Успехи современной биологии, 2023, T. 143, № 5, стр. 487-505

rol-гены агробактерий: возможные биологические функции

Д. Ю. Швец 12*, З. А. Бережнева 1, Х. Г. Мусин 1, Э. А. Баймухаметова 1, Б. Р. Кулуев 1

1 Институт биохимии и генетики – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук
Уфа, Россия

2 Башкирский государственный медицинский университет
Уфа, Россия

* E-mail: shvetsdasha99@yandex.ru

Поступила в редакцию 25.03.2023
После доработки 02.05.2023
Принята к публикации 03.05.2023

Аннотация

Гены rolA, rolB, rolC и rolD Agrobacterium rhizogenes, встраиваясь в геномы растений в составе Т-ДНК при агробактериальной трансформации, обусловливают обильное разрастание волосовидных корней, а при регенерации из них побегов приводят к низкорослости, укорочению междоузлий и формированию морщинистых листьев. Ряд представителей родов Nicotiana, Linaria, Ipomoea и других в своем геноме содержат некоторые rol‑гены, которые попали в них при горизонтальном переносе генов и эволюционно закрепились. Тот факт, что как в A. rhizogenes, так и в природно-трансгенных растениях rol-гены консервативны, может говорить о выполнении ими важных биологических функций. Целью данной обзорной статьи является рассмотрение имеющихся на сегодняшний день данных о биологической роли rol-генов в волосовидных корнях, трансформированных и природно-трансгенных растениях. На сегодняшний день показано, что экспрессия rol-генов как вместе, так и по отдельности оказывает различное влияние на морфологию как трансформированных агробактериями растений, так и природно-трансгенных видов. В обзоре представлены результаты исследований, показавшие позитивное влияние rol-генов на вторичный метаболизм, антиоксидантную систему и стрессоустойчивость растений. Также обсуждается вопрос о возможном действии белковых продуктов rol-генов через влияние на содержание фитогормонов или чувствительности к ним. Описываются экспериментальные свидетельства о ферментативной активности Rol-белков по отношению к глюкозидам фитогормонов, а также субклеточная локализация Rol-белков. Однако эти эксперименты не дали исчерпывающих ответов, поэтому исследования биологических функций rol-генов должны быть продолжены, так как полученные при этом знания могут быть использованы при создании трансгенных и редактированных растений с хозяйственно-ценными признаками.

Ключевые слова: волосовидные корни, rol-гены, Agrobacterium rhizogenes, plast-гены, стрессоустойчивость

Список литературы

  1. Амброс Е.В., Коцупий О.В., Кукушкина Т.А. и др. Синтез биологически активных веществ в культуре “бородатых” корней Astragalus penduliflorus Lam. // Химия раст. сырья. 2020. № 2. С. 209–221.

  2. Аксенова Н.П., Вассерман Л.А., Сергеева Л.И. и др. Агробактериальные rol-гены изменяют термодинамические и структурные свойства крахмала микроклубней трансгенного картофеля // Физиол. раст. 2010. Т. 57 (5). С. 703–710.

  3. Гукасян И.А., Аксенова Н.П., Константинова Т.Н. и др. Агробактериальные rol-гены меняют размер крахмальных гранул в микроклубнях трансформированного картофеля (Solanum tuberosum L.) // ДАН. 2001. Т. 380 (5). С. 708–710.

  4. Гумерова Г.Р., Чемерис А.В., Никоноров Ю.М. и др. Морфологический и молекулярный анализ изолированных культур адвентивных корней табака, полученных методами биобаллистической бомбардировки и агробактериальной трансформации // Физиол. раст. 2018. Т. 65 (5). С. 376–387.

  5. Еникеев А.Г. Трансгенные растения – новая биологическая система или новые свойства растительно-агробактериального симбиоза? // Физиол. раст. 2018. Т. 65 (5). С. 323–330.

  6. Кузовкина И.Н., Вдовитченко М.Ю. Генетически трансформированные корни как модель изучения физиологических и биохимических процессов корневой системы целого растения // Физиол. раст. 2011. Т. 58 (5). С. 787–796.

  7. Кулаева О.А., Матвеева Т.Н., Лутова Л.А. Горизонтальный перенос генов от агробактерий к растениям // Экол. генетика. 2006. Т. 9 (4). С. 10–19.

  8. Кулуев Б.Р., Вершинина З.Р., Князев А.В. и др. “Косматые” корни растений – важный инструментарий для исследователей и мощная фитохимбиофабрика для производственников // Биомика. 2015. Т. 7 (2). С. 70–120.

  9. Кулуев Б.Р., Гумерова Г.Р., Князев А.В. и др. Получение культур волосовидных корней кок-сагыза и анализ содержания в них натурального каучука // Биомика. 2020. Т. 12 (4). С. 449–454.

  10. Кулуев Б.Р., Мусин Х.Г., Баймухаметова Э.А. Вклад гена trolc в регуляцию роста табака при действии стрессовых факторов // Биомика. 2021. Т. 13 (3). С. 360–367.

  11. Матвеева Т.В. Горизонтальный перенос генов от агробактерий к растениям в природе // Тавр. вестн. аграр. науки. 2013. № 2. С. 18–22.

  12. Матвеева Т.В. Природно-трансгенные растения, как модель для изучения отсроченных экологических рисков возделывания ГМО // Экол. генетика. 2015. Т. 13 (2). С. 118–126.

  13. Матвеева Т.В. Зачем растениям агробактериальные гены? // Экол. генетика. 2021. Т. 19 (4). С. 365–375.

  14. Матвеева Т.В., Сокорнова С.В. Биологические особенности природно-трансгенных растений и их роль в эволюции // Физиол. раст. 2017. Т. 64 (5). С. 323–336.

  15. Павлова О.А., Матвеева Т.В., Лутова Л.А. rol-гены Agrobacterium rhizogenes // Экол. генетика. 2013a. Т. 11 (1). С. 59–68.

  16. Павлова О.А., Матвеева Т.В., Лутова Л.А. Геном Linaria dalmatica содержит гомолог гена rolC Agrobacterium rhizogenes // Экол. генетика. 2013b. Т. 11 (2). С. 10–15.

  17. Ситар О.B., Габр А.М., Таран Н.Ю и др. Накопление соединений фенольной природы в культуре трансформированных корней различных источников эксплантов гречки обыкновенной (Fagopyrum esculentum Moench) // Biotechnol. Acta. 2013. Т. 6 (3). С. 75–82.

  18. Хафизова Г.В., Матвеева Т.В. Ген rolC агробактерий: на пути к пониманию функции // Биотехнол. и селекц. раст. 2021. Т. 4 (1). С. 36–46.

  19. Чжоу Я.Ц., Дуань Х.И., Чжоу Ч.Е. и др. Индукция образования “бородатых” корней и регенерация растений Rehmannia glutinosa f. hueichingensis при трансформации с помощью Agrobacterium rhizogenes // Физиол. раст. 2009. Т. 56 (2). С. 247–255.

  20. Abdullah R.M., Salih S.M., Al-Nema Qutaiba S. Plant regeneration from transformed tissues of broccoli (Brassica Oleracea var. Italica) by Agrobacterium rhizogenes ATCC13332 and their retention of rol-genes // Eur. Acad. Res. 2021. V. IX (9). P. 6006–6017.

  21. Alcalde M.A., Müller M., Munné-Bosch S. et al. Using machine learning to link the influence of transferred Agrobacterium rhizogenes genes to the hormone profile and morphological traits in Centella asiatica hairy roots // Front Plant Sci. 2022. V. 13 (1001023). P. 1–12.

  22. Allavena A., Giovannini A., Berio T. et al. Genetic engineering of Osteospermum spp.: a case story / The 19th international symposium on improvement of ornamental plants // Acta Hortic. 2000. V. 508. P. 129–133.

  23. Altamura M.M. Agrobacterium rhizogenes rolB and rolD genes: regulation and involvement in plant development // Plant. Cell. Tiss. Org. Cult. 2004. V. 77. P. 89–101.

  24. Amanullah B.M., Rizvi Z.F., Zia M. Production of artemisinin and its derivatives in hairy roots of Artemisia dubia induced by rolA gene transformation // Pakistan J. Botan. 2016. V. 48 (2). P. 699–706.

  25. Aoki S., Syono K. Horizontal gene transfer and mutation of Ngrol genes in the genome of Nicotiana glauca // PNAS USA. 1999. V. 96 (23). P. 13229–13234.

  26. Baumann K., De Paolis A., Costantino P. et al. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants // Plant Cell. 1999. V. 11 (3). P. 323–333.

  27. Bettini P., Michelotti S., Bindi D. et al. Pleiotropic effect of the insertion of the Agrobacterium rhizogenes rolD gene in tomato (Lycopersicon esculentum Mill.) // Teor. Appl. Genet. 2003. V. 107 (5). P. 831–836.

  28. Bettini P., Baraldi R., Rapparini F. et al. The insertion of the Agrobacterium rhizogenes rolC gene in tomato (Solanum lycopersicum L.) affects plant architecture and endogenous auxin and abscisic acid levels // Sci. Horticult. 2010. V. 123 (3). P. 323–328.

  29. Boase M.R., Winefeld C.S., Lill T.A. et al. Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf floral and vegetative phenotype // In Vitro Cell. Develop. Biol. Plant. 2004. V. 40 (1). P. 46–50.

  30. Bonhomme V., Laurain-Mattar D., Fliniaux M.A. Effects of the rolC gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna // J. Nat. Prod. 2000. V. 63. P. 1249–1252.

  31. Bulgakov V.P. Functions of rol genes in plant secondary metabolism // Biotechnol. Adv. 2008. V. 26. P. 318–324.

  32. Bulgakov V.P., Khodakovskaya M.V., Labetskaya N.V. et al. The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures // Phytochemistry. 1998. V. 49. P. 1929–1934.

  33. Bulgakov V.P., Tchernoded G.K., Mischenko N.P. et al. Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes // J. Biotechnol. 2002. V. 97 (3). P. 213–221.

  34. Bulgakov V.P., Tchernoded G.K., Mischenko N.P. et al. Effects of Ca2+ channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes // Planta. 2003. V. 217 (3). P. 349–355.

  35. Bulgakov V.P., Veselova M.V., Tchernoded G.K. et al. Inhibitory effect of the Agrobacterium rhizogenes rolC gene on rabdosiin and rosmarinic acid production in Eritrichium sericeum and Lithospermum erythrorhizon transformed cell cultures // Planta. 2005. V. 221 (4). P. 471–478.

  36. Bulgakov V.P., Shkryl Y.N., Veremeichik G.N. et al. Recent advances in the understanding of Agrobacterium rhizogenes-derived genes and their effects on stress resistance and plant metabolism // Adv. Biochem. Eng. Biotechnol. 2013. V. 134. P. 11–22.

  37. Bulgakov V.P., Veremeichik G.N., Grigorchuk V.P. The rolB gene activates secondary metabolism in Arabidopsis calli via selective activation of genes encoding MYB and bHLH transcription factors // Plant Physiol. Biochem. 2016. V. 102. P. 70–79.

  38. Capone I., Frugis G., Costantino P. et al. Expression in different populations of cells of the root meristem is controlled by different domains of the rolB promoter // Plant Mol. Biol. 1994. V. 25. P. 681–691.

  39. Casanova E., Valdés A.E., Zuker A. et al. rolC-transgenic carnation plants: adventitious organogenesis and levels of endogenous auxin and cytokinins // Plant Sci. 2004. V. 167 (3). P. 551–560.

  40. Casanova E., Trillas M.I., Moysset L. et al. Influence of rol genes in floriculture // Biotechnol. Adv. 2005. V. 23. P. 3–39.

  41. Chen K., Otten L. Natural Agrobacterium transformants, recent results and some theoretical considerations // Front Plant Sci. 2017. V. 8 (1600). P. 1–16.

  42. Choi P.S., Kim Y.D., Choi K.M. et al. Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus // Plant Cell Rep. 2004. V. 22. P. 828–831.

  43. Christensen B., Sriskandarajah S., Jensen E.B. et al. Transformation with rol genes from Agrobacterium rhizogenes as a strategy to breed compact ornamental plants with improved postharvest quality // Acta Horticulturae. 2010. V. 855. P. 69–76.

  44. Daimon H., Mii M. Plant regeneration and tiophene production in hairy root cultures of Rudbeckia hirta L. used as an antagonist plant to nematodes // Jpn. J. Crop. Sci. 1995. V. 64. P. 650–655.

  45. Dehio C., Grossmann K., Schell J. et al. Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA // Plant Mol. Biol. 1993. V. 23 (6). P. 1199–1210.

  46. Desmet S., Dhooghe E., De Keyser E. et al. Segregation of rol genes in two generations of Sinningia speciosa engineered through wild type Rhizobium rhizogenes // Front. Plant Sci. 2020. V. 11 (859). P. 1–18.

  47. Dilshad E., Cusido R.M., Estrada K.R. et al. Genetic transformation of Artemisia carvifolia Buch with rol genes enhances artemisinin accumulation // PLoS One. 2015a. V. 10 (10). P. e0140266.

  48. Dilshad E., Cusido R.M., Palazon J. et al. Enhanced artemisinin yield by expression of rol genes in Artemisia annua // Malaria J. 2015b. V. 14 (1). P. 424.

  49. Dilshad E., Zafar S., Ismail H. et al. Effect of rol genes on polyphenols biosynthesis in Artemisia annua and their effect on antioxidant and cytotoxic potential of the plant // Appl. Biochem. Biotechnol. 2016. V. 179. P. 1456–1468.

  50. Dilshad E., Noor H., Nosheen N. et al. Influence of rol genes for enhanced biosynthesis of potent natural products // Chemistry of biologically potent natural products and synthetic compounds. USA: John Wiley & Sons, Ltd, 2021. P. 379–404.

  51. Esam A.H. In vitro versus in vivo: a comparative study of Solanum villosum (Mill.) plant leaves // Int. J. Integrat. Biol. 2011. V. 11 (3). P. 140–144.

  52. Faiss M., Strnad M., Redig P. et al. Chemically induced expression of the rolC-encoded β-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta // Plant J. 1996. V. 10 (1). P. 33–46.

  53. Falasca G., Altamura M.M., D’Angeli S. et al. The rolD oncogene promotes axillary bud and adventitious root meristems in Arabidopsis // Plant Physiol. Biochem. 2010. V. 48 (9). P. 797–804.

  54. Favero B.T., Tan Y., Lin Y. et al. Transgenic Kalanchoë blossfeldiana, containing individual rol genes and open reading frames under 35S promoter, exhibit compact habit, reduced plant growth, and altered ethylene tolerance in flowers // Front Plant Sci. 2021. V. 12 (672023). P. 1–20.

  55. Favero B.T., Tan Y., Chen X. et al. Kalanchoë blossfeldiana naturally transformed with Rhizobium rhizogenes exhibits superior root phenotype // Plant Sci. 2022. V. 321 (111323). P. 1–10.

  56. Filetici P., Moretti F., Camilloni G. et al. Specific interaction between a Nicotiana tabacum nuclear protein and the Agrobacterium rhizogenes rolB promoter // J. Plant Physiol. 1997. V. 151. P. 159–165.

  57. Filippini F., Rossi V., Marin O. et al. A plant oncogene as a phosphatase // Nature. 1996. V. 379 (6565). P. 499–500.

  58. Fladung M., Ballvora A. Further characterization of rolC transgenic tetraploid potato clones, and influence of daylength and level of rolC expression on yield parameters // Plant Breed. 1992. V. 109 (1). P. 18–27.

  59. Fladung M., Grossmann K., Ahuja M.R. Alterations in hormonal and developmental characteristics in transgenic Populus conditioned by the rolC gene from Agrobacterium rhizogenes // J. Plant Physiol. 1997. V. 150. P. 420–427.

  60. Furner I.J., Huffman G.A., Amasino R.M. et al. An Agrobacterium transformation in the evolution of the genus Nicotiana // Nature. 1986. V. 319. P. 422–427.

  61. Ganesan G., Sankararamasubramanian H.M., Harikrishnan M. et al. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco // J. Experim. Bot. 2012. V. 63 (12). P. 4549–4561.

  62. Giovannini A., Pecchioni N., Allavena A. Genetic transformation of lisianthus (Eustoma grandiflorum Griseb) by Agrobacterium rhizogenes // J. Genet. Breed. 1996. V. 50. P. 33–40.

  63. Giovannini A., Pecchioni N., Rabaglio M. et al. Characterization of ornamental Datura plants transformed by Agrobacterium rhizogenes // In Vitro Cell Dev. Biol. 1997. V. 33. P. 101–106.

  64. Giovannini A., Zottini M., Morreale G. et al. Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens // In Vitro Cell. Dev. Biol. 1999. V. 35. P. 70–75.

  65. Godo T., Tsujii O., Ishikawa K. et al. Fertile transgenic plants of Nierembergia scoparia Sendtner obtained by a mikimopine type strain of Agrobacterium rhizogenes // Sci. Hortic. 1997. V. 68. P. 101–111.

  66. Grishchenko O.V., Kiselev K.V., Tchernoded G.K. et al. The influence of the rolC gene on isoflavonoid production in callus cultures of Maackia amurensis // Plant Cell Tiss. Organ Cult. 2013. V. 113 (3). P. 429–435.

  67. Grishchenko O.V., Kiselev K.V., Tchernoded G.K. et al. rolB gene-induced production of isoflavonoids in transformed Maackia amurensis cells // Appl. Microbiol. Biotechnol. 2016. V. 100 (17). P. 7479–7489.

  68. Guivarch A., Spena A., Noin M. et al. The pleiotropic effects induced by the rolC gene in transgenic plants are caused by expression restricted to protophloem and companion cells // Transgen. Res. 1996. V. 5. P. 3–11.

  69. Handa T. Genetic transformation of Antirrhinum majus L. and inheritance altered phenotype induced by Ri TDNA // Plant Sci. 1992. V. 81. P. 199–206.

  70. Hoshino Y., Mii M. Bialaphos stimulates shoot regeneration from hairy roots of snapdragon (Antirrhinum majus L.) transformed by Agrobacterium rhizogenes // Plant Cell Rep. 1998. V. 17. P. 256–261.

  71. Ichikawa T., Syono K. Tobacco genetic tumors // Plant Cell Physiol. 1991. V. 32 (8). P. 1123–1128.

  72. Intrieri M.C., Buiatti M. The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana // Mol. Phylogen. Evol. 2001. V. 20 (1). P. 100–110.

  73. Ismail H., Dilshad E., Waheed M.T. et al. Transformation of Lactuca sativa L. with rolC gene results in increased antioxidant potential and enhanced analgesic, anti-inflammatory and antidepressant activities in vivo // 3 Biotech. 2016. V. 6 (2). P. 215.

  74. Jeeshna M.V., Paulsamy S. Evaluation of certain flavonoids of medicinal importance in the wild and micropropagated plants of the endangered medicinal species, Exacum bicolor Roxb. // J. Appl. Pharm. Sci. 2011. V. 1 (5). P. 99–102.

  75. Kaneyoshi J., Kobayashi S. Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid // J. Japan. Soc. Horticult. Sci. 1999. V. 68. P. 734–738.

  76. Kayani W.K., Palazò J., Cusidò R.M. et al. The effect of rol genes on phytoecdysteroid biosynthesis in Ajuga bracteosa differs between transgenic plants and hairy roots // RSC Adv. 2016. V. 6 (27). P. 22700–22708.

  77. Kiselev K., Dubrovina A., Veselova M. et al. The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells // J. Biotechnol. 2007. V. 128 (3). P. 681–692.

  78. Kiyokawa S., Kikuchi Y., Kamada H. et al. Genetic transformation of Begonia tuberhybrida by Ri rol genes // Plant. Cell. Rep. 1996. V. 15. P. 606–609.

  79. Koike Y., Hoshino Y., Mii M. et al. Horticultural characterization of Angelonia salicariifolia plants transformed with wild-type strains of Agrobacterium rhizogenes // Plant Cell. Rep. 2003. V. 21. P. 981–987.

  80. Komarovska H., Kosuth J., Giovannini A. et al. Effect of the number of rol genes integrations on phenotypic variation in hairy root-derived Hypericum perforatum L. plants // Z. Naturforsch. 2010. V. 65 (11–12). P. 701–712.

  81. Koshita Y., Nakamura Y., Kobayashi S. et al. Introduction of the rolC gene into the genome of the Japanese persimmon causes dwarfsm // J. Japan. Soc. Horticult. Sci. 2002. V. 71. P. 529–531.

  82. Kurioka Y., Suzuki Y., Kamada H. et al. Promotion of flowering and morphological alterations in Atropa belladonna transformed with a CaMV 35S-rolC chimeric gene of the Ri plasmid // Plant Cell Rep. 1992. V. 12 (1). P. 1–6.

  83. Kyndt T., Quispe D., Zhai H. et al. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop // PNAS USA. 2015. V. 112 (18). P. 5844–5849.

  84. Lee C., Wang L., Ke S., Qin M. et al. Expression of the rolC gene in transgenic plants of Salpiglossis sinuata L. // Horticult. Sci. 1996. V. 31 (4). P. 571.

  85. Lemcke K., Schmulling T. A putative rolB gene homologue of Agrobacterium rhizogenes TR-DNA has different morphogenetic activity in tobacco than rolB // Plant. Mol. Biol. 1998. V. 16 (5). P. 803–808.

  86. Makowski W., Krolicka A., Nowicka A. et al. Transformed tissue of Dionaea muscipula J. Ellis as a source of biologically active phenolic compounds with bactericidal properties // Appl. Microbial. Biotechnol. 2021a. V. 105. P. 1215–1226.

  87. Makowski W., Królicka A., Tokarz B. et al. Response of physiological parameters in Dionaea muscipula J. Ellis teratomas transformed with rolB oncogene // BMC Plant Biol. 2021b. V. 21 (564). P. 1–13.

  88. Martin-Tanguy J., Corbineau F., Burtin D. et al. Genetic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with α-aminoisobutyric acid produce similar phenotypes and reduce ethylene production and the accumulation of water-insoluble polyamine-hydroxycinnamic acid conjugates in tobacco flowers // Plant Sci. 1993. V. 93 (1–2). P. 63–76.

  89. Matveeva T.V. Agrobacterium-mediated transformation in the evolution of plants // Curr. Top. Microbiol. Immunol. 2018. V. 418. P. 421–441.

  90. Matveeva T.V. New naturally transgenic plants: 2020 update // Biol. Comm. 2021. V. 66 (1). P. 36–46.

  91. Matveeva T.V., Lutova L.A. Horizontal gene transfer from Agrobacterium to plants // Front. Plant Sci. 2014. V. 5. P. 326.

  92. Matveeva T.V., Otten L. Widespread occurrence of natural genetic transformation of plants by Agrobacterium // Plant Mol. Biol. 2019. V. 101 (4–5). P. 415–437.

  93. Matveeva T., Sokornova S. Agrobacterium rhizogenes mediated transformation of plants for improvement of yields of secondary metabolites // Reference series in phytochemistry. Bioprocessing of plant in vitro systems / Eds A. Pavlov, T. Bley. Cham: Springer, 2016. P. 1–42.

  94. Matveeva T.V., Bogomaz D.I., Pavlova O.A. et al. Horizontal gene transfer from genus Agrobacterium to the plant Linaria in nature // Mol. Plant Microb. Int. 2012. V. 25 (12). P. 1542–1551.

  95. Matveeva T.V., Sokornova S.V., Lutova L.A. Influence of Agrobacterium oncogenes on secondary metabolism of plants // Phytochem. Rev. 2015. V. 14. P. 541–554.

  96. Matveeva T., Berezina E., Isaeva I. et al. Influence of some rol genes on sugar content in Nicotiana and Vaccinium // BIO Web of Conferences. 2020. V. 18 (00020). P. 1–4.

  97. Matvieieva N.A., Morgun B.V., Lakhneko O.R. et al. Agrobacterium rhizogenes-mediated transformation enhances the antioxidant potential of Artemisia tilesii Ledeb // Plant Physiol. Biochem. 2020. V. 152. P. 177–183.

  98. Maurel C., Barbier-Brygoo H., Spena A. et al. Single rol genes from the Agrobacterium rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum // Plant Physiol. 1991. V. 97 (1). P. 212–216.

  99. Mauro M.L., Trovato M., Paolis A.D. et al. The plant oncogene rolD stimulates flowering in transgenic tobacco plants // Dev. Biol. 1996. V. 180. P. 693–700.

  100. Meira M., da Silva E.P., David J.M. et al. Review of the genus Ipomoea: traditional uses, chemistry and biological activities // Rev. Bras. Farmacogn. 2012. V. 22 (3). P. 682–713.

  101. Mercuri A., Bruna S., De Benedetti L. et al. Modification of plant architechture in Limonium spp. induced by rol genes // Plant Cell Tiss. Organ Cult. 2001. V. 65. P. 247–253.

  102. Mercuri A., De Benedetti L., Bruna S. et al. Agrobacterium-mediated transformation with rol genes of Lilium longiflorum Thunb. / The 21th international symposium on classical versus molecular breeding of ornamentals // Acta Hortic. 2003. V. 612. P. 129–136.

  103. Meyer A.D., Ichikawa T., Meins F. Horizontal gene transfer: regulated expression of a tobacco homologue of the Agrobacterium rhizogenes rolC gene // Mol. Gen. Genet. 1995. V. 249. P. 265–273.

  104. Mitiouchkina T.Y., Dolgov S.V. Modifcation of chrysanthemum plant and flower architecture by rolC gene from Agrobacterium rhizogenes introduction // Acta Horticulturae. 2000. V. 508. P. 163–172.

  105. Mohajjel-Shoja H., Clément B., Perot J. et al. Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes // Mol. Plant Microb. Int. 2011. V. 24 (1). P. 44–53.

  106. Momcilovic I., Grubisic D., Kojic M. et al. Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species // Plant Cell Tiss. Organ Cult. 1997. V. 50. P. 1–6.

  107. Moriuchi H., Okamoto C., Nishihama R. et al. Nuclear localization and interaction of rolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB // Plant J. 2004. V. 38 (2). P. 260–275.

  108. Murthy H.N., Dijkstra C., Anthony P. et al. Establishment of Withania somnifera hairy root cultures for the production of withanolide A // J. Integr. Plant Biol. 2008. V. 50 (8). P. 975–981.

  109. Nagata N., Kosono S., Seldne M. et al. The regulatory functions of the rolB and rolC genes of Agrobacterium rhizogenes are conserved in the homologous genes (Ngrol) of Nicotiana glauca in tobacco genetic tumors // Plant Cell Physiol. 1995. V. 36 (6). P. 1003–1012.

  110. Nemoto K., Hara M., Goto S. et al. The aux1 gene of the Ri plasmid is suffcient to confer auxin autotrophy in tobacco BY-2 cells // J. Plant. Physiol. 2009. V. 166. P. 729–738.

  111. Nilsson O., Moritz T., Imbault N. et al. Hormonal characterization of transgenic tobacco plants expressing the rolC gene of Agrobacterium rhizogenes TL-DNA // Plant Physiol. 1993. V. 102 (2). P. 363–371.

  112. Okamoto S., Ueki Y. Altered carbon status in Glycine max hairy roots induced by Agrobacterium rhizogenes // Plant Signal. Behav. 2022. V. 17 (1). P. 2097469.

  113. Otani M., Shimada T., Kamada H. et al. Fertile transgenic plants of Ipomoea trichocarpa Ell induced by different strains of Agrobacterium rhizogenes // Plant Sci. 1996. V. 116. P. 169–175.

  114. Otten L. The Agrobacterium phenotypic plasticity (plast) genes // Curr. Top. Microbiol. Immunol. 2018. V. 418. P. 375–419.

  115. Otten L. Natural Agrobacterium-mediated transformation in the genus Nicotiana // The tobacco plant genome / Eds N. Ivanov, N. Sierro, M.C. Peitsch. Cham, Switzerland: Springer, 2020. P. 195–209.

  116. Otten L. T-DNA regions from 350 Agrobacterium genomes: maps and phylogeny // Plant Mol. Biol. 2021. V. 106 (3). P. 239–258.

  117. Ozyigit I.I., Dogan I., Tarhan E.A. Agrobacterium rhizogenes-mediated transformation and its biotechnological applications in crops // Crop Improvement / Eds. K.R. Hakeem, P. Ahmad, M. Öztürk. N.Y.: Springer, 2013. P. 1–48.

  118. Palazon J., Cusido R.M., Roig C. et al. Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production in tobacco root cultures // Plant Physiol. Biochem. 1997. V. 35. P. 155–162.

  119. Palazon J., Cusido R.M., Roig C. et al. Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants // Plant Cell Rep. 1998. V. 15 (5). P. 384–390.

  120. Pandolfini T., Storlazzi A., Calabria E. et al. The spliceosomal intron of the rolA gene of Agrobacterium rhizogenes is a prokaryotic promoter // Mol. Microbiol. 2000. V. 35. P. 1326–1334.

  121. Pellegrineschi A., Davolio-Mariani O. Agrobacterium rhizogenes-mediated transformation of scented geranium // Plant Cell Tiss. Organ Cult. 1996. V. 47. P. 79–86.

  122. Rigden D.J., Carneiro M. A structural model for the rolA protein and its interaction with DNA // Proteins: structure, function, and bioinformatics. 1999. V. 37 (4). P. 697–708.

  123. Rugini E., Pellegrineschi A., Mencuccini M. et al. Increase of rooting ability in the woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes // Plant Cell Rep. 1991. V. 10 (6–7). P. 291–295.

  124. Sarkar S., Ghosh I., Roychowdhury D., Jha S. The effects of rol genes of Agrobacterium rhizogenes on morphogenesis and secondary metabolite accumulation in medicinal plants // Biotechnological approaches for medicinal and aromatic plants. Chapter 2 / Ed. N. Kumar. 2018. P. 27–51.

  125. Sathasivam R., Choi M., Radhakrishnan R. et al. Effects of various Agrobacterium rhizogenes strains on hairy root induction and analyses of primary and secondary metabolites in Ocimum basilicum // Front. Plant Sci. 2022. V. 13 (983776). P. 1–14.

  126. Schmulling T., Schell J., Spena A. Single genes from Agrobacterium rhizogenes influence plant development // EMBO J. 1988. V. 7 (9). P. 2621–2629.

  127. Schmulling T., Fladung M., Grossmann K., Schell J. Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA // Plant J. 1993. V. 3. P. 371–382.

  128. Scorza R., Zimmerman T.W., Cordts J.M. et al. Horticultural characteristics of transgenic tobacco expressing the rolC gene from Agrobacterium rhizogenes // J. Am. Soc. Horticult. Sci. 1994. V. 119 (5). P. 1091–1098.

  129. Senior I., Holford P., Cooley R.N. et al. Transformation of Antirrhinum majus using Agrobacterium rhizogenes // J. Exp. Bot. 1995. V. 46. P. 1233–1239.

  130. Shkryl Y.N., Veremeichik G.N., Bulgakov V.P. et al. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli // Biotechnol. Bioeng. 2007. V. 100 (1). P. 118–125.

  131. Shkryl Y., Yugay Y., Vasyutkina E. et al. The RolB/RolC homolog from sweet potato promotes early flowering and triggers premature leaf senescence in transgenic Arabidopsis thaliana plants // Plant Physiol. Biochem. 2022. V. 193. P. 50–60.

  132. Sinkar V.P., Pythoud F., White F.F. et al. rolA locus of the Ri plasmid directs developmental abnormalities in transgenic tobacco plants // Gen. Dev. 1988. V. 2 (6). P. 688–697.

  133. Souq F., Coutos-Thevenot P., Yean H. et al. Genetic transformation of roses, 2 examples: one on morphogenesis, the other on anthocyanin biosynthetic pathway / Second International Symposium on Roses // Acta Hortic. 1996. V. 424. P. 381–388.

  134. Spena A., Schmülling T., Koncz C. et al. Independent and synergistic activity of rolA, B and C loci in stimulating abnormal growth in plants // EMBO J. 1987. V. 6 (13). P. 3891–3899.

  135. Trovato M., Maras B., Linhares F., Costantino P. The plant oncogene rolD encodes a functional ornithine cyclodeaminase // PNAS USA. 2001. V. 98 (23). P. 13449–13453.

  136. Tzfra T., Vainstein A., Altman A. rol-gene expression in transgenic aspen (Populus tremula) plants results in accelerated growth and improved stem production index // Trees. 1999. V. 14. P. 49–54.

  137. van der Salm T.P.M., van der Toorn C.J.G., Bouwer R. et al. Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability // Mol. Breed. 1997. V. 3. P. 39–47.

  138. Veremeichik G.N., Bulgakov V.P., Shkryl Y.N. et al. Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene // J. Biotechnol. 2019. V. 306. P. 38–46.

  139. Vereshchagina Y.V., Bulgakov V.P., Grigorchuk V.P. et al. The rolC gene increases caffeoylquinic acid production in transformed artichoke cells // Appl. Microbiol. Biotechnol. 2014. V. 98 (18). P. 7773–7780.

  140. Verma P., Mathur A.K., Shanker K. Growth, alkaloid production, rol genes integration, bioreactor up-scaling and plant regeneration studies in hairy root lines of Catharanthus roseus // Plant Biosyst. 2012. V. 146. P. 27–40.

  141. Vilaine F., Rembur J., Chriqui D. et al. Modified development in transgenic tobacco plants expressing a rolA::GUS translational fusion and subcellular localization of the fusion protein // Mol. Plant Microb. Int. 1998. V. 11 (9). P. 855–859.

  142. Welander M., Pawlicki N., Holefors A. et al. Genetic transformation of the apple rootstock M26 with the rolB gene and it’s influence on rooting // J. Plant Physiol. 1998. V. 153 (3–4). P. 371–380.

  143. White F.F., Nester E.W. Relationship of plasmids responsible for hairy root and crown gall tumorigenicity // J. Bacteriol. 1980. V. 144 (2). P. 710–720.

  144. White F.F., Garfnkel D.J., Huffman G.A. et al. Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants // Nature. 1983. V. 301 (5898). P. 348–350.

  145. White F.F., Taylor B.H., Huffman G.A. et al. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes // J. Bacteriol. 1985. V. 164. P. 33–44.

  146. Winefeld C., Lewis D., Arathoon S. et al. Alteration of petunia plant form through the introduction of the rolC gene from Agrobacterium rhizogenes // Mol. Breed. 1999. V. 5. P. 543–551.

  147. Yanagisawa S. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants // Plant Cell Physiol. 2004. V. 45. P. 386–391.

  148. Yokoyama R., Hirose T., Fujii N. et al. The rolC promoter of Agrobacterium rhizogenes Ri plasmid is activated by sucrose in transgenic tobacco plants // Mol. Gen. Genet. 1994. V. 244. P. 15–22.

  149. Zia M., Mirza B., Malik S.A. et al. Expression of rol genes in transgenic soybean (Glycine max L.) leads to changes in plant phenotype, leaf morphology, and flowering time // Plant Cell Tiss. Organ Cult. 2010. V. 103 (2). P. 227–236.

Дополнительные материалы отсутствуют.