Приборы и техника эксперимента, 2023, № 5, стр. 174-179

Покрытия оксида олова (IV) c различной морфологией на поверхности утоненного кварцевого волоконного световода для применения в сенсорике

Д. П. Судас ab*, П. И. Кузнецов b

a Санкт-Петербургский политехнический университет Петра Великого
195251 Санкт-Петербург, ул. Политехническая, 29, Россия

b Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН
141190 Фрязино, Московской обл., пл. Введенского, 1, Россия

* E-mail: dmitriisudas@mail.ru

Поступила в редакцию 02.03.2023
После доработки 14.03.2023
Принята к публикации 25.04.2023

Аннотация

Получены и экспериментально охарактеризованы тонкопленочные покрытия оксида олова на поверхности химически утоненной секции одномодового кварцевого световода. Материалы синтезировались на поверхности волокна методом химического парофазного осаждения из металлорганических соединений (MOCVD). Для изменения морфологии поверхности использовалось разное количество тетраметила олова (SnMe4), подаваемого газом-носителем (осушенным воздухом) в зону осаждения путем варьирования температуры испарителя с реагентом. При осаждении фиксировался в реальном времени спектр пропускания оптического тракта, а температура испарителя в экспериментах менялась от –20°С до +20°С. После изучения поверхности на сканирующем электронном микроскопе осажденные пленки тестировались на химическую стойкость к водному раствору серной кислоты и проводилась оценка чувствительности резонанса затухающей моды (LMR) к изменению показателя преломления окружающей среды в диапазоне от 1.35 до 1.41. Образцы, полученные при более высоких расходах реагента, продемонстрировали большую чувствительность резонанса, равную 3800 нм/единицу показателя преломления (ЕПП) для TM-составляющей первого порядка резонанса, но такие покрытия заметно растворяются в концентрированных растворах серной кислоты, в отличие от покрытий, полученных при малых расходах реагента.

Список литературы

  1. Kersey A.D. // Opt. Fiber Technol. 1996. V. 2. P. 291. https://doi.org/10.1006/ofte.1996.0036

  2. Franzão O., Santos J.L., Araújo F.M., Ferreira L.A. // Laser & Photon. Rev. 2008. V. 2. P. 449. https://doi.org/10.1002/lpor.200810034

  3. Roriz P., Franzão O., Lobo-Ribeiro A.B., Santos J.L., Simoes J.A. // J. Biomed. Opt. 2013. V. 18. № 5. Art. ID 050903. https://doi.org/10.1117/1.jbo.18.5.050903

  4. Del Villar I., Arregui F.J., Zamarreno C.R., Corres J.M., Bariain C., Goicoechea J., Elosua C., Hernaez M., Rivero P.J., Socorro A.B., Urrutia A., Sanchez P., Zubiate P., Lopez D., De Acha N. et al. // Sens. Actuators B. 2017. V. 240. P. 174. https://doi.org/10.1016/j.snb.2016.08.126

  5. Kerttula J., Filippov V., Chamorovskii Yu., Ustimchik V., Golant K., Okhotnikov O. G. // Proc. SPIE 8237. Fiber Lasers IX: Technology. Systems and Applications. 2012. Art. ID 82370W. https://doi.org/10.1117/12.908147

  6. Dianov E. // Light Sci Appl. 2012. V. 1. Art. ID e12. https://doi.org/10.1038/lsa.2012.12

  7. Dejneka M., Samson B. // MRS Bulletin. 1999. V. 24. P. 39. https://doi.org/10.1557/S0883769400053057

  8. Sanada K., Shamoto T., Inada K. // J. Non-Crystalline Solids. 1995. V. 189. P. 283. https://doi.org/10.1016/0022-3093(95)00233-2

  9. Ascorbe J., Corres J.M., Matias I.R., Arregui F.J. // Sens. Actuators B. 2016. V. 233. P. 7. https://doi.org/10.1016/j.snb.2016.04.045

  10. Zhu S., Pang F., Huang S., Zou F., Dong Y., Wang T. // Opt. Express. 2015. V. 23. P. 13880. https://doi.org/10.1364/OE.23.013880

  11. Arregui F.J., Del Villar I., Zamarreno C.R., Zubiate P., Matias I.R. // Sens. Actuators B. 2016. V. 232. P. 660. https://doi.org/10.1016/j.snb.2016.04.015

  12. Wang J., Luo Z., Zhou M., Ye C., Fu H., Cai Z., Cheng H., Xu H., Qi W. // IEEE Photonics J. 2012. V. 4. P. 1295. https://doi.org/10.1109/JPHOT.2012.2208736

  13. Lee J., Koo J., Jhon Y.M., Lee J.H. // Opt. Express. 2014. V. 22. P. 6165. https://doi.org/10.1364/OE.22.006165

  14. Lee H., Kwon W.S., Kim J.H., Kang D., Kim S. // Opt. Express. 2015. V. 23. P. 22116. https://doi.org/10.1364/OE.23.022116

  15. Henry W.M. // Proc. SPIE. Chemical, Biochemical, and Environmental Fiber Sensors VI. 1994. V. 2293. https://doi.org/10.1117/12.190957

  16. Wang Z., Zhu G., Wang Y., Li M., Singh R., Zhang B., Kumar S. // Appl. Opt. 2021. V. 60. P. 2077. https://doi.org/10.1364/ao.418875

  17. Tabassum S., Kumar R. // Adv. Mater. Technol. 2020. V. 5. Art. ID 1900792. https://doi.org/10.1002/admt.201900792

  18. Paliwal N., John J. // IEEE Sens. J. 2015. V. 15. P. 5361. https://doi.org/10.1109/JSEN.2015.2448123

  19. Wang X., Wang Q., Song Z., Qi K. // AIP Adv. 2019. V. 9. Art. ID 095005. https://doi.org/10.1063/1.5112090

  20. Urrutia A., Del Villar I., Zubiate P., Zamarreco C.R. // Laser Photon. Rev. 2019. Art. ID 1900094. https://doi.org/10.1002/lpor.201900094

  21. Ozcariz A., Ruiz-Zamarreco C., Arregui F.J. // Sensors. 2020. V. 20. P. 1972. https://doi.org/10.3390/s20071972

  22. Usha S.P., Mishra S.K., Gupta B.D. // Sens. Actuators B. 2015. V. 218. P. 196. https://doi.org/10.1016/j.snb.2015.04.108

  23. Sanchez P., Mendizabal D., Zamarreno C.R., Matias I.R., Arregui F.J. // Proc. SPIE 9634. 2015. Art. ID 96347M. https://doi.org/10.1117/12.2195177

  24. Matias I.R., Ikezawa S., Corres J. Fiber Optic Sensors: Status and Future Possibilities. Springer International Publishing, Switzerland. 2017. V. 21. P. 51. https://doi.org/10.1007/978-3-319-42625-9

  25. Li W., Zhang A., Cheng Q., Sun C., Li Y. // Optik. 2020. V. 213. Art. ID 164696. https://doi.org/10.1016/j.ijleo.2020.164696

  26. Savelyev E.A. // Eur. Phys. J. D. 2021. V. 75. Art. ID 285. https://doi.org/10.1140/epjd/s10053-021-00296-0

  27. Kuznetsov P.I., Sudas D.P., Savel’ev E.A. // Instrum. Exp. Tech. 2020. V. 63. P. 516. https://doi.org/10.1134/S0020441220040302

  28. Kuznetsov P.I., Sudas D.P., Yapaskurt V.O., Savelyev E.A. // Opt. Mater. Exp. 2021. V. 11. P. 2650. https://doi.org/10.1364/OME.433169

  29. Kuznetsov P.I., Sudas D.P., Savelyev E.A. // Sens. Actuators A. 2021. Art. ID 112576. https://doi.org/10.1016/j.sna.2021.112576

Дополнительные материалы отсутствуют.