Успехи современной биологии, 2023, T. 143, № 3, стр. 278-299

Наноматериалы в защите растений от паразитических нематод

С. В. Зиновьева 1*, Ж. В. Удалова 1, О. С. Хасанова 1

1 Институт проблем экологии и эволюции им. А.Н. Северцова РАН
Москва, Россия

* E-mail: zinovievas@mail.ru

Поступила в редакцию 27.01.2023
После доработки 13.02.2023
Принята к публикации 14.02.2023

Аннотация

Проведен обзор современных данных о влиянии наночастиц (НЧ) на фитопаразитических нематод при исследовании in vitro, in planta и об их воздействии на инвазированные нематодами растения. Имеющиеся данные показали, что многие НЧ металлов, неметаллов, их оксидов и некоторых других сложных соединений обладают эффективным нематицидным потенциалом. Согласно имеющимся данным, НЧ могут оказывать прямое токсическое действие на нематод, снижать зараженность растений при предварительной обработке семян или при опрыскивании, приводить к ингибированию размножения и развития паразита в корнях, а эффективность их действия может превосходить известные коммерческие нематициды. Некоторые НЧ оказывают иммуностимулирующий эффект на растения. Приведены данные о механизмах действия НЧ на нематод. Важным механизмом токсичности НЧ может быть генерация активных форм кислорода (окислительный стресс). Воздействие НЧ увеличивает у нематод экспрессию целевых генов, участвующих в окислительном стрессе и в восстановлении повреждений ДНК. Небольшое число работ касается нанонематицидов, нанокапсулы которых весьма эффективны для борьбы с эндопаразитическими нематодами.

Ключевые слова: фитопаразитические нематоды, галловые нематоды, наноматериалы, наночастицы, нанонематициды, токсичность, окислительный стресс

Список литературы

  1. Викторов А.Г. Эколого-физиологические особенности Bt-растений, приводящие к вспышкам численности вторичных вредителей // Физиол. раст. 2017. Т. 64 (4). С. 243–250.

  2. Глушкова А.В., Карелин А.О., Еремин Г.Б. Гигиеническая оценка средств индивидуальной защиты работников от воздействия технических наночастиц (систематический обзор) // Здор. насел. среда обит. 2022. Т. 30 (5). С. 86–93.

  3. Зиновьева С.В. Фитопаразитические нематоды России / Ред. С.В. Зиновьева, В.Н. Чижов. М.: КМК, 2012. 385 с.

  4. Зиновьева С.В., Удалова Ж.В., Хасанов Ф.К. Действие нанокремния на СК-опосредованные защитные реакции растений в ответ на инвазию галловой нематодой // Фенольные соединения: фундаментальные и прикладные аспекты / Мат. XI междунар. симп. (Москва, 11–15 апреля 2022 г.). М.: Перо, 2022. С. 98.

  5. Капранова К.А. Получение наночастиц металлов зелeным методом: обзор // Техника и технология современных производств / Сб. ст. III Всерос. науч.-практ. конф. (Пенза, 25–26 апреля 2022 г.). Пенза: ПГАУ, 2022. С. 55–58.

  6. Удалова Ж.В., Зиновьева С.В. Влияние внекорневой обработки растений томатов микроэлементами на заражение галловой нематодой // Теор. практ. борьбы паразит. болезн. 2021. № 22. С. 520–525.

  7. Abasi F., Raja N.I., Mashwani Z.U.R. et al. Biogenic silver nanoparticles as a stress alleviator in plants: a mechanistic overview // Molecules. 2022. V. 27. P. 3378.

  8. Abbassy M.A., Abdel-Rasoul M.A., Nassar A.M.K., Soliman B.S.M. Nematicidal activity of silver nanoparticles of botanical products against root-knot nematode, Meloidogyne incognita // Arch. Phytopathol. Plant Prot. 2017. V. 50. P. 909–926.

  9. Abdellatif K.F., Abdelfattah R.H., El-Ansary M.S.M. Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification // Iran. J. Biotechnol. 2016. V. 14. P. 250–259.

  10. Adisa I.O., Pullagurala V.L.R., Peralta-Videa J.R. et al. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action // Environ. Sci. Nano. 2019. V. 6. P. 2002–2030.

  11. Ahamad L., Siddiqui Z.A. Effects of silicon dioxide, zinc oxide and titanium dioxide nanoparticles on Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot // Exp. Parasitol. 2021. V. 230. P. 108176.

  12. Akhter G., Khan A., Ali S.G. et al. Antibacterial and nematicidal properties of biosynthesized Cu nanoparticles using extract of holoparasitic plant // SN Appl. Sci. 2020. V. 2. P. 1268.

  13. Alamri S., Nafady N.A., El-Sagheer A.M. et al. Current utility of arbuscular mycorrhizal fungi and hydroxyapatite nanoparticles in suppression of tomato root-knot nematode // Agronomy. 2022. V. 12. P. 671.

  14. Alfy H., Ghareeb R.Y., Farag D.A. Impact of chitosan nanoparticles as insecticide and nematicide against Spodoptera littoralis, Locusta migratoria, and Meloidogyne incognita // Plant Cell Biotechnol. Mol. Biol. 2020. V. 21 (69–70). P. 126–140.

  15. Ardakani A.S. Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato // Nematology. 2013. V. 15. P. 671–677.

  16. Baronia R., Kumar P., Singh S.P., Walia R.K. Silver nanoparticles as a potential nematicide against Meloidogyne graminicola // J. Nematol. 2020. V. 52. P. 1–9.

  17. Basso M.F., Lourenço-Tessutti I.T., Mendes R.A.G. et al. M-iDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita // Sci. Rep. 2020. V. 10. P. 6991.

  18. Baycheva O., Samaliev H., Udalova Z. et al. Selenium and its effect on plant-parasite system Meloidogyne arenaria – Tiny Tim tomatoes // Bulgar. J. Agricult. Sci. 2018. V. 24 (2). P. 252–258.

  19. Bernard G.C., Fitch J., Min B. et al. Potential nematicidial activity of silver nanoparticles against root-knot nematode (Meloidogyne incognita) // J. Compl. Alt. Med. 2019. V. 2 (2). Online.

  20. Buriak J.M., Liz-Marzán L.M., Parak W.J., Chen X. Nano and plants // ACS Nano. 2022. V. 16 (2). P. 1681–1684.

  21. Cao J., Guenther R.H., Sit T.L. et al. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 9546−9553.

  22. Chariou P.L., Steinmetz N.F. Delivery of pesticides to plant parasitic nematodes using tobacco mild green mosaic virus as a nanocarrier // ACS Nano. 2017. V. 11 (5). P. 4719–4730.

  23. Chariou P.L., Dogan A.B., Welsh A.G. et al. Soil mobility of synthetic and virus-based model nanopesticides // Nat. Nanotechnol. 2019. V. 14 (7). P. 712–718.

  24. Chitwood D.J. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service // Pest. Manag. Sci. 2003. V. 59. P. 748–753.

  25. Chopra H., Bibi S., Singh I. et al. Green metallic nanoparticles: biosynthesis to applications // Front. Bioeng. Biotechnol. 2022. V. 10. P. 874742.

  26. Costa J.C., Lilley C.J., Urwin P.E. Caenorhabditis elegans as a model for plant-parasitic nematodes // Nematology. 2007. V. 9 (1). P. 3–16. https://doi.org/10.1163/156854107779969664

  27. Cromwell W.A., Yang J., Starr J.L., Jo Y.-K. Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass // J. Nematol. 2014. V. 46. P. 261–266.

  28. Danish M., Shahid M., Ahamad L. et al. Nano-pesticidal potential of Cassia fistula (L.) leaf synthesized silver nanoparticles (Ag@CfL-NPs): deciphering the phytopathogenic inhibition and growth augmentation in Solanum lycopersicum (L.) // Front. Microbiol. 2022. V. 13. P. 985852.

  29. Danchin E.G.J., Perfus-Barbeoch L. The genome sequence of Meloidogyne incognita unveils; mechanisms of adaptation to plant-parasitism in Metazoa // Evolutionary biology: concept, modeling, and application / Ed. P. Pontarotti. Berlin, Heidelberg: Springer-Verlag, 2009. P. 287–302.

  30. Daragó Á. The distribution of dagger nematodes species in hungarian wind regions and newest control options. PhD Thesis. Keszthely, Hungary: Univ. Pannonia Georgikon, 2014. 70 p.

  31. Davids J.S., Ackah M., Okoampah E. et al. Biocontrol of bacteria associated with pine wilt nematode, Bursaphelenchus xylophilus by using plant mediated cold nanoparticles // Int. J. Agric. Biol. 2021. V. 26. P. 517–526.

  32. Duguet T.B., Charvet C.L., Forrester S.G. et al. Recent duplication and functional divergence in parasitic nematode levamisole-sensitive acetylcholine receptors // PLoS Negl. Trop. Dis. 2016. V. 10 (7). P. e0004826.

  33. El-Ansary M.S.M., Hamouda R.A., Elshamy M.M. Using biosynthesized zinc oxide nanoparticles as a pesticide to alleviate the toxicity on banana infested with parasitic-nematode // Waste and Biomass Valoriz. 2022. V. 13. P. 405–415.

  34. El-Ashry R.M., El-Saadony M.T., El-Sobki A.E.A. et al. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant // Saudi J. Biol. Sci. 2022. V. 29. P. 920–932.

  35. Elarabi N.I., Abdel-Rahman A.A., Abdel-Haleem H., Abdel-Hakeem M. Silver and zinc oxide nanoparticles disrupt essential parasitism, neuropeptidergic, and expansion-like proteins genes in Meloidogyne incognita // Exp. Parasitol. 2022. V. 243. P. 108402.

  36. El-Batal A.I., Attia M.S., Nofel M.M., El-Sayyad G.S. Potential nematicidal properties of silver boron nanoparticles: synthesis, characterization, in vitro and in vivo root-knot nematode (Meloidogyne incognita) treatments // J. Clust. Sci. 2019. V. 30. P. 687–705.

  37. El-Deen A.H.N., El-Deeb B.A. Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse conditions // J. Agricult. Sci. 2018. V. 10. P. 148–156.

  38. Elmer W.H., White J.C. The future of nanotechnology in plant pathology // Annu. Rev. Phytopathol. 2018. V. 56. P. 111–133.

  39. Fabiyi O.A., Olatunji G.A. Application of green synthesis in nanoparticles preparation: Ficus mucoso extracts in the management of Meloidogyne incognita infecting groundnut Arachis hypogea // Ind. J. Nematol. 2018. V. 48. P. 13–17.

  40. Fabiyi O., Olatunji G., Atolani O., Olawuyi O. Preparation of bio-nematicidal nanoparticles of Eucalyptus officinalis for the control of cyst nematode (Heterodera sacchari) // J. Anim. Plant Sci. 2020. V. 30 (5). P. 1172–1177.

  41. Fabiyi O.A., Claudius-Cole A.O., Olatunji G.A. et al. Response of Meloidogyne javanica to silver nanoparticle liquid from agricultural wastes // J. Agricult. Sci. 2021. V. 43 (3). P. 507–517.

  42. Fadaei Tehrani A.A., Fathi Z. Effect of silver and zinc oxide nanoparticles on sugar beet cyst nematode (Heterodera schachtii) // J. Appl. Res. Plant Prot. 2020. V. 8 (4). P. 47–59.

  43. Fouda M.M.G., Abdelsalam N.R., Gohar I.M.A. et al. Utilization of high throughput microcrystalline cellulose decorated silver nanoparticles as an eco-nematicide on root-knot nematodes // Coll. Surf. B Biointerfaces. 2020. V. 188. P. 110805.

  44. Fu Z., Chen K., Li L. et al. Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control: preparation and characterization // Nanomaterials. 2018. V. 8. P. 449.

  45. Gheysen G., Mitchum M.G. Phytoparasitic nematode control of plant hormone pathways // Plant Physiol. 2019. V. 179. P. 1212–1226.

  46. Ghareeb R.Y., Alfy H., Fahmy A.A. et al. Utilization of C-ladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica // Sci. Rep. 2020a. V. 10. P. 19968.

  47. Ghareeb R.Y., El-Din N.G.E.-D.S., Maghraby D.M.E. et al. Green biosynthesized silver nanoparticles using macroalgae and their usage as a bioagent on Meloidogyne incogni-ta // Plant Arch. 2020b. V. 20. P. 9682–9692.

  48. Ghareeb R.Y., El-Din N.G., Shams El‑Din et al. Nematicidal activity of seaweed‑synthesized silver nanoparticles and extracts against Meloidogyne incognita on tomato plants // Sci. Rep. 2022. V. 12. P. 3841.

  49. Gillet F.X., Bournaud C., Antonino J.D., Grossi-de-Sá M.F. Plant-parasitic nematodes: towards understanding molecular players in stress responses // Ann. Bot. 2017. V. 119 (5). P. 775–789.

  50. Gkanatsiou Ch., Ntalli N., Menkissoglu-Spiroudi U., Dendrinou-Samara C. Essential metal-based nanoparticles (copper/iron NPs) as potent nematicidal agents against Meloidogyne spp. // J. Nanotechnol. Res. 2019. V. 1. P. 044–058.

  51. Gonzalez-Moragas L., Roig A., Laromaine A. C. elegans as a tool for in vivo nanoparticle assessment // Adv. Coll. Interface Sci. 2015. V. 219. P. 10–26.

  52. Haegeman A., Mantelin S., Jones J.T., Gheysen G. Functional roles of effectors of plant-parasitic nematodes // Gene. 2012. V. 492. P. 19–31.

  53. Hamed S.M., Hagag E.S., El-Raouf N. Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean // Beni-Suef Univ. J. Bas. Appl. Sci. 2019. V. 8. P. 9.

  54. Hamid A., Saleem S. Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistance // Plant Prot. Sci. 2022. V. 58 (3). P. 173–184.

  55. Hassan M.E.M., Zawam H.S., El-Nahas S.E.M., Desoukey A.F. Comparative study between silver nanoparticles and two nematicides against Meloidogyne incognita on tomato seedlings // Plant Pathol. J. 2016. V. 15. P. 144–151.

  56. Hayles J., Johnson L., Worthley C., Losic D. Nanopesticides: a review of current research and perspectives // New pesticides and soil sensors / Ed. A.M. Grumezescu. L.: Acad. Press, 2017. P. 193–225.

  57. Heflish A.A., Hanfy A.E., Ansari M.J. et al. Green biosynthesized silver nanoparticles using Acalypha wilkesiana extract control root-knot nematode // J. King Saud Univ. Sci. 2021. V. 33 (6). P. 101516.

  58. Ingale A.G., Chaudhari A.N. Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach // J. Nanomed. Nanotechnol. 2013. V. 4. P. 1–7.

  59. IPPC Secretariat, Gullino M.L., Albajes R. et al. Scientific review of the impact of climate change on plant pests. A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Rome: FAO, 2021. 88 p.

  60. Jeevanandam J., Barhoum A., Chan Y.S. et al. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations // Beilstein J. Nanotechnol. 2018. V. 9. P. 1050–1074.

  61. Jones J., Haegeman A., Danchin E. et al. Top 10 plant-parasitic nematodes in molecular plant pathology // Mol. Plant Pathol. 2013. V. 14. P. 946–961.

  62. Kalaba M.H., Moghannem S.A., El-Hawary A.S. et al. Green synthesized ZnO nanoparticles mediated by Streptomyces plicatus: characterizations, antimicrobial and nematicidal activities and cytogenetic effects // Plants. 2021. V. 10. P. 1760.

  63. Kalaiselvi D., Mohankumar A., Shanmugam G. et al. Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita // Crop Prot. 2019. V. 117. P. 108–114.

  64. Khalil A.E., Rahhal M.M.H., El-Korany A.E., Balbaa E.M. Effect of certain nanoparticles against root-knot nematode, Meloidogyne incognita, affecting, tomato plants in El-Behera governorate, Egypt // J. Agric. Env. Sci. 2018. V. 17 (3). P. 1–34.

  65. Khalil M.S., El-Aziz M.H.A., Selim R. Physiological and morphological response of tomato plants to nano-chitosan used against bio-stress induced by root-knot nematode (Meloidogyne incognita) and tobacco mosaic tobamovirus (TMV) // Eur. J. Plant Pathol. 2022. V. 163. P. 799–812.

  66. Khan A., Mfarrej M.F.B., Danish M. et al. Synthesized copper oxide nanoparticles via the green route act as antagonists to pathogenic root knot nematode, Meloidogyne incognita // Green Chem. Lett. Rev. 2022. V. 15 (3). P. 491–507.

  67. Khan A.U., Khan M., Khan A.A. et al. Effect of phyto-assisted synthesis of magnesium oxide nanoparticles (MgO-NPs) on bacteria and the root-knot nematode // Bioinorg. Chem. Appl. 2022. V. 2022. P. 3973841.

  68. Khan F., Ansari T., Shariq M., Siddiqui M.A. Nanotechnology: a new beginning to mitigate the effect of plant-parasitic nematodes // Innovative approaches in the diagnosis and management of crop diseases. V. 3. Nanomolecules and biocontrol agents / Eds R.K. Singh, Gopala. N.Y.: Apple Acad. Press, 2021. P. 21–45.

  69. Khan M.R., Siddiqui Z.A. Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solanidisease complex of beetroot (Beta vulgaris L.) // Sci. Horticult. 2020. V. 265 (2). P. 109211.

  70. Khan M.R., Siddiqui Z.A. Efficacy of titanium dioxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Rhizoctonia solani, and Meloidogyne incognita // Gesunde Pflanz. 2021a. V. 73. P. 445–464.

  71. Khan M.R., Siddiqui Z.A. Role of zinc oxide nanoparticles in the management of disease complex of beetroot (Beta vulgaris L.) caused by Pectobacterium betavasculorum, Meloidogyne incognita and Rhizoctonia solani // Horticult. Env. Biotechnol. 2021b. V. 62 (2). P. 225–241.

  72. Khan M., Siddiqui Z., Parveen A. et al. Elucidating the role of silicon dioxide and titanium dioxide nanoparticles in mitigating the disease of the eggplant caused by Phomopsis vexans, Ralstonia solanacearum, and root-knot nematode Meloidogyne incognita // Nanotechnol. Rev. 2022. V. 11. P. 1606–1619.

  73. Kong M., Liang J., White J.C. et al. Biochar nanoparticle-induced plant immunity and its application with the elicitor methoxyindole in Nicotiana benthamiana // Environ. Sci. Nano. 2022. V. 9 (20). P. 3514–3524.

  74. Landa P. Positive effects of metallic nanoparticles on plants: overview of involved mechanisms // Plant Physiol. Biochem. 2021. V. 161. P. 12–24.

  75. Li Y., Zhong L., Zhang L. et al. Research advances on the adverse effects of nanomaterials in a model organism, Caenorhabditis elegans // Environ. Toxicol. Chem. 2021. V. 40 (9). P. 2406–2424.

  76. Li Y., Ren Q., Bo T. et al. AWA and ASH homologous sensing genes of Meloidogyne incognita contribute to the tomato infection process // Pathogens. 2022. V. 11. P. 1322.

  77. Lim D., Roh J.Y., Eom H.J. et al. Oxidative stress related PMK-1 p38 MAPK activation as a mechanism of toxicity of silver nanoparticles on the reproduction of the nematode Caenohabditis elegans // Environ. Toxicol. Chem. 2012. V. 31. P. 585–592.

  78. Marchiol L., Filippi A., Adamiano A. et al. Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): preliminary evidence // Agronomy. 2019. V. 9. P. 1–17.

  79. McCarter J.P., Mitreva M.D., Martin J. et al. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita // Genome Biol. 2003. V. 4 (4). P. R26.

  80. Mitchum M.G., Hussey R.S., Baum T.J. et al. Nematode effector proteins: an emerging paradigm of parasitism // New. Phytol. 2013. V. 199. P. 879–894.

  81. Mittal D., Kaur G., Singh P. et al. Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook // Front. Nanotechnol. 2020. V. 2. P. 579954.

  82. Mohamed E.A., Elsharabasy S.F., Abdulsamad D. Evaluation of in vitro nematicidal efficiency of copper nanoparticles against root-knot nematode Meloidogyne incognita // South As. J. Parasitol. 2019. V. 2. P. 1–6.

  83. Nassar A.M.K. Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita // Asian J. Nematol. 2016. V. 5. P. 14–19.

  84. Oshunsanya S.O., Nwosu N.J., Li Y. Abiotic stress in agricultural crops under climatic conditions // Sustainable agriculture, forest and environmental management / Eds M.K. Jhariya, A. Banerjee, R.S. Meena, D.K. Yadav. Singapore: Springer, 2019. P. 71–100.

  85. Palomares-Rius J.E., Escobar C., Cabrera J. et al. Anatomical alterations in plant tissues induced by plant-parasitic nematodes // Front. Plant Sci. 2017. V. 8. P. 1987.

  86. Pankaj N.A.S., Shakil N.A., Kumar J. et al. Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato // J. Environ. Sci. Health. B. 2012. V. 47. P. 520–528.

  87. Qi Z.H., Wan S.Q., Zheng X.L., Zhang S.Q. Study nano-microemulsion of clausenamide and nematicidal efficacy against root nematode Meloidogyne javanica // AGRIS. 2011. V. 38 (9). P. 95–102.

  88. Rahman S.U., Wang X., Shahzad M. et al. A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements // Environ. Poll. 2022. V. 310. P. 119916.

  89. Rani K., Devi N., Banakar P. et al. Nematicidal potential of green silver nanoparticles synthesized using aqueous root extract of Glycyrrhiza glabra // Nanomaterials. 2022. V. 12. P. 2966.

  90. Rani S., Kumari N., Sharma V. Uptake, translocation, transformation and physiological effects of nanoparticles in plants // Arch. Agron. Soil Sci. 24.07.2022.

  91. Rosso M.N., Hussey R.S., Davis E.L. et al. Nematode effector proteins: targets and functions in plant parasitism // Effectors in plant–microbe interactions / Eds F. Martin, S. Kamoun. N.Y.: Wiley-Blackwell Publ., 2012. P. 327354.

  92. Savary S., Willocquet L., Pethybridge S.J. et al. The global burden of pathogens and pests on major food crops // Nat. Ecol. Evol. 2019. V. 3 (3). P. 430–439.

  93. Siddiqui Z.A., Khan A., Khan M.R., Abd-Allah E.F. Effects of zinc oxide nanoparticles (ZnO NPs) and some plant pathogens on the growth and nodulation of lentil (Lens culinaris Medik.) //Acta Phytopathol. Entomol. Hungarica. 2018. V. 53 (2). P. 195–212.

  94. Singh S., Singh B., Singh A.P. Nematodes: a threat to sustainability of agriculture // Proc. Environ. Sci. 2015. V. 29. P. 215–216.

  95. Shang H., Zhang H., Zhao R. et al. Selenium nanoparticles are effective in penetrating pine and causing high oxidative damage to Bursaphelenchus xylophilus in pine wilt disease control // Pest. Manag. Sci. 2022. V. 78 (8). P. 3704–3716. https://doi.org/10.1002/ps.7013

  96. Shekoohi S.S., Charehgani H., Abdollahi M., Rajabi H.R. Combined effect of β-aminobutyric acid and silver nanoparticles on eggplants, Solanum melongena, infected with Meloidogyne javanica // Nematology. 2021. V. 23 (9). P. 1077–1092.

  97. Shivakumara T.N., Dutta T.K., Chaudhary S. et al. Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita // Mol. Plant Microbe Interact. 2019. V. 32. P. 876–887.

  98. Shoaib R.M., Abdel-Razik A.B., Ibrahim M.M. et al. Impact of engineered nano silver on plant parasitic nematode and measurement of DNA damage // Egypt. J. Chem. 2022. V. 65 (4). P. 43–51.

  99. Soliman B.S.M., Abbassy M.A., Abdel-Rasoul M.A., Nassar A.M.K. Efficacy of silver nanoparticles of extractives of Artemisia judaica against root-knot nematode // J. Environ. Stud. Res. 2017. V. 7 (2). P. 1–13.

  100. Taha E.H. Nematicidal effects of silver nanoparticles on root-knot nematodes (Meloidogyne incognita) in laboratory and screenhouse // J. Plant Prot. Pathol. 2016. V. 7. P. 333–337.

  101. Tariq M., Choudhary S.H., Singh H. et al. Role of nanoparticles in abiotic stress. Ch. 17 // Technology in agriculture / Eds F. Ahmad, M. Sultan. L.: IntechOpen, 2021. Online. https://doi.org/10.5772/intechopen.99928

  102. Tariq M., Mohammad K.N., Ahmed B. et al. Biological synthesis of silver nanoparticles and prospects in plant disease management // Molecules. 2022. V. 27 (15). P. 4754.

  103. Tauseef A., Hisamuddin, Gupta J. et al. Differential response of cowpea towards the CuO nanoparticles under Meloidogyne incognita stress // South Afric. J. Bot. 2021a. V. 139. P. 175–182.

  104. Tauseef A., Hisamuddin, Khalilullah A., Uddin I. Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology // Exp. Parasitol. 2021b. V. 220. P. 108045.

  105. Thiruvenkataswamy S., Paulpandi S., Narayanasamy M. et al. Biosynthesis, characterization, nematicidal efficacy of silver nanoparticles synthesized using Solanum nigrum fruit against root knot nematode Meloidogyne incognita // Nanosci. Nanotechnol. Ind. J. 2022. V. 16 (1). P. 140–148.

  106. Thakur R.K., Dhirta B., Shirkot P. Studies on nano toxicity effect of gold nanoparticles on M. incognita and tomato plants growth and development // Ann. Nanosci. Nanotechnol. 2018. V. 2 (1). P. 1005.

  107. Tryfon P., Kamou N.N., Ntalli N. et al. Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes // NanoImpact. 2022. V. 28. P. 100430.

  108. Udalova Z.V., Zinovieva S.V. Effects of silicon nanoparticles on the activity of antioxidant enzymes in tomato roots invaded by Meloidogyne incognita (Kofoid et White, 1919) Chitwood, 1949 // Dokl. Biochem. Biophys. 2022. V. 506 (1). P. 191–194.

  109. Udalova Z.V., Folmanis G.E., Khasanov F.K., Zinovieva S.V. Selenium nanoparticles – an inducer of tomato resistance to the root-knot nematode Meloidogyne incognita (Kofoid et White, 1919) Chitwood 1949 // Dokl. Biochem. Biophys. 2018. V. 482 (1). P. 264–267.

  110. Udalova Z.V., Folmanis G.E., Fedotov M.A. et al. Effects of silicon nanoparticles on photosynthetic pigments and biogenic elements in tomato plants infected with root-knot nematode Meloidogyne incognita // Dokl. Biochem. Biophys. 2020. V. 495 (1). P. 329–333.

  111. Wang J., Hao K., Yu F. Field application of nanoliposomes delivered quercetin by inhibiting specific hsp70 gene expression against plant virus disease // J. Nanobiotech. 2022. V. 20. P. 16.

  112. Wang L., Ning C., Pan T., Cai K. Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: a review // Int. J. Mol. Sci. 2022. V. 23. P. 1947.

  113. Wing I.S., De Cian E., Mistry M.N. Global vulnerability of crop yields to climate change // J. Environ. Econ. Manag. 2021. V. 109 (02462). P. 1–18.

  114. Worrall E.A., Hamid A., Mody K.T. et al. Nanotechnology for plant disease management // Agronomy. 2018. V. 8 (12). P. 285.

  115. Wu T., Xu H., Liang X., Tang M. Caenorhabditis elegans as a complete model organism for biosafety assessment of nanoparticles // Chemosphere. 2019. V. 221. P. 708–726.

  116. Yang W., Peters J.I., Williams R.O. Inhaled nanoparticles – a current review // Int. J. Pharm. 2008. V. 356. P. 239–247.

  117. Yin Y.H., Guo Q.M., Han Y. et al. Preparation, characterization and nematicidal activity of lansiumamide B nano-capsules // J. Integr. Agricult. 2012. V. 11. P. 1151–1158.

  118. Yu J., Yu X., Li C. et al. Silicon mediated plant immunity against nematodes: summarizing the underline defense mechanisms in plant nematodes interaction // Int. J. Mol. Sci. 2022. V. 23. P. 14026.

  119. Zhang D., Liu G., Jing T. et al. Lignin-modified electronegative epoxy resin nanocarriers effectively deliver pesticides against plant root-knot nematodes (Meloidogyne incognita) // J. Agric. Food Chem. 2020. V. 68. P. 13562–13572.

  120. Zhao Y., Zhou Q., Zou C. et al. Repulsive response of Meloidogyne incognita induced by biocontrol bacteria and its effect on interspecific interactions // Front. Microbiol. 2022. V. 13. P. 994941.

  121. Zohra E., Ikram M., Omar A.A. et al. Potential applications of biogenic selenium nanoparticles in alleviating biotic and abiotic stresses in plants: a comprehensive insight on the mechanistic approach and future perspectives // Green Proc. Synth. 2021. V. 10. P. 456–475.

Дополнительные материалы отсутствуют.