Успехи физиологических наук, 2023, T. 54, № 3, стр. 53-76

Нейрофизиологические и сосудистые механизмы действия серотонинергических средств для купирования приступа мигрени

А. Ю. Соколов ab*, Я. Б. Скиба b**, О. А. Любашина ab***

a Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН
199034 Санкт-Петербург, Россия

b Федеральное государственное бюджетное образовательное учреждение высшего образования “Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова” Минздрава РФ
197022 Санкт-Петербург, Россия

* E-mail: alexey.y.sokolov@gmail.com
** E-mail: yaver-99@mail.ru
*** E-mail: lyubashinaoa@infran.ru

Поступила в редакцию 23.03.2023
После доработки 27.03.2023
Принята к публикации 02.04.2023

Аннотация

Мигрень представляет собой форму первичной головной боли, от которой страдает не менее 10% населения планеты. Кроме рекомендаций по модификации образа жизни пациента, менеджмент мигрени подразумевает купирование уже возникшего приступа и/или профилактику его возникновения. В абортивном лечении этой цефалгии могут использоваться фармакологические агенты как неспецифического (например, ненаркотические анальгетики), так и специфического действия. К числу последних относят, в частности, серотонинергические средства классов триптанов (селективных агонистов 5-НТ1B/1D-рецепторов), дитанов (избирательных 5-НТ1F-миметиков) и алкалоидов спорыньи (неселективных модуляторов различных подтипов 5-НТ-рецепторов). В обзоре представлены известные к настоящему времени результаты множества фундаментально-прикладных исследований препаратов указанных групп, в ходе которых были выявлены нейрональные и сосудистые составляющие их антимигренозной фармакодинамики. Значительная часть этих данных получена in vivo на различных экспериментальных моделях мигрени, основанных на тригемино-васкулярной теории ее патогенеза. Другие сведения являются итогами работы ех vivo на изолированных тканях и клеточных культурах. При анализе результатов этих исследований приводятся доказательства в пользу схожих механизмов реализации антимигренозного потенциала представителей всех перечисленных фармакологических классов, у которых нейротропная активность преобладает над прямым вмешательством в сосудистый тонус. Специальное внимание уделено неоднозначным и дискуссионным вопросам в этой области, успешное решение которых является залогом дальнейшего прогресса в фармакотерапии мигрени.

Ключевые слова: мигрень, головная боль, триптаны, ласмидитан, алкалоиды спорыньи, серотонин, нейрофизиология, механизм действия, вазоконстрикция

Список литературы

  1. Азимова Ю.Э., Амелин А.В., Алферова В.В. и др. Клинические рекомендации “Мигрень” // Журн. неврологии и психиатрии им. С.С. Корсакова. 2022. Т. 122. № 1–3. С. 4–36. https://doi.org/10.17116/jnevro20221220134

  2. Амелин А.В., Соколов А.Ю., Ваганова Ю.С. Мигрень. От патогенеза до лечения. М.: МЕДпресс-информ, 2023. 516 с.

  3. Долгорукова А.Н., Соколов А.Ю. Электрофизиологическая модель тригеминоваскулярной ноцицепции как инструмент экспериментального изучения фармакотерапии мигрени // Российский журн. боли. 2021. Т. 19. № 3. С. 31–38. https://doi.org/10.17116/pain20211903131

  4. Соколов А.Ю., Любашина О.А., Ваганова Ю.С., Амелин А.В. Периферическая нейростимуляция в терапии головных болей // Журнал неврологии и психиатрии им. С.С. Корсакова. 2019. Т. 119. № 10. С. 79–88. https://doi.org/10.17116/jnevro201911910179

  5. Akerman S., Karsan N., Bose P. et al. Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity // Brain. 2019. V. 142. N 1. P. 103–119. https://doi.org/10.1093/brain/awy313

  6. Akerman S., Williamson D.J., Kaube H., Goadsby P.J. The effect of anti-migraine compounds on nitric oxide-induced dilation of dural meningeal vessels // Eur. J. Pharmacol. 2002. V. 452. № 2. P. 223–228. https://doi.org/10.1016/s0014-2999(02)02307-5

  7. Ala M., Ghasemi M., Mohammad Jafari R., Dehpour A.R. Beyond its anti-migraine properties, sumatriptan is an anti-inflammatory agent: A systematic review // Drug Dev. Res. 2021. V. 82. № 7. P. 896–906. https://doi.org/10.1002/ddr.21819

  8. Amini N., Modir H., Omidvar S. et al. The Effect of Sumatriptan, Theophylline, Pregabalin and Caffeine on Prevention of Headache Caused By Spinal Anaesthesia (PDPH): A Systematic Review // J. West. Afr. Coll. Surg. 2022. V. 12. № 4. P. 102–116. https://doi.org/10.4103/jwas.jwas_183_22

  9. Amrutkar D.V., Ploug K.B., Hay-Schmidt A. et al. mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system // Pain. 2012. V. 153. № 4. P. 830–838. https://doi.org/10.1016/j.pain.2012.01.005

  10. Andersen A.R., Tfelt-Hansen P., Lassen N.A. The effect of ergotamine and dihydroergotamine on cerebral blood flow in man // Stroke. 1987. V. 18. № 1. P. 120–123. https://doi.org/10.1161/01.str.18.1.120

  11. Ashina M., Hansen J.M., Do T.P. et al. Migraine and the trigeminovascular system-40 years and counting // Lancet Neurol. 2019. V. 18. № 8. P. 795–804. https://doi.org/10.1016/S1474-4422(19)30185-1

  12. Balcziak L.K., Russo A.F. Dural Immune Cells, CGRP, and Migraine // Front. Neurol. 2022. V. 13. Art. № 874193. https://doi.org/10.3389/fneur.2022.874193

  13. Barbanti P., Aurilia C., Egeo G. et al. Serotonin receptor targeted therapy for migraine treatment: an overview of drugs in phase I and II clinical development // Expert Opin. Investig. Drugs. 2017. V. 26. P. 3. P. 269–277. https://doi.org/10.1080/13543784.2017.1283404

  14. Bardoni R. Serotonergic Modulation of Nociceptive Circuits in Spinal Cord Dorsal Horn // Curr. Neuropharmacol. 2019. V. 17. № 12. P. 1133–1145. https://doi.org/10.2174/1570159X17666191001123900

  15. Barnes N.M., Ahern G.P., Becamel C. et al. International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function // Pharmacol. Rev. 2021. V. 73. № 1. P. 310–520. https://doi.org/10.1124/pr.118.015552

  16. Bartsch T., Knight Y.E., Goadsby P.J. Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception // Ann. Neurol. 2004. V. 56. № 3. P. 371–381. https://doi.org/10.1002/ana.20193

  17. Begasse de Dhaem O., Takizawa T., Dodick D.W. Long-term open-label and real-world studies of lasmiditan, ubrogepant, and rimegepant for the acute treatment of migraine attacks // Cephalalgia. 2023. V. 43. № 2. Art. № 3331024221137092. https://doi.org/10.1177/03331024221137092

  18. Benemei S., Cortese F., Labastida-Ramírez A. et al. School of Advanced Studies of the European Headache Federation (EHF-SAS). Triptans and CGRP blockade – impact on the cranial vasculature // J. Headache Pain. 2017. V. 18. № 1. Art. № 103. https://doi.org/10.1186/s10194-017-0811-5

  19. Bergerot A., Storer R.J., Goadsby P.J. Dopamine inhibits trigeminovascular transmission in the rat // Ann. Neurol. 2007. V. 61. № 3. P. 251–262 https://doi.org/10.1002/ana.21077

  20. Bhatt D.K., Gupta S., Jansen-Olesen I. et al. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models // Cephalalgia. 2013. V. 33. № 2. P. 87–100. https://doi.org/10.1177/0333102412466967

  21. Bhattacharya A., Schenck K.W., Xu Y.C. et al. 5-Hydroxytryptamine1B receptor-mediated contraction of rabbit saphenous vein and basilar artery: role of vascular endothelium // J. Pharmacol. Exp. Ther. 2004. V. 309. № 2. P. 825–832. https://doi.org/10.1124/jpet.103.062653

  22. Bigal M.E., Krymchantowski A.V., Hargreaves R. The triptans // Expert Rev. Neurother. 2009. V. 9. № 5. P. 649–659. https://doi.org/10.1586/ern.09.15

  23. Bigal M.E., Tepper S.J. Ergotamine and dihydroergotamine: a review // Curr. Pain Headache Rep. 2003. V. 7. № 1. P. 55–62. https://doi.org/10.1007/s11916-003-0011-7

  24. Biscetti L., De Vanna G., Cresta E. et al. Immunological findings in patients with migraine and other primary headaches: a narrative review // Clin. Exp. Immunol. 2022. V. 207. № 1. P. 11–26. https://doi.org/10.1093/cei/uxab025

  25. Boers P.M., Donaldson C., Zagami A.S., Lambert G.A. Naratriptan has a selective inhibitory effect on trigeminovascular neurones at central 5-HT1A and 5-HT(1B/1D) receptors in the cat: implications for migraine therapy // Cephalalgia. 2004. V. 24. № 2. P. 99–109. https://doi.org/10.1111/j.1468-2982.2004.00636.x

  26. Bohra S.K., Achar R.R., Chidambaram S.B. et al. Current perspectives on mitochondrial dysfunction in migraine // Eur. J. Neurosci. 2022. V. 56. № 1. P. 3738–3754. https://doi.org/10.1111/ejn.15676

  27. Bonnet C., Hao J., Osorio N. et al. Maladaptive activation of Nav1.9 channels by nitric oxide causes triptan-induced medication overuse headache // Nat. Commun. 2019. V. 10. № 1. Art. № 4253. Erratum in: Nat. Commun. 2021. V. 12. № 1. Art. № 6952.https://doi.org/10.1038/s41467-019-12197-3

  28. Botros J.M., Sayed A.M. Comparison between the Effects of Sumatriptan Versus Naratriptan in the Treatment of Postdural Puncture Headache in Obstetric Patients: A Randomized Controlled Trial // Anesth. Essays Res. 2019. V. 13. № 2. P. 376–382. https://doi.org/10.4103/aer.AER_17_19

  29. Bouchelet I., Case B., Olivier A., Hamel E. No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery // Br. J. Pharmacol. 2000. V. 129. № 3. P. 501–508. https://doi.org/10.1038/sj.bjp.0703081

  30. Burstein R., Collins B., Jakubowski M. Defeating migraine pain with triptans: a race against the development of cutaneous allodynia // Ann. Neurol. 2004. V. 55. № 1. P. 19–26. https://doi.org/10.1002/ana.10786

  31. Burstein R., Jakubowski M. Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization // Ann. Neurol. 2004. V. 55. № 1. P. 27–36. https://doi.org/10.1002/ana.10785

  32. Burstein R., Jakubowski M. Unitary hypothesis for multiple triggers of the pain and strain of migraine // J. Comp. Neurol. 2005. V. 493. № 1. P. 9–14. https://doi.org/10.1002/cne.20688

  33. Burstein R., Jakubowski M., Levy D. Anti-migraine action of triptans is preceded by transient aggravation of headache caused by activation of meningeal nociceptors // Pain. 2005. V. 115. № 1–2. P. 21–28. https://doi.org/10.1016/j.pain.2005.01.027

  34. Buzzi M.G., Carter W.B., Shimizu T. et al. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion // Neuropharmacology. 1991. V. 30. № 11. P. 1193–1200. https://doi.org/10.1016/0028-3908(91)90165-8

  35. Buzzi M.G., Dimitriadou V., Theoharides T.C., Moskowitz M.A. 5-Hydroxytryptamine receptor agonists for the abortive treatment of vascular headaches block mast cell, endothelial and platelet activation within the rat dura mater after trigeminal stimulation // Brain Res. 1992. V. 583. № 1–2. P. 137–149. https://doi.org/10.1016/s0006-8993(10)80017-4

  36. Buzzi M.G., Moskowitz M.A. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater // Br. J. Pharmacol. 1990. V. 99. № 1. P. 202–206. https://doi.org/10.1111/j.1476-5381.1990.tb14679.x

  37. Buzzi M.G., Moskowitz M.A. Evidence for 5-HT1B/1D receptors mediating the antimigraine effect of sumatriptan and dihydroergotamine // Cephalalgia. 1991. V. 11. № 4. P. 165–168. https://doi.org/10.1046/j.1468-2982.1991.1104165.x

  38. Buzzi M.G., Moskowitz M.A., Peroutka S.J., Byun B. Further characterization of the putative 5-HT receptor which mediates blockade of neurogenic plasma extravasation in rat dura mater // Br. J. Pharmacol. 1991. V. 103. № 2. P. 1421–1428. https://doi.org/10.1111/j.1476-5381.1991.tb09805.x

  39. Caekebeke J.F., Ferrari M.D., Zwetsloot C.P. et al. Antimigraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks // Neurology. 1992. V. 42. № 8. P. 1522–1526. https://doi.org/10.1212/wnl.42.8.1522

  40. Carmichael N.M., Charlton M.P., Dostrovsky J.O. Activation of the 5-HT1B/D receptor reduces hindlimb neurogenic inflammation caused by sensory nerve stimulation and capsaicin // Pain. 2008. V. 134. № 1–2. P. 97–105. https://doi.org/10.1016/j.pain.2007.03.037

  41. Carneiro-Nascimento S., Levy D. Cortical spreading depression and meningeal nociception // Neurobiol. Pain. 2022. V. 11. Art. № 100091. https://doi.org/10.1016/j.ynpai.2022.100091

  42. Centurión D., Ortiz M.I., Sánchez-López A. et al. Evidence for 5-HT(1B/1D) and 5-HT(2A) receptors mediating constriction of the canine internal carotid circulation // Br. J. Pharmacol. 2001. V. 132. № 5. P. 983–990. https://doi.org/10.1038/sj.bjp.0703914

  43. Centurión D., Sánchez-López A., De Vries P. et al. The GR127935-sensitive 5-HT(1) receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT(1B), but not to the 5-HT(1D) or 5-ht(1F), receptor subtype // Br. J. Pharmacol. 2001. V. 132. № = 5. P. 991–998. https://doi.org/10.1038/sj.bjp.0703913

  44. Cipolla G., Sacco S., Crema F. et al. Gastric motor effects of triptans: open questions and future perspectives // Pharmacol. Res. 2001. V. 43. № 3. P. 205–210. https://doi.org/10.1006/phrs.2000.0766

  45. Classey J.D., Bartsch T., Goadsby P.J. Distribution of 5-HT(1B), 5-HT(1D) and 5-HT(1F) receptor expression in rat trigeminal and dorsal root ganglia neurons: relevance to the selective anti-migraine effect of triptans // Brain Res. 2010. V. 1361. P. 76–85. https://doi.org/10.1016/j.brainres.2010.09.004

  46. Clemow D.B., Johnson K.W., Hochstetler H.M. et al. Lasmiditan mechanism of action - review of a selective 5-HT1F agonist // J. Headache Pain. 2020. V. 21. № 1. Art. № 71. https://doi.org/10.1186/s10194-020-01132-3

  47. Cohen M.L., Schenck K. 5-Hydroxytryptamine(1F) receptors do not participate in vasoconstriction: lack of vasoconstriction to LY344864, a selective serotonin(1F) receptor agonist in rabbit saphenous vein // J. Pharmacol. Exp. Ther. 1999. V. 290. № 3. P. 935–939.

  48. Cohen M.L., Schenck K. Contractile responses to sumatriptan and ergotamine in the rabbit saphenous vein: effect of selective 5-HT(1F) receptor agonists and PGF(2alpha) // Br. J. Pharmacol. 2000. V. 131. № 3. P. 562–568. https://doi.org/10.1038/sj.bjp.0703587

  49. Cooper W., Ray S., Aurora S.K. et al. Delivery of Dihydroergotamine Mesylate to the Upper Nasal Space for the Acute Treatment of Migraine: Technology in Action // J. Aerosol Med. Pulm Drug Deliv. 2022. V. 35. № 6. P. 321–332. https://doi.org/10.1089/jamp.2022.0005

  50. Cortes-Altamirano J.L., Olmos-Hernandez A., Jaime H.B. et al. Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and their Role in the Modulation of Pain Response in the Central Nervous System // Curr. Neuropharmacol. 2018. V. 16. № 2. P. 210–221. https://doi.org/10.2174/1570159X15666170911121027

  51. Cumberbatch M.J., Hill R.G., Hargreaves R.J. Rizatriptan has central antinociceptive effects against durally evoked responses // Eur. J. Pharmacol. 1997. V. 328. № 1. P. 37–40. https://doi.org/10.1016/s0014-2999(97)83024-5

  52. Cumberbatch M.J., Hill R.G., Hargreaves R.J. The effects of 5-HT1A, 5-HT1B and 5-HT1D receptor agonists on trigeminal nociceptive neurotransmission in anaesthetized rats // Eur. J. Pharmacol. 1998. V. 362. № 1. P. 43–46. https://doi.org/10.1016/s0014-2999(98)00764-x

  53. Cumberbatch M.J., Hill R.G., Hargreaves R.J. Differential effects of the 5HT1B/1D receptor agonist naratriptan on trigeminal versus spinal nociceptive responses // Cephalalgia. 1998. V. 18. № 10. P. 659–663. https://doi.org/10.1046/j.1468-2982.1998.1810659.x

  54. Cutrer F.M., Yu X.J., Ayata G. et al. Effects of PNU-109,291, a selective 5-HT1D receptor agonist, on electrically induced dural plasma extravasation and capsaicin-evoked c-fos immunoreactivity within trigeminal nucleus caudalis // Neuropharmacology. 1999. V. 38. № 7. P. 1043–1053. https://doi.org/10.1016/s0028-3908(99)00032-5

  55. Dahlöf C., Maassen Van Den Brink A. Dihydroergotamine, ergotamine, methysergide and sumatriptan – basic science in relation to migraine treatment // Headache. 2012. V. 52. № 4. P. 707–714. https://doi.org/10.1111/j.1526-4610.2012.02124.x

  56. De Felice M., Ossipov M.H., Wang R. et al. Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers // Brain. 2010. V. 133. Pt. 8. P. 2475–2488. https://doi.org/10.1093/brain/awq159

  57. De Felice M., Ossipov M.H., Wang R. et al. Triptan-induced latent sensitization: a possible basis for medication overuse headache // Ann. Neurol. 2010. V. 67. № 3. P. 325–337. https://doi.org/10.1002/ana.21897

  58. De Ponti F., Crema F., Moro E. et al. Role of 5-HT1B/D receptors in canine gastric accommodation: effect of sumatriptan and 5-HT1B/D receptor antagonists // Am. J. Physiol. Gastrointest. Liver Physiol. 2003. V. 285. № 1. P G96–G104. https://doi.org/10.1152/ajpgi.00280.2002

  59. Deen M., Hougaard A., Hansen H.D. et al. Association Between Sumatriptan Treatment During a Migraine Attack and Central 5-HT1B Receptor Binding // JAMA Neurol. 2019. V. 76. № 7. P. 834–840. https://doi.org/10.1001/jamaneurol.2019.0755

  60. Dehdashtian A., Afshari K., Zarifeh Jazaeri S. et al. Sumatriptan Increases Skin Flap Survival through Activation of 5-Hydroxytryptamine 1b/1d Receptors in Rats: The Mediating Role of the Nitric Oxide Pathway // Plast. Reconstr. Surg. 2019. V. 144. № 1. P. 70e–77e. https://doi.org/10.1097/PRS.0000000000005740

  61. Dejban P., Rahimi N., Takzare N. et al. Protective effects of sumatriptan on ischaemia/reperfusion injury following torsion/detorsion in ipsilateral and contralateral testes of rat // Andrologia. 2019. V. 51. № 9. Art. № e13358. https://doi.org/10.1111/and.13358

  62. Del Moro L., Rota E., Pirovano E., Rainero I. Migraine, Brain Glucose Metabolism and the “Neuroenergetic” Hypothesis: A Scoping Review // J. Pain. 2022. V. 23. № 8. P. 1294–1317. https://doi.org/10.1016/j.jpain.2022.02.006

  63. Den Boer M.O., Somers J.A., Saxena P.R. Lack of effect of the antimigraine drugs, sumatriptan, ergotamine and dihydroergotamine on arteriovenous anastomotic shunting in the dura mater of the pig // Br. J. Pharmacol. 1992. V. 107. № 2. P. 577–583. https://doi.org/10.1111/j.1476-5381.1992.tb12786.x

  64. Diener H.C., Peters C., Rudzio M. et al. Ergotamine, flunarizine and sumatriptan do not change cerebral blood flow velocity in normal subjects and migraneurs // J. Neurol. 1991. V. 238. № 5. P. 245–250. https://doi.org/10.1007/BF00319734

  65. Do T.P., Hougaard A., Dussor G. et al. Migraine attacks are of peripheral origin: the debate goes on // J. Headache Pain. 2023. V. 24. № 1. Art. № 3. https://doi.org/10.1186/s10194-022-01538-1

  66. Donaldson C., Boers P.M., Hoskin K.L. et al. The role of 5-HT1B and 5-HT1D receptors in the selective inhibitory effect of naratriptan on trigeminovascular neurons // Neuropharmacology. 2002. V. 42. № 3. P. 374–385. https://doi.org/10.1016/s0028-3908(01)00190-3

  67. Dresler T., Caratozzolo S., Guldolf K. et al. European Headache Federation School of Advanced Studies (EHF-SAS). Understanding the nature of psychiatric comorbidity in migraine: a systematic review focused on interactions and treatment implications // J. Headache Pain. 2019. V. 20. № 1. Art. № 51. https://doi.org/10.1186/s10194-019-0988-x

  68. Dupre T.V., Jenkins D.P., Muise-Helmericks R.C., Schnellmann R.G. The 5-hydroxytryptamine receptor 1F stimulates mitochondrial biogenesis and angiogenesis in endothelial cells // Biochem. Pharmacol. 2019. V. 169. Art. № 113644. https://doi.org/10.1016/j.bcp.2019.113644

  69. Durham P.L., Russo A.F. Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug // J. Neurosci. 1999. V. 19. № 9. P. 3423–3429. https://doi.org/10.1523/JNEUROSCI.19-09-03423.1999

  70. Dussor G. New discoveries in migraine mechanisms and therapeutic targets // Curr. Opin Physiol. 2019. V. 11. P. 116–124. https://doi.org/10.1016/j.cophys.2019.10.013

  71. Edvinsson L. Calcitonin gene-related peptide (CGRP) is a key molecule released in acute migraine attacks-Successful translation of basic science to clinical practice // J. Intern. Med. 2022. V. 292. № 4. P. 575–586. https://doi.org/10.1111/joim.13506

  72. Edvinsson J.C.A., Haanes K.A., Edvinsson L. Neuropeptides and the Nodes of Ranvier in Cranial Headaches // Front. Physiol. 2022. V. 12. Art. № 820037. https://doi.org/10.3389/fphys.2021.820037

  73. Edvinsson J.C.A., Maddahi A., Christiansen I.M. et al. Lasmiditan and 5-Hydroxytryptamine in the rat trigeminal system; expression, release and interactions with 5-HT1 receptors // J. Headache Pain. 2022. V. 23. № 1. Art. № 26. https://doi.org/10.1186/s10194-022-01394-z

  74. Edvinsson J.C.A., Viganò A., Alekseeva A. et al. European Headache Federation School of Advanced Studies (EHF-SAS). The fifth cranial nerve in headaches // J. Headache Pain. 2020. V. 21. № 1. Art. № 65. https://doi.org/10.1186/s10194-020-01134-1

  75. Edvinsson J.C.A., Warfvinge K., Krause D.N. et al. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system // J. Headache Pain. 2019. V. 20. № 1. Art. № 105. https://doi.org/10.1186/s10194-019-1055-3

  76. Edvinsson L., Uddman E., Wackenfors A. et al. Triptan-induced contractile (5-HT1B receptor) responses in human cerebral and coronary arteries: relationship to clinical effect // Clin. Sci. (Lond). 2005. V. 109. № 3. P. 335–342.

  77. Elhusseiny A., Hamel E. Sumatriptan elicits both constriction and dilation in human and bovine brain intracortical arterioles // Br. J. Pharmacol. 2001. V. 132. № 1. P. 55–62. https://doi.org/10.1038/sj.bjp.0703763

  78. Ellrich J., Messlinger K., Chiang C.Y., Hu J.W. Modulation of neuronal activity in the nucleus raphé magnus by the 5-HT(1)-receptor agonist naratriptan in rat // Pain. 2001. V. 90. № 3. P. 227–231. https://doi.org/10.1016/S0304-3959(00)00405-X

  79. Eslami F., Rahimi N., Ostovaneh A. et al. Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT1B/D receptors in rats: A pharmacological-based evidence // Fundam. Clin. Pharmacol. 2021. V. 35. № 1. P. 131–140. https://doi.org/10.1111/fcp.12590

  80. Evans M.S., Cheng X., Jeffry J.A. et al. Sumatriptan inhibits TRPV1 channels in trigeminal neurons // Headache. 2012. V. 52. № 5. P. 773–784. https://doi.org/10.1111/j.1526-4610.2011.02053.x

  81. Evers S. Non-Invasive Neurostimulation Methods for Acute and Preventive Migraine Treatment-A Narrative Review // J. Clin. Med. 2021. V. 10. № 15. Art. № 3302. https://doi.org/10.3390/jcm10153302

  82. Ferrari A., Tiraferri I., Neri L., Sternieri E. Why pharmacokinetic differences among oral triptans have little clinical importance: a comment // J. Headache Pain. 2011. V. 12. № 1. P. 5–12. https://doi.org/10.1007/s10194-010-0258-4

  83. Garrett S.M., Whitaker R.M., Beeson C.C., Schnellmann R.G. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury // J. Pharmacol. Exp. Ther. 2014. V. 350. № 2. P. 257–264. https://doi.org/10.1124/jpet.114.214700

  84. Ghanizada H., Al-Karagholi M.A., Arngrim N. et al. Investigation of sumatriptan and ketorolac trometamol in the human experimental model of headache // J. Headache Pain. 2020. V. 21. № 1. Art. № 19. https://doi.org/10.1186/s10194-020-01089-3

  85. Gharishvandi F., Abdollahi A., Shafaroodi H. et al. Involvement of 5-HT1B/1D receptors in the inflammatory response and oxidative stress in intestinal ischemia/reperfusion in rats // Eur. J. Pharmacol. 2020. V. 882. Art. № 173265. https://doi.org/10.1016/j.ejphar.2020.173265

  86. Gibbs W.S., Garrett S.M., Beeson C.C., Schnellmann R.G. Identification of dual mechanisms mediating 5-hydroxytryptamine receptor 1F-induced mitochondrial biogenesis // Am. J. Physiol. Renal Physiol. 2018. V. 314. № 2. P. F260–F268. https://doi.org/10.1152/ajprenal.00324.2017

  87. Giniatullin R. 5-hydroxytryptamine in migraine: The puzzling role of ionotropic 5-HT3 receptor in the context of established therapeutic effect of metabotropic 5-HT1 subtypes // Br. J. Pharmacol. 2022. V. 179. № 3. P. 400–415. https://doi.org/10.1111/bph.15710

  88. Goadsby P.J., Akerman S., Storer R.J. Evidence for postjunctional serotonin (5-HT1) receptors in the trigeminocervical complex // Ann. Neurol. 2001. V. 50. № 6. P. 804–807. https://doi.org/10.1002/ana.10066

  89. Goadsby P.J., Classey J.D. Evidence for serotonin (5-HT)1B, 5-HT1D and 5-HT1F receptor inhibitory effects on trigeminal neurons with craniovascular input // Neuroscience. 2003. V. 122. № 2. P. 491–498. https://doi.org/10.1016/s0306-4522(03)00570-0

  90. Goadsby P.J., Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats // Ann. Neurol. 1993. V. 33. № 1. P. 48–56. https://doi.org/10.1002/ana.410330109

  91. Goadsby P.J., Holland P.R., Martins-Oliveira M. et al. Pathophysiology of Migraine: A Disorder of Sensory Processing // Physiol. Rev. 2017. V. 97. № 2. P. 553–622. https://doi.org/10.1152/physrev.00034.2015

  92. Goadsby P.J., Hoskin K.L. Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? // Pain. 1996. V. 67. № 2–3. P. 355–359. https://doi.org/10.1016/0304-3959(96)03118-1

  93. Goadsby P.J., Knight Y. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT(1B/1D)) receptors // Br. J. Pharmacol. 1997. V. 122. № 5. P. 918–922. https://doi.org/10.1038/sj.bjp.0701456

  94. Gomez-Mancilla B., Cutler N.R., Leibowitz M.T. et al. Safety and efficacy of PNU-142633, a selective 5-HT1D agonist, in patients with acute migraine // Cephalalgia. 2001. V. 21. № 7. P. 727–732. https://doi.org/10.1046/j.1468-2982.2001.00208.x

  95. González-Hernández A., Lozano-Cuenca J., Marichal-Cancino B.A. et al. Dihydroergotamine inhibits the vasodepressor sensory CGRPergic outflow by prejunctional activation of α2-adrenoceptors and 5-HT1 receptors // J. Headache Pain. 2018. V. 19. № 1. Art. № 40. https://doi.org/10.1186/s10194-018-0869-8

  96. Gooshe M., Ghasemi K., Rohani M.M. et al. Biphasic effect of sumatriptan on PTZ-induced seizures in mice: Modulation by 5-HT1B/D receptors and NOS/NO pathway // Eur. J. Pharmacol. 2018. V. 824. P. 140–147. https://doi.org/10.1016/j.ejphar.2018.01.025

  97. Gori S., Morelli N., Bellini G. et al. Rizatriptan does not change cerebral blood flow velocity during migraine attacks // Brain Res. Bull. 2005. V. 65. № 4. P. 297–300. https://doi.org/10.1016/j.brainresbull.2004.10.015

  98. Guo J.D., Rainnie D.G. Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis // Neuroscience. 2010. V. 165. № 4. P. 1390–401. https://doi.org/10.1016/j.neuroscience.2009.11.071

  99. Guo L., Zhao L., Ming P. et al. Sumatriptan inhibits the electrophysiological activity of ASICs in rat trigeminal ganglion neurons // Eur. J. Pharmacol. 2018. V. 841. P. 98–103. https://doi.org/10.1016/j.ejphar.2018.10.013

  100. Guo S., Jansen-Olesen I., Olesen J., Christensen S.L. Role of PACAP in migraine: An alternative to CGRP? // Neurobiol. Dis. 2023. V. 176. Art. № 105946. https://doi.org/10.1016/j.nbd.2022.105946

  101. Gupta P., Butler P., Shepperson N.B., McHarg A. The in vivo pharmacological profile of eletriptan (UK-116,044): a potent and novel 5-HT(1B/1D) receptor agonist // Eur. J. Pharmacol. 2000. V. 398. № 1. P. 73–81. https://doi.org/10.1016/s0014-2999(00)00240-5

  102. Haanes K.A., Edvinsson L. Pathophysiological Mechanisms in Migraine and the Identification of New Therapeutic Targets // CNS Drugs. 2019. V. 33. № 6. P. 525–537. https://doi.org/10.1007/s40263-019-00630-6

  103. Haddadi N.S., Ostadhadi S., Shakiba S. et al. Pharmacological evidence of involvement of nitric oxide pathway in anti-pruritic effects of sumatriptan in chloroquine-induced scratching in mice // Fundam. Clin. Pharmacol. 2018. V. 32. № 1. P. 69–76. https://doi.org/10.1111/fcp.12317

  104. Hammack S.E., Braas K.M., May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function // Handb. Clin. Neurol. 2021. V. 179. P. 385–402. https://doi.org/10.1016/B978-0-12-819975-6.00025-X

  105. Harriott A.M., Gold M.S. Serotonin type 1D receptors (5HTR) are differentially distributed in nerve fibres innervating craniofacial tissues // Cephalalgia. 2008. V. 28. № 9. P. 933–344. https://doi.org/10.1111/j.1468-2982.2008.01635.x

  106. Harriott A.M., Scheff N.N., Gold M.S. The complex actions of sumatriptan on rat dural afferents // Cephalalgia. 2012. V. 32. № 10. P. 738–749. https://doi.org/10.1177/0333102412451356

  107. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition // Cephalalgia. 2018. V. 38. № 1. P. 1–211. https://doi.org/10.1177/0333102417738202

  108. Heijmans L., Mons M.R., Joosten E.A. A systematic review on descending serotonergic projections and modulation of spinal nociception in chronic neuropathic pain and after spinal cord stimulation // Mol. Pain. 2021. V. 17. Art. № 17448069211043965. https://doi.org/10.1177/17448069211043965

  109. Hemmati S., Rahimi N., Dabiri S. et al. Inhibition of ovalbumin-induced allergic rhinitis by sumatriptan through the nitric oxide pathway in mice // Life Sci. 2019. V. 236. Art. № 116901. https://doi.org/10.1016/j.lfs.2019.116901

  110. Hoffmann J., Miller S., Martins-Oliveira M. et al. PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache? // Pain. 2020. V. 161. № 7. P. 1670–1681. https://doi.org/10.1097/j.pain.0000000000001858

  111. Hoffmann J., Storer R.J., Park J.W., Goadsby P.J. N-Methyl-d-aspartate receptor open-channel blockers memantine and magnesium modulate nociceptive trigeminovascular neurotransmission in rats// Eur. J. Neurosci. 2019. V. 50. № 5. P. 2847–2859. https://doi.org/10.1111/ejn.14423

  112. Hornby P.J. Central neurocircuitry associated with emesis // Am. J. Med. 2001. V. 111. Suppl. 8A. P. 106S–112S. https://doi.org/10.1016/s0002-9343(01)00849-x

  113. Hoskin K.L., Goadsby P.J. Comparison of more and less lipophilic serotonin (5HT1B/1D) agonists in a model of trigeminovascular nociception in cat // Exp. Neurol. 1998. V. 150. № 1. P. 45–51. https://doi.org/10.1006/exnr.1997.6749

  114. Hoskin K.L., Kaube H., Goadsby P.J. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study // Brain. 1996. V. 119. Pt. 1. P. 249–256. https://doi.org/10.1093/brain/119.1.249

  115. Hoskin K.L., Lambert G.A., Donaldson C., Zagami A.S. The 5-hydroxytryptamine1B/1D/1F receptor agonists eletriptan and naratriptan inhibit trigeminovascular input to the nucleus tractus solitarius in the cat // Brain Res. 2004. V. 998. № 1. P. 91–99. https://doi.org/10.1016/j.brainres.2003.11.018

  116. Hosseini R., Fakhraei N., Malekisarvar H. et al. Effect of sumatriptan on acetic acid-induced experimental colitis in rats: a possible role for the 5-HT1B/1D receptors // Naunyn Schmiedebergs Arch. Pharmacol. 2022. V. 395. № 5. P. 563–577. https://doi.org/10.1007/s00210-022-02215-5

  117. Hou M., Kanje M., Longmore J. et al. 5-HT(1B) and 5-HT(1D) receptors in the human trigeminal ganglion: co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase // Brain Res. 2001. V. 909. № 1–2. P. 112–120. https://doi.org/10.1016/s0006-8993(01)02645-2

  118. Huang P.C., Yang F.C., Chang C.M., Yang C.P. Targeting the 5-HT1B/1D and 5-HT1F receptors for acute migraine treatment // Prog. Brain Res. 2020. V. 255. P. 99–121. https://doi.org/10.1016/bs.pbr.2020.05.010

  119. Humphrey P.P. The discovery and development of the triptans, a major therapeutic breakthrough // Headache. 2008. V. 48. № 5. P. 685–687. https://doi.org/10.1111/j.1526-4610.2008.01097.x

  120. Hurtado K.A., Janda J., Schnellmann R.G. Lasmiditan promotes recovery from acute kidney injury through induction of mitochondrial biogenesis // Am. J. Physiol. Renal. Physiol. 2023. V. 324. № 1. P. F56–F63. https://doi.org/10.1152/ajprenal.00249.2022

  121. Ibrahimi K., Danser A., Terwindt G.M. et al. A human trigeminovascular biomarker for antimigraine drugs: A randomised, double-blind, placebo-controlled, crossover trial with sumatriptan // Cephalalgia. 2017. V. 37. № 1. P. 94–98. https://doi.org/10.1177/0333102416637833

  122. Iyengar S., Johnson K.W., Ossipov M.H., Aurora S.K. CGRP and the Trigeminal System in Migraine // Headache. 2019. V. 59. № 5. P. 659–681. https://doi.org/10.1111/head.13529

  123. Jähnichen S., Radtke O.A., Pertz H.H. Involvement of 5-HT1B receptors in triptan-induced contractile responses in guinea-pig isolated iliac artery // Naunyn Schmiedebergs Arch. Pharmacol. 2004. V. 370. № 1. P. 54–63. https://doi.org/10.1007/s00210-004-0941-6

  124. Jeong H.J., Chenu D., Johnson E.E. et al. Sumatriptan inhibits synaptic transmission in the rat midbrain periaqueductal grey // Mol. Pain. 2008. V. 4. Art. № 54. https://doi.org/10.1186/1744-8069-4-54

  125. Johnson B., Freitag F.G. New Approaches to Shifting the Migraine Treatment Paradigm // Front. Pain Res. (Lausanne). 2022. V. 3. Art. № 873179. https://doi.org/10.3389/fpain.2022.873179

  126. Johnson K.W., Schaus J.M., Durkin M.M. et al. 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs // Neuroreport. 1997. V. 8. № 9–10. P. 2237–2240. https://doi.org/10.1097/00001756-199707070-00029

  127. Juhasz G., Zsombok T., Jakab B. et al. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack // Cephalalgia. 2005. V. 25. № 3. P. 179–183. https://doi.org/10.1111/j.1468-2982.2005.00836.x

  128. Kanai A., Saito M., Hoka S. Subcutaneous sumatriptan for refractory trigeminal neuralgia // Headache. 2006. V. 46. № 4. P. 577–582; discussion 583–584. https://doi.org/10.1111/j.1526-4610.2006.00405.x

  129. Kanai A., Suzuki A., Osawa S., Hoka S. Sumatriptan alleviates pain in patients with trigeminal neuralgia // Clin. J. Pain. 2006. V. 22. № 8. P. 677–680. https://doi.org/10.1097/01.ajp.0000210917.18536.0d

  130. Karsan N., Goadsby P.J. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? // Front. Hum. Neurosci. 2021. V. 15. Art. № 646692. https://doi.org/10.3389/fnhum.2021.646692

  131. Kaube H., Hoskin K.L., Goadsby P.J. Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption // Br. J. Pharmacol. 1993. V. 109. № 3. P. 788–792.

  132. Kesserwani H. Migraine Triggers: An Overview of the Pharmacology, Biochemistry, Atmospherics, and Their Effects on Neural Networks // Cureus. 2021. V. 13. № 4. Art. № e14243. https://doi.org/10.7759/cureus.14243

  133. Khalilzadeh M., Panahi G., Rashidian A. et al. The protective effects of sumatriptan on vincristine – induced peripheral neuropathy in a rat model // Neurotoxicology. 2018. V. 67. P. 279–286. https://doi.org/10.1016/j.neuro.2018.06.012

  134. Knight Y.E., Edvinsson L., Goadsby P.J. Blockade of calcitonin gene-related peptide release after superior sagittal sinus stimulation in cat: a comparison of avitriptan and CP122,288 // Neuropeptides. 1999. V. 33. № 1. P. 41–46. https://doi.org/10.1054/npep.1999.0009

  135. Knyihár-Csillik E., Tajti J., Csillik A.E. et al. Effects of eletriptan on the peptidergic innervation of the cerebral dura mater and trigeminal ganglion, and on the expression of c-fos and c-jun in the trigeminal complex of the rat in an experimental migraine model // Eur. J. Neurosci. 2000. V. 12. № 11. P. 3991–4002. https://doi.org/10.1046/j.1460-9568.2000.00299.x

  136. Knyihár-Csillik E., Tajti J., Samsam M. et al. Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model // J. Neurosci. Res. 1997. V. 48. № 5. P. 449–464.

  137. Labastida-Ramírez A., Rubio-Beltrán E., Haanes K.A. et al. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system // Pain. 2020. V. 161. № 5. P. 1092–1099. https://doi.org/10.1097/j.pain.0000000000001801

  138. Lambert G.A. Preclinical neuropharmacology of naratriptan // CNS Drug Rev. 2005. V. 11. № 3. P. 289–316. https://doi.org/10.1111/j.1527-3458.2005.tb00048.x

  139. Lambert G.A., Boers P.M., Hoskin K.L. et al. Suppression by eletriptan of the activation of trigeminovascular sensory neurons by glyceryl trinitrate // Brain Res. 2002. V. 953. № 1–2. P. 181–188. https://doi.org/10.1016/s0006-8993(02)03283-3

  140. Lang I.M. Noxious stimulation of emesis // Dig. Dis. Sci. 1999. V. 44. № 8. P. 58–63.

  141. Levy D., Burstein R., Kainz V. et al. Mast cell degranulation activates a pain pathway underlying migraine headache // Pain. 2007. V. 130. № 1–2. P. 166–176. https://doi.org/10.1016/j.pain.2007.03.012

  142. Levy D., Jakubowski M., Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists // Proc. Natl. Acad. Sci. U S A. 2004. V. 101. № 12. P. 4274–4279. https://doi.org/10.1073/pnas.0306147101

  143. Levy D., Labastida-Ramirez A., Maassen Van Den Brink A. Current understanding of meningeal and cerebral vascular function underlying migraine headache // Cephalalgia. 2019. V. 39. № 13. P. 1606–1622. https://doi.org/10.1177/0333102418771350

  144. Longmore J., Shaw D., Smith D. et al. Differential distribution of 5HT1D- and 5HT1B-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new antimigraine drugs // Cephalalgia. 1997. V. 17. № 8. P. 833–842. https://doi.org/10.1046/j.1468-2982.1997.1708833.x

  145. Ma Q.P., Hill R., Sirinathsinghji D. Colocalization of CGRP with 5-HT1B/1D receptors and substance P in trigeminal ganglion neurons in rats // Eur. J. Neurosci. 2001. V. 13. № 11. P. 2099–2104. https://doi.org/10.1046/j.0953-816x.2001.01586.x

  146. Maassen Van Den Brink A., Reekers M., Bax W.A. et al. Coronary side-effect potential of current and prospective antimigraine drugs // Circulation. 1998. V. 98. № 1. P. 25–30. https://doi.org/10.1161/01.cir.98.1.25

  147. Maassen Van Den Brink A., Saxena P.R. Coronary vasoconstrictor potential of triptans: a review of in vitro pharmacologic data // Headache. 2004. V. 44. № 1. P. 13–19. https://doi.org/10.1111/j.1526-4610.2004.04104.x

  148. Maneesri S., Akerman S., Lasalandra M.P. et al. Electron microscopic demonstration of pre-and postsynaptic 5-HT1D and 5-HT1F receptor immunoreactivity (IR) in the rat trigeminocervical complex (TCC): new therapeutic possibilities for the triptans // Cephalalgia. 2004. V. 24. № 2. P. 148.

  149. Marichal-Cancino B.A., González-Hernández A., Manrique-Maldonado G. et al. Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via GR127935- and rauwolscine-sensitive receptors // Eur. J. Pharmacol. 2012. V. 692. № 1–3. P. 69–77. https://doi.org/10.1016/j.ejphar.2012.07.033

  150. Markowitz S., Saito K., Moskowitz M.A. Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache // Cephalalgia. 1988. V. 8. № 2. P. 83–91. https://doi.org/10.1046/j.1468-2982.1988.0802083.x

  151. Martin G.R. Pre-clinical pharmacology of zolmitriptan (Zomig; formerly 311C90), a centrally and peripherally acting 5HT1B/1D agonist for migraine // Cephalalgia. 1997. V. 17. № 18. P. 4–14. https://doi.org/10.1177/0333102497017S1802

  152. Mathure D., Ranpise H., Awasthi R., Pawar A. Formulation and Characterization of Nanostructured Lipid Carriers of Rizatriptan Benzoate-Loaded In Situ Nasal Gel for Brain Targeting // Assay Drug Dev. Technol. 2022. V. 20. № 5. P. 211–224. https://doi.org/10.1089/adt.2022.044

  153. May A., Burstein R. Hypothalamic regulation of headache and migraine // Cephalalgia. 2019. V. №№ 13. P. 1710–1719. https://doi.org/10.1177/0333102419867280

  154. McCall R.B., Huff R., Chio C.L. et al. Preclinical studies characterizing the anti-migraine and cardiovascular effects of the selective 5-HT1D receptor agonist PNU-142633 // Cephalalgia. 2002. V. 22. № 10. P. 799–806. https://doi.org/10.1046/j.1468-2982.2002.00459.x

  155. McCall R.B. Trigeminal ganglion elicited increases in nucleus trigeminal caudalis blood flow: a novel migraine model // Brain Res. 1997. V. 775. № 1–2. P. 189–192. https://doi.org/10.1016/s0006-8993(97)00952-9

  156. Melo-Carrillo A., Strassman A.M., Nir R.R. et al. Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (Aδ) But Not Unmyelinated (C) Meningeal Nociceptors // J. Neurosci. 2017. V. 37. № 44. P. 10587–10596. https://doi.org/10.1523/JNEUROSCI.2211-17.2017

  157. Mitsikostas D.D., Sanchez del Rio M., Moskowitz M.A., Waeber C. Both 5-HT1B and 5-HT1F receptors modulate c-fos expression within rat trigeminal nucleus caudalis // Eur. J Pharmacol. 1999. V. 369. № 3. P. 271–277. https://doi.org/10.1016/s0014-2999(99)00067-9

  158. Mitsikostas D.D., Sanchez del Rio M., Waeber C. 5-Hydroxytryptamine(1B/1D) and 5-hydroxytryptamine1F receptors inhibit capsaicin-induced c-fos immunoreactivity within mouse trigeminal nucleus caudalis // Cephalalgia. 2002. V. 22. № 5. P. 384–394. https://doi.org/10.1046/j.1468-2982.2002.00382.x

  159. Mitsikostas D.D., Sanchez del Rio M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine // Brain Res. Brain Res. Rev. 2001. V. 35. № 1. P. 20–35. https://doi.org/10.1016/s0165-0173(00)00048-5

  160. Moro E., Crema F., De Ponti F., Frigo G. Triptans and gastric accommodation: pharmacological and therapeutic aspects // Dig. Liver Dis. 2004. V. 36. № 1. P. 85–92. https://doi.org/10.1016/j.dld.2003.09.012

  161. Moskowitz M.A., Reinhard J.F. Jr., Romero J. et al. Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? // Lancet. 1979. V. 2. № 8148. P. 883–885. https://doi.org/10.1016/s0140-6736(79)92692-8

  162. Mumtaz F., Rashki A., Imran Khan M. et al. Neuroprotective effect of sumatriptan in pentylenetetrazole-induced seizure is mediated through N-methyl-D-aspartate/nitric oxide and cAMP response element-binding protein signaling pathway // Fundam. Clin. Pharmacol. 2022. V. 36. № 2. P. 250–261. https://doi.org/10.1111/fcp.12728

  163. Mumtaz F., Shafaroodi H., Nezamoleslami S. et al. Involvement of nNOS, and α1, α2, β1, and β2 Subunits of Soluble Guanylyl Cyclase Genes Expression in Anticonvulsant Effect of Sumatriptan on Pentylenetetrazole-Induced Seizure in Mice // Iran J. Pharm. Res. 2020. V. 19. № 4. P. 181–192. https://doi.org/10.22037/ijpr.2020.112594.13844

  164. Muñoz-Islas E., Gupta S., Jiménez-Mena L.R. et al. Donitriptan, but not sumatriptan, inhibits capsaicin-induced canine external carotid vasodilatation via 5-HT1B rather than 5-HT1D receptors // Br. J. Pharmacol. 2006. V. 149. № 1. P. 82–91. https://doi.org/10.1038/sj.bjp.0706839

  165. Muñoz-Islas E., Lozano-Cuenca J., González-Hernández A. et al. Spinal sumatriptan inhibits capsaicin-induced canine external carotid vasodilatation via 5-HT1B rather than 5-HT1D receptors // Eur. J. Pharmacol. 2009. V. 615. № 1–3. P. 133–138. https://doi.org/10.1016/j.ejphar.2009.04.070

  166. Nelson D.L., Phebus L.A., Johnson K.W. et al. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan // Cephalalgia. 2010. V. 30. № 10. P. 1159–1169. https://doi.org/10.1177/0333102410370873

  167. Ngo M., Tadi P. Ergotamine/Caffeine. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022.

  168. Nikai T., Basbaum A.I., Ahn A.H. Profound reduction of somatic and visceral pain in mice by intrathecal administration of the anti-migraine drug, sumatriptan // Pain. 2008. V. 139. № 3. P. 533–540. https://doi.org/10.1016/j.pain.2008.06.002

  169. Noseda R., Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain // Pain. 2013. V. 154. № 1. P. 44–53. https://doi.org/10.1016/j.pain.2013.07.021

  170. Nozaki K., Moskowitz M.A., Boccalini P. CP-93,129, sumatriptan, dihydroergotamine block c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges // Br. J. Pharmacol. 1992. V. 106. № 2. P. 409–415. https://doi.org/10.1111/j.1476-5381.1992.tb14348.x

  171. Oliveira M.M., Akerman S., Tavares I., Goadsby P.J. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine // Pain. 2016. V. 157. № 8. P. 1666–1673. https://doi.org/10.1097/j.pain.0000000000000571

  172. Ong J.J.Y., De Felice M. Migraine Treatment: Current Acute Medications and Their Potential Mechanisms of Action // Neurotherapeutics. 2018. V. 15. № 2. P. 274–290. https://doi.org/10.1007/s13311-017-0592-1

  173. Ostergaard J.R., Mikkelsen E., Voldby B. Effects of 5-hydroxytryptamine and ergotamine on human superficial temporal artery // Cephalalgia. 1981. V. 1. № 4. P. 223–228. https://doi.org/10.1046/j.1468-2982.1981.0104223.x

  174. Öztürk B., Karadaş Ö. Cerebral Hemodynamic Changes During Migraine Attacks and After Triptan Treatments // Noro. Psikiyatr. Ars. 2019. V. 57. № 3. P. 192–196. https://doi.org/10.29399/npa.21650

  175. Phebus L.A., Johnson K.W., Zgombick J.M. et al. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine // Life Sci. 1997. V. 61. № 21. P. 2117–2126. https://doi.org/10.1016/s0024-3205(97)00885-0

  176. Pradhan A.A., Bertels Z., Akerman S. Targeted Nitric Oxide Synthase Inhibitors for Migraine // Neurotherapeutics. 2018. V. 15. № 2. P. 391–401. https://doi.org/10.1007/s13311-018-0614-7

  177. Puledda F., Younis S., Huessler E.M. et al. Efficacy, safety and indirect comparisons of lasmiditan, rimegepant, and ubrogepant for the acute treatment of migraine: A systematic review and network meta-analysis of the literature // Cephalalgia. 2023. V. 43. № 3. Art. № 3331024231151419. https://doi.org/10.1177/03331024231151419

  178. Ramírez Rosas M.B., Labruijere S., Villalón C.M., Maassen Vandenbrink A. Activation of 5-hydroxytryptamine1B/1D/1F receptors as a mechanism of action of antimigraine drugs // Expert Opin. Pharmacother. 2013. V. 14. № 12. P. 1599–1610. https://doi.org/10.1517/14656566.2013.806487

  179. Razzaque Z., Heald M.A., Pickard J.D. et al. Vasoconstriction in human isolated middle meningeal arteries: determining the contribution of 5-HT1B- and 5-HT1F-receptor activation // Br. J. Clin. Pharmacol. 1999. V. 47. № 1. P. 75–82. https://doi.org/10.1046/j.1365-2125.1999.00851.x

  180. Reducha P.V., Edvinsson L., Haanes K.A. Could Experimental Inflammation Provide Better Understanding of Migraines? // Cells. 2022. V. 11. № 15. P. 2444. https://doi.org/10.3390/cells11152444

  181. Reuter U., Krege J.H., Lombard L. et al. Lasmiditan efficacy in the acute treatment of migraine was independent of prior response to triptans: Findings from the CENTURION study // Cephalalgia. 2022. V. 42. № 1. P. 20–30. https://doi.org/10.1177/03331024211048507

  182. Robblee J., Harvey L.K. Cardiovascular Disease and Migraine: Are the New Treatments Safe? // Curr. Pain Headache Rep. 2022. V. 26. № 8. P. 647–655. https://doi.org/10.1007/s11916-022-01064-4

  183. Robert C., Bourgeais L., Arreto C.D. et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches // J. Neurosci. 2013. V. 33. № 20. P. 8827–8840. https://doi.org/10.1523/JNEUROSCI.0439-13.2013

  184. Roon K.I., Maassen Van Den Brink A., Ferrari M.D., Saxena P.R. Bovine isolated middle cerebral artery contractions to antimigraine drugs // Naunyn Schmiedebergs Arch. Pharmacol. 1999. V. 360. № 5. P. 591–596. https://doi.org/10.1007/s002109900095

  185. Rubio-Beltrán E., Labastida-Ramírez A., Haanes K.A. et al. Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan // Br. J. Pharmacol. 2019. V. 176. № 24. P. 4681–4695. https://doi.org/10.1111/bph.14832

  186. Rubio-Beltrán E., Labastida-Ramírez A., Villalón C.M., Maassen Van Den Brink A. Is selective 5-HT1F receptor agonism an entity apart from that of the triptans in antimigraine therapy? // Pharmacol. Ther. 2018. V. 186. P. 88–97. https://doi.org/10.1016/j.pharmthera.2018.01.005

  187. Saito K., Markowitz S., Moskowitz M.A. Ergot alkaloids block neurogenic extravasation in dura mater: proposed action in vascular headaches // Ann. Neurol. 1988. V. 24. № 6. P. 732–737. https://doi.org/10.1002/ana.410240607

  188. Sakai Y., Dobson C., Diksic M. et al. Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis // Neurology. 2008. V. 70. № 6. P. 431–439. https://doi.org/10.1212/01.wnl.0000299095.65331.6f

  189. Sakamoto Y., Sekino Y., Yamada E. et al. Effect of sumatriptan on gastric emptying: a crossover study using the BreathID system // World J. Gastroenterol. 2012. V. 18. № 26. P. 3415–3419. https://doi.org/10.3748/wjg.v18.i26.3415

  190. Salahi M., Parsa S., Nourmohammadi D. et al. Immunologic aspects of migraine: A review of literature // Front. Neurol. 2022. V. 13. Art. № 944791. https://doi.org/10.3389/fneur.2022.944791

  191. Saper J.R., Silberstein S. Pharmacology of dihydroergotamine and evidence for efficacy and safety in migraine // Headache. 2006. V. 46. № 4. P. 171–181. https://doi.org/10.1111/j.1526-4610.2006.00601.x

  192. Saracheva K.E., Prissadova N.A., Turiiski V.I. et al. Effects of the Novel High-affinity 5-HT(1B/1D)-receptor Ligand Frovatriptan on the Rat Carotid Artery // Folia Med. (Plovdiv). 2017. V. 59. № 1. P. 31–36. https://doi.org/10.1515/folmed-2017-0006

  193. Schulte L.H., May A. Of generators, networks and migraine attacks // Curr. Opin. Neurol. 2017. V. 30. № 3. P. 241–245. https://doi.org/10.1097/WCO.0000000000000441

  194. Shafqat R., Flores-Montanez Y., Delbono V., Nahas S.J. Updated Evaluation of IV Dihydroergotamine (DHE) for Refractory Migraine: Patient Selection and Special Considerations // J. Pain Res. 2020. V. 13. P. 859–864. https://doi.org/10.2147/JPR.S203650

  195. Sheibani M., Faghir-Ghanesefat H., Dehpour S. et al. Sumatriptan protects against myocardial ischaemia-reperfusion injury by inhibition of inflammation in rat model // Inflammopharmacology. 2019. V. 27. № 5. P. 1071–1080. https://doi.org/10.1007/s10787-019-00586-5

  196. Shepheard S., Edvinsson L., Cumberbatch M. et al. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370 // Cephalalgia. 1999. V. 19. № 10. P. 851–858. https://doi.org/10.1046/j.1468-2982.1999.1910851.x

  197. Shepheard S.L., Williamson D.J., Williams J. et al. Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in Dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats // Neuropharmacology. 1995. V. 34. № 3. P. 255–261. https://doi.org/10.1016/0028-3908(94)00153-j

  198. Shields K.G., Goadsby P.J. Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? // Neurobiol. Dis. 2006. V. 23. № 3. P. 491–501. https://doi.org/10.1016/j.nbd.2006.04.003

  199. Shimohata K., Shimohata T., Motegi R., Miyashita K. Nasal sumatriptan as adjunctive therapy for idiopathic trigeminal neuralgia: report of three cases // Headache. 2009. V. 49. № 5. P. 768–770. https://doi.org/10.1111/j.1526-4610.2008.01254.x

  200. Silberstein S.D., McCrory D.C. Ergotamine and dihydroergotamine: history, pharmacology, and efficacy // Headache. 2003. V. 43. № 2. P. 144–166. https://doi.org/10.1046/j.1526-4610.2003.03034.x

  201. Silberstein S.D., Shrewsbury S.B., Hoekman J. Dihydroergotamine (DHE) – Then and Now: A Narrative Review // Headache. 2020. V. 60. № 1. P. 40–57. https://doi.org/10.1111/head.13700

  202. Simmons E.C., Scholpa N.E., Cleveland K.H., Schnellmann R.G. 5-hydroxytryptamine 1F Receptor Agonist Induces Mitochondrial Biogenesis and Promotes Recovery from Spinal Cord Injury // J. Pharmacol. Exp. Ther. 2020. V. 372. № 2. P. 216–223. https://doi.org/10.1124/jpet.119.262410

  203. Simmons E.C., Scholpa N.E., Schnellmann R.G. FDA-approved 5-HT1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury // Exp. Neurol. 2021. V. 341. Art. № 113 720. https://doi.org/10.1016/j.expneurol.2021.113720

  204. Sokolov A.Y., Osipchuk A.V., Skiba I.B., Amelin A.V. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide in Migraine Pathogenesis // Neurochemical Journal. 2022. V. 16. № 1. P. 31–38. https://doi.org/10.1134/S1819712422010123

  205. Spekker E., Tanaka M., Szabó Á., Vécsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research // Biomedicines. 2021. V. 10. № 1. P. 76. https://doi.org/10.3390/biomedicines10010076

  206. Storer R.J., Goadsby P.J. Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat // Brain. 1997. V. 120. № 12. P. 2171–2177. https://doi.org/10.1093/brain/120.12.2171

  207. Strassman A.M., Levy D. The anti-migraine agent sumatriptan induces a calcium-dependent discharge in meningeal sensory neurons // Neuroreport. 2004. V. 15. № 9. P. 1409–1412. https://doi.org/10.1097/01.wnr.0000132771.64590.42

  208. Tang C., Unekawa M., Kitagawa S. et al. Cortical spreading depolarisation-induced facial hyperalgesia, photophobia and hypomotility are ameliorated by sumatriptan and olcegepant // Sci. Rep. 2020. V. 10. № 1. P. 11408. https://doi.org/10.1038/s41598-020-67948-w

  209. Tao Z.Y., Wang P.X., Wei S.Q. et al. The Role of Descending Pain Modulation in Chronic Primary Pain: Potential Application of Drugs Targeting Serotonergic System // Neural. Plast. 2019. Art. № 1389296. https://doi.org/10.1155/2019/1389296

  210. Tepper S.J., Rapoport A.M., Sheftell F.D. Mechanisms of action of the 5-HT1B/1D receptor agonists // Arch. Neurol. 2002. V. 59. № 7. P. 1084–1088. https://doi.org/10.1001/archneur.59.7.1084

  211. Terrin A., Bello L., Valentino M.L. et al. The relevance of migraine in the clinical spectrum of mitochondrial disorders // Sci. Rep. 2022. V. 12. № 1. P. 4222. https://doi.org/10.1038/s41598-022-08206-z

  212. Tfelt-Hansen P., Messlinger K. Why is the therapeutic effect of acute antimigraine drugs delayed? A review of controlled trials and hypotheses about the delay of effect // Br. J. Clin. Pharmacol. 2019. V. 85. № 11. P. 2487–2498. https://doi.org/10.1111/bcp.14090

  213. Tfelt-Hansen P. Pharmacological strategies to treat attacks of episodic migraine in adults // Expert Opin. Pharmacother. 2021. V. 22. № 3. P. 305–316. https://doi.org/10.1080/14656566.2020.1828347

  214. Tiwari V., Agrawal S. Migraine and Neuromodulation: A Literature Review // Cureus. 2022. V. 14. № 11. Art. № e31223. https://doi.org/10.7759/cureus.31223

  215. Totaro R., De Matteis G., Marini C. et al. Sumatriptan and cerebral blood flow velocity changes during migraine attacks // Headache. 1997. V. 37. № 10. P. 635–639. https://doi.org/10.1046/j.1526-4610.1997.3710635.x

  216. Valdivia L.F., Centurión D., Arulmani U. et al. 5-HT1B receptors, alpha2A/2C- and, to a lesser extent, alpha1-adrenoceptors mediate the external carotid vasoconstriction to ergotamine in vagosympathectomised dogs // Naunyn Schmiedebergs Arch. Pharmacol. 2004. V. 370. № 1. P. 46–53. https://doi.org/10.1007/s00210-004-0947-0

  217. Valetti S., Riaz A., Doko A. et al. Oral transmucosal delivery of eletriptan for neurological diseases // Int. J. Pharm. 2022. V. 627. Art. № 122222. https://doi.org/10.1016/j.ijpharm.2022.122222

  218. VanderPluym J.H., Halker Singh R.B., Urtecho M. et al. Acute Treatments for Episodic Migraine in Adults: A Systematic Review and Meta-analysis // JAMA. 2021. V. 325. № 23. P. 2357–2369. https://doi.org/10.1001/jama.2021.7939

  219. Varnäs K., Jučaite A., McCarthy D.J. et al. A PET study with [11C]AZ10419369 to determine brain 5-HT1B receptor occupancy of zolmitriptan in healthy male volunteers // Cephalalgia. 2013. V. 33. № 10. P. 853–860. https://doi.org/10.1177/0333102413476372

  220. Venkatraghavan L., Li L., Bailey T. et al. Sumatriptan improves postoperative quality of recovery and reduces postcraniotomy headache after cranial nerve decompression // Br. J. Anaesth. 2016. V. 117. № 1. P. 73–79. https://doi.org/10.1093/bja/aew152

  221. Vera-Portocarrero L.P., Ossipov M.H., King T., Porreca F. Reversal of inflammatory and noninflammatory visceral pain by central or peripheral actions of sumatriptan // Gastroenterology. 2008. V. 135. № 4. P. 1369–1378. https://doi.org/10.1053/j.gastro.2008.06.085

  222. Vila-Pueyo M., Page K., Murdock P.R. et al. The selective 5-HT1F receptor agonist lasmiditan inhibits trigeminal nociceptive processing: Implications for migraine and cluster headache // Br. J. Pharmacol. 2022. V. 179. № 3. P. 358–370. https://doi.org/10.1111/bph.15699

  223. Vila-Pueyo M. Targeted 5-HT1F Therapies for Migraine // Neurotherapeutics. 2018. V. 15. № 2. P. 291–303. https://doi.org/10.1007/s13311-018-0615-6

  224. Villalón C.M., Centurión D., Willems E.W. et al. 5-HT1B receptors and alpha 2A/2C-adrenoceptors mediate external carotid vasoconstriction to dihydroergotamine // Eur. J. Pharmacol. 2004. V. 484. № 2–3. P. 287–290. https://doi.org/10.1016/j.ejphar.2003.11.026

  225. Villalón C.M., De Vries P., Rabelo G. et al. Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and alpha2-adrenoceptors // Br. J. Pharmacol. 1999. V. 126. № 3. P. 585–594. https://doi.org/10.1038/sj.bjp.0702324

  226. Villalón C.M., VanDenBrink A.M. The Role of 5-Hydroxytryptamine in the Pathophysiology of Migraine and its Relevance to the Design of Novel Treatments // Mini Rev. Med. Chem. 2017. V. 17. № 11. P. 928–938. https://doi.org/10.2174/1389557516666160728121050

  227. Villamil-Hernández M.T., Alcántara-Vázquez O., Sánchez-López A., Centurión D. Pharmacological identification of α1- and α2-adrenoceptor subtypes involved in the vasopressor responses induced by ergotamine in pithed rats // Eur. J. Pharmacol. 2013. V. 715. № 1–3. P. 262–269. https://doi.org/10.1016/j.ejphar.2013.05.011

  228. Viticchi G., Falsetti L., Silvestrini M., Bartolini M. Ditans: a new prospective for the therapy of migraine attack? // Neurol. Sci. 2022. V. 43. № 9. P. 5709–5716. https://doi.org/10.1007/s10072-022-06260-z

  229. Williamson D.J., Hargreaves R.J., Hill R.G., Shepheard S.L. Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat–intravital microscope studies // Cephalalgia. 1997. V. 17. № 4. P. 525–531. https://doi.org/10.1046/j.1468-2982.1997.1704525.x

  230. Williamson D.J., Hill R.G., Shepheard S.L., Hargreaves R.J. The anti-migraine 5-HT(1B/1D) agonist rizatriptan inhibits neurogenic dural vasodilation in anaesthetized guinea-pigs // Br. J. Pharmacol. 2001. V. 133. № 7. P. 1029–1034. https://doi.org/10.1038/sj.bjp.0704162

  231. Williamson D.J., Shepheard S.L., Hill R.G., Hargreaves R.J. The novel anti-migraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation // Eur. J. Pharmacol. 1997. V. 328. № 1. P. 61–64. https://doi.org/10.1016/s0014-2999(97)83028-2

  232. Winters B.L., Jeong H.J., Vaughan C.W. Inflammation induces developmentally regulated sumatriptan inhibition of spinal synaptic transmission // Br. J. Pharmacol. 2020. V. 177. № 16. P. 3730–3743. https://doi.org/10.1111/bph.15089

  233. Yamauchi N., Sato K., Sato K. et al. Chronic pain-induced neuronal plasticity in the bed nucleus of the stria terminalis causes maladaptive anxiety // Sci. Adv. 2022. V. 8. № 17. Art. № eabj5586. https://doi.org/10.1126/sciadv.abj5586

  234. Zhang L.Q., Zhou Y.Q., Li J.Y. et al. 5-HT1F Receptor Agonist Ameliorates Mechanical Allodynia in Neuropathic Pain via Induction of Mitochondrial Biogenesis and Suppression of Neuroinflammation // Front. Pharmacol. 2022. V. 13. Art. № 834570. https://doi.org/10.3389/fphar.2022.834570

  235. Zhang X.C., Strassman A.M., Burstein R., Levy D. Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators // J. Pharmacol. Exp. Ther. 2007. V. 322. № 2. P. 806–812. https://doi.org/10.1124/jpet.107.123745

  236. Zhang X., Liu W., Wang W. et al. Evaluation of Gum Arabic Double-layer Microneedle Patch Containing Sumatriptan for Loading and Transdermal Delivery // Curr. Drug Deliv. 2023. Epub ahead of print.https://doi.org/10.2174/1567201820666230309140636

  237. Dihydroergotamine. DrugBank Online. URL https://go.drugbank.com/drugs/DB00320 дата обращения 08.03.2023

  238. Dihydroergotamine. The International Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) Guide to PHARMACOLOGY. URL https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=121 дата обращения 06.03.2023

  239. Ergotamine. DrugBank Online. URL https://go.drugbank.com/drugs/DB00696 дата обращения 08.03.2023

  240. Ergotamine. The International Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) Guide to PHARMACOLOGY. URL https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?tab=biology&ligandId=149 дата обращения 08.03.2023

  241. Ласмидитан – одобрение FDA. URL https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-patients-migraine дата обращения 08.03.2023

  242. Золмитриптан – регистрация в РФ. URL https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber= &MnnR=%d0%97%d0%be%d0%bb%d0%bc%d0% b8%d1%82%d1%80%d0%b8%d0%bf%d1%82%d0%b0%d0%bd&lf=&TradeNmR=&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0&regtype= 1%2c6&pageSize=10&order=RegDate&orderType= desc&pageNum=1 дата обращения 31.01.2023

  243. Кофетамин – регистрация в РФ. URL https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber= &MnnR=&lf=&TradeNmR=%d0%9a%d0%be% d1%84%d0%b5%d1%82%d0%b0%d0%bc%d0%b8%d0%bd&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0&regtype=1%2c6&pageSize= 10&order=Registered&orderType=desc&pageNum=1 дата обращения 08.03.2023

  244. Ласмидитан – одобрение ЕМA. URL https://www.ema.europa.eu/en/medicines/human/EPAR/rayvow дата обращения 31.01.2023

  245. Номигрен – регистрация в РФ. URL https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR=&lf=&TradeNmR=%d0%9d%d0% be%d0%bc%d0%b8%d0%b3%d1%80%d0%b5%d0%bd&OwnerName=&MnfOrg=&MnfOrgCountry= &isfs=0&regtype=1%2c6&pageSize=10&order= Registered&orderType=desc&pageNum=1 дата обращения 08.03.2023

  246. Суматриптан – регистрация в РФ: https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR=% d0%a1%d1%83%d0%bc%d0%b0%d1%82%d1%80%d0%b8%d0%bf%d1%82%d0%b0%d0%bd&lf=&TradeNmR=&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0&order=RegDate&orderType=desc&RegType=1%2c6&pageSize=10&pageNum=2 дата обращения 31.01.2023

  247. Элетриптан – регистрация в РФ: https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR= %d0%ad%d0%bb%d0%b5%d1%82%d1%80%d0%b8%d0%bf%d1%82%d0%b0%d0%bd&lf=&TradeNmR=&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=0&regtype=1%2c6&pageSize=10&order=RegDate&orderType=desc&pageNum=1 дата обращения 31.01.2023

Дополнительные материалы отсутствуют.