Теоретические основы химической технологии, 2023, T. 57, № 4, стр. 371-378

Экстракция Mn(II) и Co(II) из хлоридных растворов глубоким эвтектическим растворителем ди(2-этилгексил)фосфорная кислота/ментол

И. В. Зиновьева a, А. М. Саломатин ab, А. В. Кожевникова a, Ю. А. Заходяева a*, А. А. Вошкин a

a Институт общей и неорганической химии им. Н.С. Курнакова РАН
Москва, Россия

b Национальный исследовательский университет “Высшая школа экономики”
Москва, Россия

* E-mail: yz@igic.ras.ru

Поступила в редакцию 29.05.2023
После доработки 03.06.2023
Принята к публикации 06.06.2023

Аннотация

Изучена экстракция ионов Mn(II) и Co(II) из хлоридных растворов в системе с гидрофобным глубоким эвтектическим растворителем (HDES) на основе ди(2-этилгексил)фосфорной кислоты (Д2ЭГФК) и ментола в зависимости от кислотности водной фазы, состава HDES, концентрации хлорид-иона и объемного соотношения фаз системы. Установлен механизм экстракции исследуемых металлов. Проведен термодинамический анализ процесса экстракции в предложенной системе. Впервые проведена оценка возможности повторного использования HDES Д2ЭГФК/ментол на примере экстракции ионов Mn(II). Показана перспективность использования предложенного HDES для выделения металлов из водных растворов.

Ключевые слова: межфазное распределение, глубокий эвтектический растворитель, ионы металлов, литий-ионные аккумуляторы

Список литературы

  1. Golmohammadzadeh R., Faraji F., Rashchi F. Recovery of Lithium and Cobalt from Spent Lithium Ion Batteries (LIBs) Using Organic Acids as Leaching Reagents: A Review. Resour Conserv Recycl 2018, 136, 418–435, https://doi.org/10.1016/j.resconrec.2018.04.024

  2. Pham H.D., Horn M., Fernando J.F.S., Patil R., Phadatare M., Golberg D., Olin H., Dubal D.P. Spent Graphite from End-of-Life Li-Ion Batteries as a Potential Electrode for Aluminium Ion Battery. Sustainable Materials and Technologies 2020, 26, e00230, https://doi.org/10.1016/j.susmat.2020.e00230

  3. Garole D.J., Hossain R., Garole V.J., Sahajwalla V., Nerkar J., Dubal D.P. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities. ChemSusChem 2020, 13, 3079–3100. https://doi.org/10.1002/cssc.201903213

  4. Or T., Gourley S.W.D., Kaliyappan K., Yu A., Chen Z. Recycling of Mixed Cathode Lithium-ion Batteries for Electric Vehicles: Current Status and Future Outlook. Carbon Energy 2020, 2, 6–43.https://doi.org/10.1002/cey2.29

  5. Neumann J., Petranikova M., Meeus M., Gamarra J.D., Younesi R., Winter M., Nowak S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv Energy Mater 2022, 12, 2102917. https://doi.org/10.1002/aenm.202102917

  6. Peeters N., Binnemans K., Riaño S. Solvometallurgical Recovery of Cobalt from Lithium-Ion Battery Cathode Materials Using Deep-Eutectic Solvents. Green Chemistry 2020, 22, 4210–4221. https://doi.org/10.1039/D0GC00940G

  7. Pateli I.M., Thompson D., Alabdullah S.S.M., Abbott A.P., Jenkin,G.R.T., Hartley J.M. The Effect of PH and Hydrogen Bond Donor on the Dissolution of Metal Oxides in Deep Eutectic Solvents. Green Chemistry 2020, 22, 5476–5486. https://doi.org/10.1039/D0GC02023K

  8. Zinov’eva I.V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Dissolution of Metal Oxides in a Choline Chloride–Sulphosalicylic Acid Deep Eutectic Solvent. Theoretical Foundations of Chemical Engineering 2021, 55, 663–670. https://doi.org/10.1134/S0040579521040370

  9. Vasilyev F., Virolainen S., Sainio T. Numerical Simulation of Counter-Current Liquid–Liquid Extraction for Recovering Co, Ni and Li from Lithium-Ion Battery Leachates of Varying Composition. Sep Purif Technol 2019, 210, 530–540.https://doi.org/10.1016/j.seppur.2018.08.036

  10. Vieceli N., Nogueira C.A., Pereira M.F.C., Durão F.O., Guimarães C., Margarido F. Optimization of Metals Extraction from Spent Lithium-Ion Batteries by Sulphuric Acid and Sodium Metabisulphite through a Techno-Economic Evaluation. J Environ Manage 2018, 228, 140–148.https://doi.org/10.1016/j.jenvman.2018.08.085

  11. Florindo C., Branco L.C., Marrucho I.M. Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. ChemSusChem 2019, 12, 1549–1559.https://doi.org/10.1002/cssc.201900147

  12. Zhu A., Bian X., Han W., Cao D., Wen Y., Zhu K., Wang S. The Application of Deep Eutectic Solvents in Lithium-Ion Battery Recycling: A Comprehensive Review. Resour Conserv Recycl 2023, 188, 106690. https://doi.org/10.1016/j.resconrec.2022.106690

  13. Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from Hydrochloric Acid Solution Using a Menthol-Based Hydrophobic Deep Eutectic Solvent. Hydrometallurgy 2022, 207, 105777.https://doi.org/10.1016/j.hydromet.2021.105777

  14. Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A., Baranovskaya V.B., Voshkin A.A. Application of Hydrophobic Deep Eutectic Solvents in Extraction of Metals from Real Solutions Obtained by Leaching Cathodes from End-of-Life Li-Ion Batteries. Processes 2022, 10, 2671. https://doi.org/10.3390/pr10122671

  15. Tereshatov E.E., Boltoeva M.Yu., Folden C.M. First Evidence of Metal Transfer into Hydrophobic Deep Eutectic and Low-Transition-Temperature Mixtures: Indium Extraction from Hydrochloric and Oxalic Acids. Green Chemistry 2016, 18, 4616–4622.https://doi.org/10.1039/C5GC03080C

  16. van Osch D.J.G.P., Parmentier D., Dietz C.H.J.T., van den Bruinhorst A., Tuinier R., Kroon M.C. Removal of Alkali and Transition Metal Ions from Water with Hydrophobic Deep Eutectic Solvents. Chemical Communications 2016, 52, 11987–11990.https://doi.org/10.1039/C6CC06105B

  17. Ola P.D., Matsumoto M. Use of Deep Eutectic Solvent as Extractant for Separation of Fe (III) and Mn (II) from Aqueous Solution. Sep Sci Technol 2019, 54, 759–765. https://doi.org/10.1080/01496395.2018.1517796

  18. Schaeffer N., Martins M.A.R., Neves C.M.S.S., Pinho S.P., Coutinho J.A.P. Sustainable Hydrophobic Terpene-Based Eutectic Solvents for the Extraction and Separation of Metals. Chemical Communications 2018, 54, 8104–8107.https://doi.org/10.1039/C8CC04152K

  19. Schmuch R., Wagner R., Hörpel G., Placke T., Winter M. Performance and Cost of Materials for Lithium-Based Rechargeable Automotive Batteries. Nat Energy 2018, 3, 267–278. https://doi.org/10.1038/s41560-018-0107-2

  20. Vieceli N., Reinhardt N., Ekberg C., Petranikova M. Optimization of Manganese Recovery from a Solution Based on Lithium-Ion Batteries by Solvent Extraction with D2EHPA. Metals (Basel) 2020, 11, 54. https://doi.org/10.3390/met11010054

  21. Hoh Y.-C., Chuang W.-S., Lee B.-D., Chang C.-C. The Separation of Manganese from Cobalt by D2EHPA. Hydrometallurgy 1984, 12, 375–386. https://doi.org/10.1016/0304-386X(84)90008-2

  22. Zinov’eva I.V., Kozhevnikova A.V., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol. Theoretical Foundations of Chemical Engineering 2022, 56, 221–229. https://doi.org/10.1134/S0040579522020178

  23. Ivanov A.V., Figurovskaya V.N., Ivanov V.M. Molecular Absorption Spectroscopy of 4-(2-Pyridilazo)Resorcinol Complexes as Alternative for the Atomic Absorption Spectroscopy. Moscow University Chemistry Bulletin 1992, 33, 570–574.

  24. Jin Y., Ma Y., Weng Y., Jia X., Li J. Solvent Extraction of Fe3+ from the Hydrochloric Acid Route Phosphoric Acid by D2EHPA in Kerosene. J. Industrial and Engineering Chemistry 2014, 20, 3446–3452. https://doi.org/10.1016/j.jiec.2013.12.033

  25. Yudaev P.A., Kolpinskaya N.A., Chistyakov E.M. Organophosphorous Extractants for Metals. Hydrometallurgy 2021, 201, 105558. https://doi.org/10.1016/j.hydromet.2021.105558

  26. Gammons C.H., Seward T.M. Stability of Manganese (II) Chloride Complexes from 25 to 300°C. Geochim Cosmochim Acta 1996, 60, 4295–4311. https://doi.org/10.1016/S0016-7037(96)00275-X

  27. Coleman J.S. Chloride Complexes of Cobalt(II) in Anion and Cation Exchangers. J. Inorganic and Nuclear Chemistry 1966, 28, 2371–2378.https://doi.org/10.1016/0022-1902(66)80128-8

  28. Liu X. Thermodynamics of Solvent Extraction of Rare and Scattered Metal-Indium with Diethylhexylmonothiophosphoric Acid1. Chem Res Chin Univ 2006, 22, 111–113. https://doi.org/10.1016/S1005-9040(06)60057-3

  29. Liu Y., Tong L.-H., Inoue Y., Hakushi T. Thermodynamics of Solvent Extraction of Metal Picrates with Crown Ethers: Enthalpy–Entropy Compensation. Part 2. Sandwiching 1 : 2 Complexation. J. Chem. Soc., Perkin Trans. 2 1990, 1247–1253. https://doi.org/10.1039/P29900001247

  30. Yuan X., Cai Y., Chen L., Lu S., Xiao X., Yuan L., Feng W. Phosphine Oxides Functionalized Pillar[5]Arenes for Uranyl Extraction: Solvent Effect and Thermodynamics. Sep Purif Technol 2020, 230, 115843.https://doi.org/10.1016/j.seppur.2019.115843

Дополнительные материалы отсутствуют.