Приборы и техника эксперимента, 2023, № 5, стр. 48-55

Модификация метода обратной корреляции для точного определения бриллюэновского сдвига частоты

Ф. Л. Барков a*, Ю. А. Константинов a

a Пермский федеральный исследовательский центр УрО РАН
614990 Пермь, ул. Ленина, 13а, Россия

* E-mail: fbarkov@pstu.ru

Поступила в редакцию 23.01.2023
После доработки 30.03.2023
Принята к публикации 02.04.2023

Аннотация

Представлен улучшенный метод извлечения бриллюэновского сдвига частоты при постобработке заданного спектра бриллюэновского усиления. Модификация метода позволила расширить границы его применимости в область зашумленных спектров с отношением сигнал/шум ниже 0 дБ. Модифицированный метод может быть успешно использован в распределенных волоконно-оптичес-ких датчиках, работающих на принципе рассеяния Бриллюэна, особенно в длинных сенсорных линиях.

Список литературы

  1. Bao X., Webb D.J., Jackson D.A. // Opt. Lett. 1993. V. 18. P. 1561. https://doi.org/10.1364/OL.18.001561

  2. Soto M.A., Thévenaz L. // Opt. Express. 2013. V. 21. P. 31347. https://doi.org/10.1364/OE.21.031347

  3. Feng C., Preussler S., Kadum J., Schneider T. // Sensors. 2019. V. 19. P. 2878. https://doi.org/10.3390/s19132878

  4. Li C., Lu Y., Zhang X., Wang F. // Electron. Lett. 2012. V. 48. № 18. P. 1139. https://doi.org/10.1049/el.2012.1248

  5. Urricelqui J., Sagues M., Loayssa A. // Opt. Express. 2014. V. 22. № 15. P. 18195. https://doi.org/10.1364/OE.22.018195

  6. Zhou F., Gan J., Lv, H., Cui L. // IOP Conf. Ser. Earth Environ. Sci. 2018. V. 189. P. 032026. https://doi.org/10.1088/1755-1315/189/3/032026

  7. Feng C., Lu X., Preussler S., Schneider T. // J. Light. Technol. 2019. V. 37. P. 5231. https://doi.org/10.1109/JLT.2019.2930919

  8. Li C., Li Y. // Proc. of the 2009 5th International Conference on Wireless Communications, Networking and Mobile Computing Beijing. China. 2009. P. 24. https://doi.org/10.1109/WICOM.2009.5303692

  9. Yan Z., Zhong S., Lin L., Cui Z. // Mathematics. 2021. V. 9. P. 2176. https://doi.org/10.3390/math9172176

  10. Amini K., Rostami F. // J. Comput. Appl. Math. 2015. V. 288. P. 341. https://doi.org/10.1016/j.cam.2015.04.040

  11. Horiguchi T., Masui Y., Zan M. // Sensors. 2019. V. 19. P. 1497. https://doi.org/10.3390/s19071497

  12. Farahani M.A., Castillo-Guerra E., Colpitts B.G. // Opt. Lett. 2011. V. 36. P. 4275. https://doi.org/10.1364/OL.36.004275

  13. Ruiz-Lombera R., Fuentes A., Rodriguez-Cobo L., Lopez-Higuera J.M., Mirapeix J. // J. Light. Technol. 2018. V. 36. P. 2114. https://doi.org/10.1109/JLT.2018.2805362

  14. Lalam N., Venketeswaran A., Lu P., Buric M.P. Probabilistic deep neural network based signal processing for Brillouin gain and phase spectrums of vector BOTDA system // Optical Interconnects XXI / Eds. H. Schröder, R.T. Chen, WA, USA, Bellingham: SPIE, 2021. V. 11692. P. 1169213. https://doi.org/10.1117/12.2578509

  15. Wu H., Wan Y., Tang M., Chen Y., Zhao C., Liao R., Chang Y., Fu S., Shu P.P., Li D. // J. Light. Technol. 2019. V. 37. P. 2648. https://doi.org/10.1109/JLT.2018.2876909

  16. Karapanagiotis C., Wosniok A., Hicke K., Krebber K. // Sensors. 2021. V. 21. P. 2724. https://doi.org/10.3390/s21082724

  17. Nordin N.D., Zan M.S.D., Abdullah F. // Photonics. 2020. V. 7. P. 79. https://doi.org/10.3390/photonics7040079

  18. Nordin N.D., Zan M.S.D., Abdullah F. // Opt. Fiber Technol. 2020. V. 58. P. 102298. https://doi.org/10.1016/j.yofte.2020.102298

  19. Barkov F.L., Konstantinov Y.A., Krivosheev A.I. // Fibers. 2020. V. 8. P. 60. https://doi.org/10.3390/fib8090060

  20. Nordin N.D., Abdullah F., Zan M.S.D., Bakar A.A., Krivosheev A.I., Barkov F.L., Konstantinov Y.A. // Sensors. 2022. V. 22. P. 2677. https://doi.org/10.3390/s22072677

  21. Konstantinov Yu.A., Kryukov I.I., Pervadchuk V.P., Toroshin A.Yu. // Quantum Electronics. 2009. V. 39 № 11. P. 1068. https://doi.org/10.1070/QE2009v039n11ABEH014171

Дополнительные материалы отсутствуют.