Программирование, 2023, № 3, стр. 49-55

МЕТОД АВТОМАТИЧЕСКОГО ПОИСКА ОПТИМАЛЬНОГО МАСШТАБА ПРИ ПРИМЕНЕНИИ ОБУЧЕННЫХ МОДЕЛЕЙ АНАЛИЗА ГИСТОЛОГИЧЕСКИХ ИЗОБРАЖЕНИЙ

М. А. Пенкин a*, А. В. Хвостиков a**, А. С. Крылов a***

a Лаборатория математических методов обработки изображений, Факультет вычислительной математики и кибернетики, Московский государственный университет имени М.В. Ломоносова
119991 Москва, Ленинские горы, д. 1, стр. 52, Россия

* E-mail: penkin97@gmail.com
** E-mail: khvostikov@cs.msu.ru
*** E-mail: kryl@cs.msu.ru

Поступила в редакцию 09.01.2023
После доработки 15.01.2023
Принята к публикации 20.01.2023

Аннотация

Подготовка входных данных для нейронной сети является ключевым шагом для достижения высокой точности ее предсказаний. Известно, что сверточные нейронные модели обладают низкой инвариантностью к изменению масштаба входных данных. Так, обработка многомасштабных полнослайдовых гистологических изображений сверточными сетями естественным образом поднимает вопрос выбора оптимального масштаба обработки. В данной работе эта задача решается путем итеративного анализа расстояний, выдаваемых сверточным классификатором, до разделяющей гиперплоскости при различных входных масштабах. Предлагаемый метод проверен на предобученной на данных PATH-DT-MSU глубокой архитектуре DenseNet121, решающей задачу по-патчевой классификации полнослайдовых гистологических изображений.

Список литературы

  1. Park S., Pantanowitz L., Parwani A.V. Digital imaging in pathology // Clinics in laboratory medicine. 2012. M. 32. № 4. C. 557–584.

  2. Pantanowitz L., Valenstein P.N., Evans A.J., Kaplan K.J., Pfeifer J.D., Wilbur D.C., Collins L.C., Colgan T.J. Review of the current state of whole slide imaging in pathology // Journal of pathology informatics. 2012. V. 2. № 1. P. 36.

  3. Saco A., Bombi J.A., Garcia A., RamГrez J., Ordi J. Current status of whole-slide imaging in education // Pathobiology. 2016. V. 83. № 2–3. P. 79–88.

  4. Farahani N., Parwani A.V., Pantanowitz L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives // Pathol Lab Med Int. 2015. V. 7. № 23–33. P. 4321.

  5. Rojo M.G., GarcГa G.B., Mateos C.P., GarcГa J.G., Vicente M.C. Critical comparison of 31 commercially available digital slide systems in pathology // International journal of surgical pathology. 2006. V. 14. № 4. P. 285–305.

  6. Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation // In International Conference on Medical image computing and computer-assisted intervention. 2015. P. 234–241.

  7. Khvostikov A., Krylov A.S., Mikhailov I., Malkov P. CNN Assisted Hybrid Algorithm for Medical Images Segmentation // In Proceedings of the 2020 5th International Conference on Biomedical Signal and Image Processing. 2020. P. 14–19.

  8. Getmanskaya A.A., Sokolov N.A., Turlapov V.E. Multiclass U-Net Segmentation of Brain Electron Microscopy Data Using Original and Semi-Synthetic Training Datasets // Programming and Computer Software. 2022. V. 48. № 3. P. 164–171.

  9. Gong Y., Wang L., Guo R., Lazebnik S. Multi-scale orderless pooling of deep convolutional activation features // In European conference on computer vision. 2014. P. 392–407.

  10. Khvostikov A.V., Krylov A.S., Mikhailov I.A., Malkov P.G. Visualization of Whole Slide Histological Images with Automatic Tissue Type Recognition // Pattern Recognition and Image Analysis. 2022. V. 32. № 3. P. 483–488.

  11. Huang G., Liu Z., Van Der Maaten L., Weinberger K.Q. Densely connected convolutional networks // In Proceedings of the IEEE conference on computer vision and pattern recognition. 2017. P. 4700–4708.

  12. Kingma D.P., Ba J. Adam: A method for stochastic optimization // arXiv preprint arXiv:1412.6980. 2014.

  13. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition // Proceedings of the CVPR IEEE Conference. 2016. P. 770–778.

  14. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition // arXiv preprint arXiv:1409.1556. 2014.

  15. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A. Going deeper with convolutions // In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. P. 1–9.

  16. Penkin M.A., Khvostikov A.V., Krylov A.S. Optimal Input Scale Transformation Search for Deep Classification Neural Networks // In Graphicon-Conference on Computer Graphics and Vision. 2022. V. 32. P. 668–677.

  17. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks // Communications of the ACM. 2017. V. 60. № 6. P. 84–90.

  18. Deng J., Dong W., Socher R., Li L.J., Li K., Fei-Fei L. Imagenet: A large-scale hierarchical image database // In 2009 IEEE Conference on Computer Vision and Pattern Recognition. 2009. P. 248–255.

  19. Bolme D.S., Beveridge J.R., Draper B.A., Lui Y.M. Visual object tracking using adaptive correlation filters // IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2010. P. 2544–2550.

  20. Mohri M., Rostamizadeh A., Talwalkar A. Foundations of machine learning. MIT Press, 2018. 475 p.

Дополнительные материалы отсутствуют.