chepel V. Two-phase Emission Detectors. World Scientific, 2021. P. 1.332. https://doi.org/10.1142/12126

  2. Chepel V., Araujo H. // JINST. 2013. V. 8. P. R04001. https://doi.org/10.1088/1748-0221/8/04/R04001

  3. Arcadi G., Dutra M., Ghosh P., Lindner M., Mambrini M., Pierre M., Profumo S., Queiroz F. S. // Eur. Phys. J. C. 2018. V. 78. P. 203. https://doi.org/10.1140/epjc/s10052-018-5662-y

  4. DarkSide Collaboration. Aalseth C.E. et al. // Eur. Phys. J. Plus. 2018. V. 133. P. 129. https://doi.org/10.1140/epjp/i2018-11973-4

  5. DarkSide Collaboration. Aalseth C.E. et al. // Eur. Phys. J. C. 2021. V. 81. P. 163. https://doi.org/10.1140/epjc/s10052-020-08801-2

  6. Baudis L., Galloway M., Kish A., Marentini C., and Wulf J. // JINST. 2018. V. 13. P. 10022. https://doi.org/10.1088/1748-0221/13/10/P10022

  7. Acerbi F., Paternoster G., Capasso M., Marcante M., Mazzi A., Regazzoni V., Zorzi N., Gola A. // Instruments. 2019. V. 3. P. 15. https://doi.org/10.3390/instruments3010015

  8. Yamamoto K., Nagano T., Yamada R., Ito T., Ohashi Y. // JPS Conference Proceedings. 2019. V. 27. P. 011001. https://doi.org/10.7566/JPSCP.27.011001

  9. Garutti E. // JINST. 2011. V. 6. P. C10003. https://doi.org/10.1088/1748-0221/6/10/C10003

  10. Anderhub H., Backes M., Biland A., Boccone V., Braun I., Bretz T., Bu J., Cadoux F., Commichau V., Djambazov L., Dorner D., Einecke S., Eisenacher D., Gendotti A., Grimm O. et al. // JINST. 2013. V. 8. P. P06008. https://doi.org/10.1088/1748-0221/8/06/P06008

  11. Mora A.D., Martinenghi E., Contini D., Tosi A., Boso G., Durduran T., Arridge S., Martelli F., Farina A., Torricelli A., Pifferi A. // Optics Express. 2015. V. 23(11). P. 13937. https://doi.org/10.1364/OE.23.013937

  12. Modi M.N., Daie K., Turner G.C., Podgorski K. // Optics Express. 2019. V. 27(24). P. 35830. https://doi.org/10.1364/OE.27.035830

  13. Otte A.N., Barral J., Dolgoshein B., Hose J., Klemin S., Lorenz E., Mirzoyan R., Popova E., and Teshima M. // Nucl. Instrum. and Methods. A. 2005. V. 545(3) P. 705. https://doi.org/10.1016/j.nima.2005.02.014

  14. Renker D. // Nucl. Instrum. and Methods. A. 2006. V. 567. P. 48. https://doi.org/10.1016/j.nima.2006.05.060

  15. Ozaki K., Kazama S., Yamashita M., Itow Y. and Moriyama S. // JINST. 2021. V. 16. P. P03014. https://doi.org/10.1088/1748-0221/16/03/P03014

  16. Cervi T., Babicz M.E., Bonesini M., Falcone A., Kose U., Nessi M., Menegolli A., Pietropaolo F., Raselli G.L., Rossella, M. Torti M., Zani A. // JINST. 2017. V. 12. P. C03007. https://doi.org/10.1088/1748-0221/12/03/C03007

  17. D’Incecco M., Galbiati C., Giovanetti G.K., Korga G., Li X. Mandarano A., Razeto A., Sablone D., Savarese C. // IEEE Trans. on Nucl. Science. 2017. V. 65. P. 591. https://doi.org/10.1109/TNS.2017.2774779

  18. Bondar A., Buzulutskov A., Dolgov A., Shemyakina E., Sokolov A. // JINST. 2015. V. 10. P04013. https://doi.org/10.1088/1748-0221/10/04/P04013

  19. Bondar A., Buzulutskov A., Dolgov A., Shekhtman L., Shemyakina E., Sokolov A., Breskin A., Thers D. // JINST. 2014. V. 9. P. P08006. https://doi.org/10.1088/1748-0221/9/08/P08006

  20. Popova E.V., Buzhan P.Zh., Stifutkin A.A., Ilyin A.L., Mavritskii O.B., Egorov A.N., Nastulyavichius A.A. // Journal of Physics: Conference Series. 2016. V. 737. P. 012041. https://doi.org/10.1088/1742-6596/737/1/012041

  21. Cova S., Ghioni M., Lacaita A., Samori C., Zappa F. // Applied Optics. 1996. V. 35. No. 12. P. 1956. https://doi.org/10.1364/AO.35.001956

  22. https://hub.hamamatsu.com/us/en/technical-notes/mppc-sipms/what-is-an-SiPM-and-how-does-it-work.html

  23. https://www.hamamatsu.com/

  24. Bondar A., Buzulutskov A., Grebenuk A., Pavlyuchenko D., Snopkov R., Tikhonov Y., Kudryavtsev V.A., Lightfoot P.K., Spooner N.J.C. // Nucl. Instrum. and Methods. A. 2007. V. 574. P. 493. https://doi.org/10.1016/j.nima.2007.01.090

  25. Bondar A., Buzulutskov A., Dolgov A., Nosov V., Shekhtman L., Shemyakina E., Sokolov A. // Europhysics Letters. 2015. V. 112. P. 19001. https://doi.org/10.1209/0295-5075/112/19001

  26. Bondar A., Borisova E., Buzulutskov A., Frolov E., Sokolov A. // JINST. 2020. V. 15. P. C06064. https://doi.org/10.1088/1748-0221/15/06/C06064

  27. Buzulutskov A., Frolov E., Borisova E., Nosov V., Oleynikov V., Sokolov A. // Eur. Phys. J. C. 2022. V. 82. P. 839. https://doi.org/10.1140/epjc/s10052-022-10792-1

  28. Aalseth C.E., Abdelhakim S., Agnes P., Ajaj R., Albuquerque I.F.M., Alexander T., Alici A., Alton A.K., Amaudruz P., Ameli F., Anstey J., Antonioli P., Arba M., Arcelli S., Ardito R. et al. // Eur. Phys. J. C. 2021. V. 81. P. 153. https://doi.org/10.1140/epjc/s10052-020-08801-2

  29. Rosado J., Hidalgo S. // JINST. 2015. V. 10. P. P10031. https://doi.org/10.1088/1748-0221/10/10/P10031

  30. Horowitz P., Hill W. The art of electronics. 3rd edition. Cambridge University Press, 2015. Chapters 8.5.7. P. 497−499 и 8.11.3. P. 538−539.

  31. Bondar A., Buzulutskov A., Grebenuk A., Sokolov A., Akimov D., Alexandrov I. and Breskin A. // JINST. 2010. V. 5. P. P08002. https://doi.org/10.1088/1748-0221/5/08/p08002

  32. Collazuol G. // The 15th Vienna Conference on Instrumentation VCI-2019. 18–22 Feb 2019. Vienna University of Technology. P 86, https://indi.to/DyMp5

  33. Cervi T., Babicz M., Bonesini M., Falcone A., Menegolli A., Raselli G.L., Rossella M., Torti M. // Nucl. Instrum. and Methods. A. 2018. V. 912 P. 209. https://doi.org/10.1016/j.nima.2017.11.038

Дополнительные материалы отсутствуют.