Успехи физиологических наук, 2023, T. 54, № 4, стр. 57-72

Взаимодействие кортикотропин-рилизинг фактора и капсаицин-чувствительных афферентных нейронов в гастропротекции

Н. И. Ярушкина a*, Т. Т. Подвигина a**, О. Ю. Морозова a***, Л. П. Филаретова a****

a Федеральное государственное бюджетное учреждение науки Институт физиологии им. И.П. Павлова РАН, лаборатория экспериментальной эндокринологии
199034 Санкт, Петербург, Россия

* E-mail: yarushkinani@infran.ru
** E-mail: podviginatt@infran.ru
*** E-mail: morozovaoyu@infran.ru
**** E-mail: filaretovalp@infran.ru

Поступила в редакцию 01.06.2023
После доработки 12.06.2023
Принята к публикации 20.06.2023

Аннотация

Кортикотропин-рилизинг фактор (КРФ) и капсаицин-чувствительные афферентные нейроны с эфферентно-подобной функцией (КЧН) вносят важный вклад в регуляцию функций желудочно-кишечного тракта (ЖКТ) и гастропротекцию. Цель обзора заключалась в анализе данных литературы, в том числе и результатов собственных исследований, о взаимодействии КРФ и КЧН в обеспечении гастропротекции и регуляции функций ЖКТ, с фокусом на наиболее изученное их взаимодействие в регуляции моторной функции ЖКТ. На основании результатов исследований авторов обзора обсуждается возможность вклада КЧН в реализацию гастропротективного влияния КРФ и, наоборот, возможность участия КРФ в обеспечении гастропротективного действия капсацина, активирующего КЧН. Рассматривается вклад глюкокортикоидных гормонов в реализацию гастропротективного действия КРФ и компенсаторная гастропротективная роль данных гормонов в условиях выключения из функционирования КЧН.

Ключевые слова: желудочно-кишечный тракт, кортикотропин-рилизинг фактор, капсаицин-чувствительные афферентные нейроны, глюкокортикоидные гормоны, гастропротекция, моторика желудочно-кишечного тракта

Список литературы

  1. Багаева Т.Р., Бобрышев П.Ю., Комкова О.П., Филаретова Л.П. Роль глюкокортикоидных гормонов и капсаицин-чувствительных нейронов в гастропротективном эффекте ишемического прекондиционирования // Рос. физиол. журн. им. И.М. Сеченова. 2012. Т. 98. № 10. С. 1242–1249.

  2. Бобрышев П.Ю., Подвигина Т.Т., Багаева Т.Р., Филаретова Л.П. Компенсаторное гастропротективное действие глюкокортикоидных гормонов в условиях выключения функции капсаицин-чувствительных нейронов у крыс // Рос. физиол. журн. им. И.М. Сеченова. 2006. Т. 92. № 8. С. 1006–1015.

  3. Золотарев В.А., Хропычева Р.П. Взаимодействие синтаз оксида азота с циклооксигеназами при регуляции физиологических и патофизиологических процессов и его роль в механизмах адаптивной гастропротекции // Успехи физиологических наук. 2021. Т. 52. № 4. С. 3–17. https://doi.org/10.31857/S0301179821040093

  4. Мязина М.А., Багаева Т.Р., Филаретова Л.П. Влияние метирапона на гастропротективное действие кортикотропин-рилизинг фактора при его центральном введении в условиях ульцерогенного влияния индометацина // Рос. физиол. журн. им. И.М. Сеченова. 2014. Т. 100. № 12. С. 1421–1430.

  5. Подвигина Т.Т., Бобрышев П.Ю., Багаева Т.Р., Мальцев Н.А., Левкович Ю.И., Филаретова Л.П. Влияние десенситизации капсаицин-чувствительных афферентных нейронов на микроциркуляцию в желудке у крыс зависит от содержания глюкокортикоидных гормонов в крови // Рос. физиол. журн. им. И.М. Сеченова. 2008. Т. 94. № 6. С. 700–709.

  6. Подвигина Т.Т., Морозова О.Ю., Солнушкин С.Д., Чихман В.Н., Филаретова Л.П. Влияние сенсититизации и десенситизации капсаицин-чувствительных нейронов на образование эрозий в слизистой оболочке желудка, индуцированных индометацином, у крыс: роль глюкокортикоидных гормонов // Рос. физиол. журн. им. И.М. Сеченова. 2019. Т. 105. № 2. С. 225–237. https://doi.org/10.1134/S0869813919020080

  7. Филаретова Л.П., Багаева Т.Р., Морозова О.Ю. Гастропротективное действие кортикотропин-рилиинг фактора (КРФ): вовлечение глюкококортикоидных гормонов и КРФ рецепторов 2-го типа // Рос. физиол. журн. им. И.М. Сеченова. 2012. Т. 98. № 12. С. 1555–1566.

  8. Филаретова Л.П., Подвигина Т.Т., Багаева Т.Р., Бобрышев П.Ю. Компенсаторная гастропротективная роль глюкокортикоидных гормонов // Рос. физиол. журн. им. И.М. Сеченова. 2007. Т. 93. № 11. С. 1217–1228.

  9. Филаретова Л.П., Ярушкина Н.И. Капсаицин-чувствительные нейроны: роль в гастропротекции и регуляции болевой чувствительности Капсаицин-чувствительные нейроны: роль в гастропротекции и регуляции болевой чувствительности // Успехи физиологических наук. 2019. Т. 50. № 1. С. 3–16. https://doi.org/10.1134/S0301179819010053

  10. Abdel Salam O.M., Szolcsányi J., Mózsik G. The indomethacin-induced gastric mucosal damage in rats. Effect of gastric acid, acid inhibition, capsaicin-type agents and prostacyclin // J. Physiol. Paris. 1997. V. 91. P. 7–19. https://doi.org/10.1016/s0928-4257(99)80161-2

  11. Akiba Y., Kaunitz J.D., Million M. Peripheral corticotropin-releasing factor receptor type 2 activation increases colonic blood flow through nitric oxide pathway in rats // Digestive diseases and sciences. 2015. V. 60. № 4. P. 858–867. https://doi.org/10.1007/s10620-015-3579-y

  12. Bakke H.K., Bogsnes A., Murison R. Studies on the interaction between ICV effects of CRF and CNS noradrenaline depletion // Physiology & Behavior. 1990. V. 47. № 6. P. 1253–1260. https://doi.org/10.1016/0031-9384(90)90379-i

  13. Bale T.L., Vale W.W. CRF and CRF receptors: role in stress responsivity and other behaviors // Annual Review of Pharmacology and Toxicology. 2004. V. 44. P. 525–557. https://doi.org/10.1146/annurev.pharmtox.44.101802.121410

  14. Balemans D., Boeckxstaens G.E., Talavera K., Wouters M.M. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity // American J. Physiology – Gastrointestinal and Liver Physiology. 2017. V. 312. № 6. P. G635–G648. https://doi.org/10.1152/ajpgi.00401.2016

  15. Barquist E., Zinner M., Rivier J., Taché Y. Abdominal surgery-induced delayed gastric emptying in rats: role of CRF and sensory neurons // The American Journal of Physiology. 1992. V. 262. № 4 Pt 1. P. G616-20. https://doi.org/10.1152/ajpgi.1992.262.4.G616

  16. Barthó L., Benkó R., Patacchini R. et al. Effects of capsaicin on visceral smooth muscle: a valuable tool for sensory neurotransmitter identification // European J. Pharmacology. 2004. V. 500. № 1–3. P. 143–157. https://doi.org/10.1016/j.ejphar.2004.07.020

  17. Baylie R.L., Brayden J.E. TRPV channels and vascular function // Acta Physiologica (Oxford, England). 2011. V. 203. № 1. P. 99–116. /https://doi.org/10.1111/j.1748-1716.2010.02217.x

  18. Birklein F., Schmelz M. Neuropeptides, neurogenic inflammation and complex regional pain syndrome (CRPS) // Neuroscience Letters. 2008. V. 437. № 3. P. 199–202. https://doi.org/10.1016/j.neulet.2008.03.081

  19. Bobryshev P., Podvigina T., Maltcev N., Filaretova L. Gastric microcirculation as target of gastroprotective action of glucocorticoid hormones in rats with desensitization of capsaicin-sensitive sensory neurons // Inflammopharmacology. 2006. V. 14. № 5–6. P. 236–242. https://doi.org/10.1007/s10787-006-1546-0

  20. Bobryshev P., Bagaeva T., Filaretova L. Gastroprotective action of glucocorticoid hormones in rats with desensitization of capsaicin-sensitive sensory neurons // Inflammopharmacology. 2005. V. 13. № 1–3. P. 217–228. https://doi.org/10.1163/156856005774423782

  21. Bonaz B., Taché Y. Corticotropin-releasing factor and systemic capsaicin-sensitive afferents are involved in abdominal surgery-induced Fos expression in the paraventricular nucleus of the hypothalamus // Brain Research. 1997. V. 748. № 1–2. P. 12–20. https://doi.org/10.1016/s0006-8993(96)01281-4

  22. Boorse G.C., Denver R.J. Widespread tissue distribution and diverse functions of corticotropin-releasing factor and related peptides // General and Comparative Endocrinology. 2006. V. 146. № 1. P. 9–18. https://doi.org/10.1016/j.ygcen.2005.11.014

  23. Botz B., Kriszta G., Bölcskei K. et al. Capsaicin-Sensitive Peptidergic Sensory Nerves Are Anti-Inflammatory Gatekeepers in the Hyperacute Phase of a Mouse Rheumatoid Arthritis Model // International J. Molecular Sciences. 2021. V. 22. № 4. P. 1682. https://doi.org/10.3390/ijms22041682

  24. Chatoo M., Li Y., Ma Z. et al. Involvement of Corticotropin-Releasing Factor and Receptors in Immune Cells in Irritable Bowel Syndrome // Frontiers in Endocrinology. 2018. V. 9. P. 21. https://doi.org/10.3389/fendo.2018.00021

  25. Chen R.Y.Z., Guth P.H. Interaction of endogenous nitric oxide and CGRP in sensory neuron-induced gastric vasodilation // American J. Physiology. 1995. V. 268. № 5 Pt 1. P. G791-6.https://doi.org/10.1152/ajpgi.1995.268.5.G791

  26. Chen R.Y.Z., Li D.S., Guth P.H. Role of calcitonin gene-related peptide in capsaicin-induced gastric submucosal arteriolar dilation // American J. Physiology. 1992. V. 262. № 5 Pt 2. P. H1350-5.https://doi.org/10.1152/ajpheart.1992.262.5.H1350

  27. Coşkun T., Bozkurt A., Alican I. et al. Pathways mediating CRF-induced inhibition of gastric emptying in rats // Regulatory Peptides. 1997. V. 69. № 3. P. 113–120. https://doi.org/10.1016/s0167-0115(96)02066-6

  28. Csekő K., Beckers B., Keszthelyi D., Helyes Z. Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: Potential therapeutic targets? // Pharmaceuticals. 2019. V. 12. № 2. P. 48. https://doi.org/10.3390/ph12020048

  29. Czimmer J., Tache Y. Peripheral Corticotropin Releasing Factor Signaling Inhibits Gastric Emptying: Mechanisms of Action and Role in Stress-related Gastric Alterations of Motor Function // Current Pharmaceutical Design. 2017. V. 23. № 27. P. 4042–4047. https://doi.org/10.2174/1381612823666170228142428

  30. Debreceni A., Abdel-Salam O.M., Figler M., Juricskay I., Szolcsányi J., Mózsik G. Capsaicin increases gastric emptying rate in healthy human subjects measured by 13C-labeled octanoic acid breath test // J. Physiology. Paris. 1999. V. 93. № 5. P. 455–460. https://doi.org/10.1016/s0928-4257(99)00114-x

  31. Dedic N., Chen A., Deussing J.M. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response // Current Molecular Pharmacology. 2018. V. 11. № 1. P. 4–31. https://doi.org/10.2174/1874467210666170302104053

  32. Dufau M.L., Tinajero J.C., Fabbri A. Corticotropin-releasing factor: an antireproductive hormone of the testis // FASEB journal. 1993. V. 7. № 2. P. 299–307. https://doi.org/10.1096/fasebj.7.2.8382638

  33. Esposito P., Chandler N., Kandere K. et al. Corticotropin-releasing hormone and brain mast cells regulate blood-brain-barrier permeability induced by acute stress // The J. Pharmacology and Experimental Therapeutics. 2002. V. 303. № 3. P. 1061–1066. https://doi.org/10.1124/jpet.102.038497

  34. Filaretova L. Tanaka A., Miyazawa T., Kato S., Takeuchi K. Mechanisms by which endogenous glucocorticoid protects against indomethacin-induced gastric injury in rats // American J. Physiology – Gastrointestinal and Liver Physiology. 2002. V. 283. № 5. P. G1082–1089. https://doi.org/10.1152/ajpgi.00189.2002

  35. Filaretova L., Bobryshev P., Bagaeva T., Podvigina T., Takeuchi K. Compensatory gastroprotective role of glucocorticoid hormones during inhibition of prostaglandin and nitric oxide production and desensitization of capsaicin-sensitive sensory neurons // Inflammopharmacology. 2007. V. 15. № 4. P. 146–53. https://doi.org/10.1007/s10787-007-1589-x

  36. Filaretova L. Gastroprotective Effect of Stress Preconditioning: Involvement of Glucocorticoids. // Current Pharmaceutical Design. 2017. V. 23. № 27. P. 3923–3927. https://doi.org/10.2174/1381612823666170215145125

  37. Filaretova L., Bagaeva T. The realization of the brain-gut interactions with corticotropin-releasing factor and glucocorticoids. // Current Neuropharmacology. 2016. V. 14. № 8. P. 876–881. https://doi.org/10.2174/1570159x14666160614094234

  38. Filaretova L., Bagaeva T., Morozova O. Stress and the stomach: Corticotropin-releasing factor may protect the gastric mucosa in stress through involvement of glucocorticoids // Cellular and Molecular Neurobiology. 2012. V. 32. № 5. P. 829–836. https://doi.org/10.1007/s10571-012-9800-z

  39. Filaretova L.P. Podvigina T.T, Bobryshev P.Y., Bagaeva T.R., Tanaka A., Takeuchi K. Hypothalamic-pituitary-adrenocortical axis: The hidden gold in gastric mucosal homeostasis // Inflammopharmacology. 2006. V. 14. № 5–6. P. 207–213. https://doi.org/10.1007/s10787-006-1544-2

  40. Filaretova L.P., Morozova O.Y., Yarushkina N.I. Peripheral corticotropin-releasing hormone may protect the gastric musosa against indometacin-induced injury through involvement of glucocorticoids // J. Physiology and Pharmacology. 2021. V. 72. № 5. P. 1–10. https://doi.org/10.26402/jpp.2021.5.06

  41. Filaretova L., Morozova O., Myazina M., Bagaeva T. Cortricotropin-releasing factor (CRF) may protect the gastric mucosa against injury through involvement CRF1 and CRF2 receptor types // FASEB J. 2013. V. 27. № 1. P. 1093.11. https://doi.org/10.1096/fasebj.27.1_supplement.1093.11

  42. Filaretova L.P., Morozova O.Yu. From hypothalamic regulation of pituitary-adrenocortical axis to participation of glucocorticoids in gastroprotective action of corticotropin-releasing factor // J. Evolutionary Biochemistry and Physiology. 2022. V. 58. № 6. P. 1994–2006.

  43. Filaretova L.P. The Contribution of corticotropin-releasing factor to gastroprotection // Neurochem. J. 2018. V. 12. № 2. P. 127–129. https://doi.org/10.1134/S1819712418020046

  44. Filaretova L.P., Bagaeva T.R., Morozova O.Yu., Myazina M.A. Corticotropin-releasing factor may protect the gastric mucosa in stress through involvement of glucocorti-coids. Chapter in: Filaretova L.P., Takeuchi K. (eds): Cell/Tissue Injury and Cytoprotec-tion/Organoprotection in the Gastrointestinal Tract: Mechanisms, Prevention and Treatment // Front. Gastrointest. Res. Basel, Karger, 2012. V. 30. P. 124–133. https://doi.org/10.1159/000338424

  45. Fischer M.J.M., Ciotu C.I., Szallasi A. The Mysteries of Capsaicin-Sensitive Afferents // Frontiers in Physiology. 2020. V. 11. P. 554195. https://doi.org/10.3389/fphys.2020.554195

  46. Fukudo S., Nomura T., Hongo M. Impact of corticotropin-releasing hormone on gastrointestinal motility and adrenocorticotropic hormone in normal controls and patients with irritable bowel syndrome // Gut. 1998. V. 42. № 6 . P. 845–849. https://doi.org/10.1136/gut.42.6.845

  47. Gonzalez R., Dunkel R., Koletzko B., Schusdziarra V., Allescher H.D. Effect of capsaicin-containing red pepper sauce suspension on upper gastrointestinal motility in healthy volunteers // Digestive Diseases and Sciences. 1998. V. 43. № 6. P. 1165–1171. https://doi.org/10.1023/a:1018831018566

  48. Gourcerol G., Wu S.V., Yuan P.Q. et al. Activation of corticotropin-releasing factor receptor 2 mediates the colonic motor coping response to acute stress in rodents // Gastroenterology. 2011. V. 140. № 5. P. 1586-96.e6. https://doi.org/10.1053/j.gastro.2011.01.039

  49. Gunion M.W., Kauffman G.L., Tache Y. Intrahypothalamic corticotropin-releasing factor elevates gastric bicarbonate and inhibits stress ulcers in rats // American J. Physiology. 1990. V. 258. № 1 Pt 1. P. G152-7. https://doi.org/10.1152/ajpgi.1990.258.1.G152

  50. Hagiwara S., Kaushal E., Paruthiyil S. et al. Gastric corticotropin-releasing factor influences mast cell infiltration in a rat model of functional dyspepsia // PloS One. 2018. V. 13. № 9. P. e0203704. https://doi.org/10.1371/journal.pone.0203704

  51. Hauger R.L., Risbrough V., Brauns O., Dautzenberg F.M. Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. // CNS & Neurological Disorders Drug Targets. 2006. V. 5. № 4. P. 453–79. https://doi.org/10.2174/187152706777950684

  52. Henckens M.J.A.G., Deussing J.M., Chen A. Region-specific roles of the corticotropin-releasing factor–urocortin system in stress // Nature Publishing Group. 2016. V. 17. № 10. P. 636–51. https://doi.org/10.1038/nrn.2016.94

  53. Heymann-Mönnikes I., Taché Y., Trauner M., Weiner H., Garrick T. CRF microinjected into the dorsal vagal complex inhibits TRH analog- and kainic acid-stimulated gastric contractility in rats // Brain Research. 1991. V. 554. № 1–2. P. 39–144. https://doi.org/10.1016/0006-8993(91)90181-t

  54. Holzer P., Pabst M.A, Lippe I.T. et al. Afferent nerve-mediated protection against deep mucosal damage in the rat stomach // Gastroenterology. 1990. V. 98. № 4. P. 838–848. https://doi.org/10.1016/0016-5085(90)90005-l

  55. Holzer P. Neural injury, repair, and adaptation in the GI tract. II. The elusive action of capsaicin on the vagus nerve // American J. Physiology. 1998. V. 275. № 1. P. G8-13. https://doi.org/10.1152/ajpgi.1998.275.1.G8

  56. Holzer P., Livingston E. H., Guth P.H. Sensory neurons signal for an increase in rat gastric mucosal blood flow in the face of pending acid injury // Gastroenterology. 1991. V. 101. № 2. P. 416–423. https://doi.org/10.1016/0016-5085(91)90020-l

  57. Holzer P., Maggi C. A. Dissociation of dorsal root ganglion neurons into afferent and efferent- like neurons // Neuroscience. 1998. V. 86. № 2. P. 389–398. https://doi.org/10.1016/s0306-4522(98)00047-5

  58. Holzer P., Pabst M.A., Lippe I.T. Intragastric capsaicin protects against aspirin-induced lesion formation and bleeding in the rat gastric mucosa // Gastroenterology. 1989. V. 96. № 6. P. 1425–1433. https://doi.org/10.1016/0016-5085(89)90508-8

  59. Holzer P., Sametz W. Gastric mucosal protection against ulcerogenic factors in the rat mediated by capsaicin-sensitive afferent neurons // Gastroenterology. 1986. V. 91. № 4. P. 975–981. https://doi.org/10.1016/0016-5085(86)90702-x

  60. Hori A., Hotta N., Fukazawa A. et al. Insulin potentiates the response to capsaicin in dorsal root ganglion neurons in vitro and muscle afferents ex vivo in normal healthy rodents // J. Physiology. 2022. V. 600. № 3. P. 531–545. https://doi.org/10.1113/JP282740

  61. Hussain Z., Park H. Inflammation and impaired gut physiology in post-operative ileus: mechanisms and the treatment options // J. Neurogastroenterology and Motility. 2022. V. 28. № 4. P. 517–530. https://doi.org/10.5056/jnm22100

  62. Ilie M., Caruntu C., Tampa M., et al. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions (Review) // Experimental and Therapeutic Medicine. 2019. V. 18. № 2. P. 916-925. https://doi.org/10.3892/etm.2019.7513

  63. Izbéki F., Wittmann T., Jancsó G., Csáti S., Lonovics J. Inhibition of astric emptying and small intestinal transit by ethanol is mediated by capsaicin-sensitive afferent nerves // Naunyn-Schmiedeberg’s Archives of Pharmacology. 2002. V. 365. № 1. P. 17–21. https://doi.org/10.1007/s00210-001-0491-0

  64. Jamieson B.B., Kim J.S., Iremonger K.J. Cannabinoid and vanilloid pathways mediate opposing forms of synaptic plasticity in corticotropin-releasing hormone neurons // J. Neuroendocrinology. 2022. V. 34. № 4. P. e13084. https://doi.org/10.1111/jne.13084

  65. Kang J.Y., Alexander B., Math M.V., Williamson R.C. The effect of chilli and its pungent ingredient capsaicin on gastrointestinal transit in the rat // J. Gastroenterology and Hepatology. 1993. V. 8. № 6. P. 513–516. https://doi.org/10.1111/j.1440-1746.1993.tb01644.x

  66. Kiank C., Taché Y., Larauche M. Stress-related modulation of inflammation in experimental models of bowel disease and post-infectious irritable bowel syndrome: role of corticotropin-releasing factor receptors // Brain, Behavior, and Immunity. 2010. V. 24. № 1. P. 41–48. https://doi.org/10.1016/j.bbi.2009.08.006

  67. Kishimoto T., Pearse R.V. 2nd., Lin C.R., Rosenfeld M.G. A sauvagine/corticotropin-releasing factor receptor expressed in heart and skeletal muscle // Proceedings of the National Academy of Sciences of the United States of America. 1995. V. 92. № 4. P. 1108–1112.https://doi.org/10.1073/pnas.92.4.1108

  68. Korosi A., Kozicz T., Richter J. et al. Corticotropin-releasing factor, urocortin 1, and their receptors in the mouse spinal cord // The J. Comparative Neurology. 2007. V. 502. № 6. P. 973–989. https://doi.org/10.1002/cne.21347

  69. Kozakai Y., Hori K., Aye-Mon A. et al. The role of peripheral corticotropin-releasing factor signaling in a rat model of stress-induced gastric hyperalgesia // Biochemical and Biophysical Research Communications. 2019. V. 519. № 4. P. 797–802. https://doi.org/10.1016/j.bbrc.2019.09.040

  70. Kruseman A.C.N., Linton E.A., Lowry P.J., Rees L.H., Besser G.M. Corticotropin-releasing factor immunoreactivity in human gastrointestinal tract // Lancet. 1982. V. 2. № 8310. P. 1245–1246. https://doi.org/10.1016/s0140-6736(82)90105-2

  71. Kubo Y., Kumano A., Kamei K. et al. Urocortin prevents indomethacin-induced small intestinal lesions in rats through activation of CRF2 receptors. // Digestive Diseases and Sciences. 2010. V. 55. № 6. P. 1570–80. https://doi.org/10.1007/s10620-009-0930-1

  72. Kumar V., Kumar V., Devi K. et al. Intrarectal Capsazepine Administration Modulates Colonic Mucosal Health in Mice // International J. Molecular Sciences. 2022. V. 23. № 17. P. 9577. https://doi.org/10.3390/ijms23179577

  73. Larauche M, Gourcerol G., Wang L. et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways // American J. Physiology–Gastrointestinal and Liver Physiology. 2009. V. 297. № 1. P. G215–G227. https://doi.org/10.1152/ajpgi.00072.2009

  74. Larauche M., Moussaoui N., Biraud M., et al. Brain corticotropin-releasing factor signaling: Involvement in acute stress-induced visceral analgesia in male rats // Neurogastroenterology and Motility. 2019. V. 31. № 2. P. e13489. https://doi.org/10.1111/nmo.13489

  75. Lázár Z., Benkó R., Bölcskei K. et al. Actions of endothelin and corticotropin releasing factor in the guinea-pig ileum: no evidence for an interaction with capsaicin-sensitive neurons // Neuropeptides. 2003. V. 37. № 4. P. 220–232. https://doi.org/10.1016/s0143-4179(03)00048-9

  76. Lenz H.J., Raedler A., Greten H., Vale W.W., Rivier J.E. Stress-induced gastrointestinal secretory and motor responses in rats are mediated by endogenous corticotropin-releasing factor // Gastroenterology. 1988. V. 95. № 6. P. 1510–1517. https://doi.org/10.1016/s0016-5085(88)80070-2

  77. Lenz H.J., Hester S.E., Brown M.R. Corticotropin-releasing factor. Mechanisms to inhibit gastric acid secretion in conscious dogs // J. Clinical Investigation. 1985. V. 75. № 3. P. 889–895. https://doi.org/10.1172/JCI111788

  78. Lewis M.W., Hermann G.E., Rogers R.C., Travagli R.A. In vitro and in vivo analysis of the effects of corticotropin releasing factor on rat dorsal vagal complex // J. Physiology. 2002. V. 543. № Pt 1. P. 135–146. https://doi.org/10.1113/jphysiol.2002.019281

  79. Liu T., Wan Y., Meng Y. et al. Capsaicin: A Novel Approach to the Treatment of Functional Dyspepsia // Molecular Nutrition & Food Research. 2023. V. 67. № 9. P. 2200793. https://doi.org/10.1002/mnfr.202200793

  80. Liu S., Chang J., Long N. et al. Endogenous CRF in rat large intestine mediates motor and secretory responses to stress // Neurogastroenterology and Motility. 2016. V. 28. № 2. P. 281–291. https://doi.org/10.1111/nmo.12725

  81. Lippe I.T., Pabst M.A., Holzer P. Intragastric capsaicin enhances rat gastric acid elimination and mucosal blood flow by afferent nerve stimulation // British Journal of Pharmacology. 1989. V. 96. № 1. P. 91–100.https://doi.org/10.1111/j.1476-5381.1989.tb11788.x

  82. Lv Y., Wen J., Fang Y., Zhang H., Zhang J. Corticotropin-releasing factor receptor 1 (CRF-R1) antagonists: Promising agents to prevent visceral hypersensitivity in irritable bowel syndrome // Peptides. 2022. V. 147. P. 170705. https://doi.org/10.1016/j.peptides.2021.170705

  83. Lytinas M., Kempuraj D., Huang M., et al. Acute stress results in skin corticotropin-releasing hormone secretion, mast cell activation and vascular permeability, an effect mimicked by intradermal corticotropin-releasing hormone and inhibited by histamine-1 receptor antagonists // International Archives of Allergy and Immunology. 2003. V. 130. № 3. P. 224–231. https://doi.org/10.1159/000069516

  84. Martínez V., Rivier J., Wang L., Taché Y. Central injection of a new corticotropin-releasing factor (CRF) antagonist, astressin, blocks CRF- and stress-related alterations of gastric and colonic motor function // The J. Pharmacology and Experimental Therapeutics. 1997. V. 280. № 2. P. 754–760.

  85. Martínez V. Wang L., Rivier J.E., Vale W., Taché Y. Differential actions of peripheral corticotropin-releasing factor (CRF), urocortin II, and urocortin III on gastric emptying and colonic transit in mice: role of CRF receptor subtypes 1 and 2 // J. Pharmacology and Experimental Therapeutics. 2002. V. 301. № 2. P. 611–617. https://doi.org/10.1124/jpet.301.2.611

  86. Martínez V., Wang L., Rivier J., Grigoriadis D., Taché Y. Central CRF, urocortins and stress increase colonic transit via CRF1 receptors while activation of CRF2 receptors delays gastric transit in mice. // J. Physiology. 2004. V. 556. № Pt 1. P. 221–34. https://doi.org/10.1113/jphysiol.2003.059659

  87. Matsumoto J., Takeuchi K., Ueshima K., Okabe S. Role of capsaicin-sensitive afferent neurons in mucosal blood flow response of rat stomach induced by mild irritants // Digestive Diseases and Sciences. 1992. V. 37. № 9. P. 1336–1344. https://doi.org/10.1007/BF01296001

  88. Matsumoto J., Takeuchi K., Okabe S. Characterization of gastric mucosal blood flow response induced by intragastric capsaicin in rats // Japanese J. Pharmacology. 1991. № 2(57). C. 205–213.https://doi.org/10.1254/jjp.57.205

  89. Matsumoto K., Kurosawa E., Terui H., et al. Localization of TRPV1 and contractile effect of capsaicin in mouse large intestine: high abundance and sensitivity in rectum and distal colon // American J. Physiology. Gastrointestinal and Liver Physiology. 2009. V. 297. № 2. P. G348-60. https://doi.org/10.1152/ajpgi.90578.2008

  90. Merchant N.B., Goodman J., Dempsey D.T., Milner R.E., Ritchie W.P.Jr. The role of calcitonin gene-related peptide and nitric oxide in gastric mucosal hyperemia and protection // J. Surgical Research. 1995. V. 58. № 3. P. 344–350. https://doi.org/10.1006/jsre.1995.1053

  91. Million M., Maillot C., Saunders P. et al. Human urocortin II, a new CRF-related peptide, displays selective CRF(2)-mediated action on gastric transit in rats // American J. Physiology. Gastrointestinal and Liver Physiology. 2002. V. 282. № 1. P. G34-40. https://doi.org/10.1152/ajpgi.00283.2001

  92. Monnikes H., Schmidt B.G., Raybould H.E., Taché Y. CRF in the paraventricular nucleus mediates gastric and colonic motor response to restraint stress // American J. Physiology. 1992. V. 262. № 1. Pt 1. P. G137-43. https://doi.org/10.1152/ajpgi.1992.262.1.G137

  93. Mousa S.A., Bopaiah C.P., Richter J.F., Yamdeu R.S., Schäfer M. Inhibition of inflammatory pain by CRF at peripheral, spinal and supraspinal sites: Involvement of areas coexpressing CRF receptors and opioid peptides // Neuropsychopharmacology. 2007. V. 32. № 12. P. 2530–2542. https://doi.org/10.1038/sj.npp.1301393

  94. Mousa S.A., Khalefa B.I., Shaqura M. et al. Superior control of inflammatory pain by corticotropin-releasing factor receptor 1 via opioid peptides in distinct pain-relevant brain areas // J. Neuroinflammation. 2022. V. 19. № 1. P. 148. https://doi.org/10.1186/s12974-022-02498-8

  95. Mózsik G. Capsaicin as new orally applicable gastroprotective and therapeutic drug alone or in combination with nonsteroidal anti-inflammatory drugs in healthy human subjects and in patients // Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques. 2014. V. 68. P. 209–258. https://doi.org/10.1007/978-3-0348-0828-6_9

  96. Mózsik G., Szolcsányi J., Dömötör A. Capsaicin research as a new tool to approach of the human gastrointestinal physiology, pathology and pharmacology // Inflammopharmacology. 2007. V. 15. № 6. P. 232–245. https://doi.org/10.1007/s10787-007-1584-2

  97. Mózsik G., Szolcsányi J., Rácz I. Gastroprotection induced by capsaicin in healthy human subjects // World J. Gastroenterology. 2005. V. 11. № 33. P. 5180–5184. https://doi.org/10.3748/wjg.v11.i33.5180

  98. Nakade Y., Fukuda H., Iwa M. et al. Restraint stress stimulates colonic motility via central corticotropin-releasing factor and peripheral 5-HT3 receptors in conscious rats // American J. Physiology. Gastrointestinal and liver physiology. 2007. V. 292. № 4. P. G1037-44. https://doi.org/10.1152/ajpgi.00419.2006

  99. Nozu T., Martinez V., Rivier J., Taché Y. Peripheral urocortin delays gastric emptying: role of CRF receptor 2 // American J. physiology. 1999. V. 276. № 4. P. G867-74. https://doi.org/10.1152/ajpgi.1999.276.4.G867

  100. Nozu T., Okumura T. Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome // J. Gastroenterology. 2015. V. 50. № 8. P. 819–30. https://doi.org/10.1007/s00535-015-1086-8

  101. Okumi H., Tashima K., Matsumoto K. et al. Dietary agonists of TRPV1 inhibit gastric acid secretion in mice // Planta Medica. 2012. V. 78. № 17. P. 1801–1806. https://doi.org/10.1055/s-0032-1315387

  102. Pett K., Van Viau V., Bittencourt J.C. et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse // J. Comparative Neurology. 2000. V. 428. № 2. P. 191–212. https://doi.org/10.1002/1096-9861(20001211)428 :2<191::aid-cne1>3.0.co;2-u

  103. Qin C., Wang Y., Li S., Tang Y., Gao Y. The Involvement of Endothelin Pathway in Chronic Psychological Stress-Induced Bladder Hyperalgesia Through Capsaicin-Sensitive C-Fiber Afferents // J. Inflammation Research. 2022. V. 15. P. 1209–1226. https://doi.org/10.2147/JIR.S346855

  104. Quintana E., García-Zaragozá E., Martínez-Cuesta M.A. et al. A cerebral nitrergic pathway modulates endotoxin-induced changes in gastric motility // British J. Pharmacology. 2001. V. 134. № 2. P. 325–332. https://doi.org/10.1038/sj.bjp.0704258

  105. Ray A., Henke P.G., Gulati K., Sen P. The amygdaloid complex, corticotropin releasing factor and stress-induced gastric ulcerogenesis in rats // Brain Research. 1993. V. 624. № 1–2. P. 286–290. https://doi.org/10.1016/0006-8993(93)90089-6

  106. Raybould H.E., Hölzer H. Dual capsaicin-sensitive afferent pathways mediate inhibition of gastric emptying in rat induced by intestinal carbohydrate // Neuroscience Letters. 1992. V. 141. № 2. P. 236–238. https://doi.org/10.1016/0304-3940(92)90902-j

  107. Rieger N.S., Varela J.A., Ng A.J. et al. Insular cortex corticotropin-releasing factor integrates stress signaling with social affective behavior // Neuropsychopharmacology. 2022. V. 47. № 6. P. 1156–1168. https://doi.org/10.1038/s41386-022-01292-7

  108. Rosca A.E., Iesanu M.I., Zahiu C.D.M. et al. Capsaicin and Gut Microbiota in Health and Disease // Molecules. 2020. V. 25. № 23. P. 5681. https://doi.org/10.3390/molecules25235681

  109. Satoh H., Akiba Y., Urushidani T. Proton pump inhibitors prevent gastric antral ulcers induced by NSAIDs via activation of capsaicin-sensitive afferent nerves in mice // Digestive Diseases and Sciences. 2020. V. 65. № 9. P. 2580–2594. https://doi.org/10.1007/s10620-020-06157-x

  110. Satyanarayana M.N. Capsaicin and gastric ulcers // Critical Reviews in Food Science and Nutrition. 2006. V. 46. № 4. P. 275–328. https://doi.org/10.1080/1040-830491379236

  111. De Schepper H.U., De Man J.G., Ruyssers N.E. et al. TRPV1 receptor signaling mediates afferent nerve sensitization during colitis-induced motility disorders in rats // American J. Physiology. Gastrointestinal and Liver Physiology. 2008. V. 294. № 1. P. G245-53. https://doi.org/10.1152/ajpgi.00351.2007

  112. Shi M., Jones A.R., Niedringhaus M.S. et al. Glucose acts in the CNS to regulate gastric motility during hypoglycemia // American J. Physiology. Regulatory, Integrative and Comparative Physiology. 2003. V. 285. № 5. P. R1192-202. https://doi.org/10.1152/ajpregu.00179.2003

  113. Shibasaki T., Yamauchi N., Hotta M. et al. Brain corticotropin-releasing factor acts as inhibitor of stress-induced gastric erosion in rats // Life Sciences. 1990. V. 47. № 11. P. 925–932. https://doi.org/10.1016/0024-3205(90)90539-4

  114. Silverman H.A., Chen A., Kravatz N.L., Chavan S.S., Chang E.H. Involvement of neural transient receptor potential channels in peripheral inflammation // Frontiers in Immunology. 2020. V. 11. P. 590261. https://doi.org/10.3389/fimmu.2020.590261

  115. Skofitsch G., Insel T.R., Jacobowitz D.M. Binding sites for corticotropin releasing factor in sensory areas of the rat hindbrain and spinal cord // Brain Research Bulletin. 1985. V. 15. № 5. P. 519–522. https://doi.org/10.1016/0361-9230(85)90043-7

  116. Skofitsch G., Jacobowitz D.M. Corticotropin releasing factor-like immunoreactive neurons in the rat retina // Brain Research Bulletin. 1984. V. 12. № 5. P. 539–542. https://doi.org/10.1016/0361-9230(84)90169-2

  117. Slominski A.T., Zmijewski M.A., Zbytek B. et al. Key role of CRF in the skin stress response system // Endocrine Reviews. 2013. V. 34. № 6. P. 827–884. https://doi.org/10.1210/er.2012-1092

  118. Stengel A., Goebel-Stengel M., Wang L., et al. Central administration of pan-somatostatin agonist ODT8-SST prevents abdominal surgery-induced inhibition of circulating ghrelin, food intake and gastric emptying in rats // Neurogastroenterology and Motility. 2011. V. 23. № 7. P. 1–26. https://doi.org/10.1111/j.1365-2982.2011.01721.x

  119. Stengel A., Taché Y. Neuroendocrine control of the gut during stress: corticotropin-releasing factor signaling pathways in the spotlight // Annual Review of Physiology. 2009. V. 71. P. 219–239. https://doi.org/10.1146/annurev.physiol.010908.163221

  120. Stengel A., Taché Y. Corticotropin-releasing factor signaling and visceral response to stress // Experimental Biology and Medicine. 2010. V. 235. № 10. P. 1168–1178. https://doi.org/10.1258/ebm.2010.009347

  121. Stengel A., Taché Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress // Frontiers in Neuroscience. 2014. № 8. P. 52. https://doi.org/10.3389/fnins.2014.00052

  122. Stengel A., Taché Y. Brain peptides and the modulation of postoperative gastric ileus // Current Opinion in Pharmacology. 2014. V. 19. P. 31–37. https://doi.org/10.1016/j.coph.2014.06.006

  123. Storozhuk M.V., Moroz O.F., Zholos A.V. Multifunctional TRPV1 ion channels in physiology and pathology with focus on the brain, vasculature, and some visceral Systems // BioMed Research International. 2019. V. 2019. P. 5806321. https://doi.org/10.1155/2019/5806321

  124. Sullivan T.R. Jr., Milner R., Dempsey D.T., Ritchie W.P. Jr. Effect of capsaicin on gastric mucosal injury and blood flow following bile acid exposure // Journal of Surgical Research. 1992. V. 52. № 6. P. 596–600. https://doi.org/10.1016/0022-4804(92)90135-m

  125. Szabados T., Gömöri K., Pálvölgyi L. et al. Capsaicin-sensitive sensory nerves and the trpv1 ion channel in cardiac physiology and pathologies // International J. Molecular Sciences. 2020. V. 21. № 12. P. 1–23. https://doi.org/10.3390/ijms21124472

  126. Szallasi A., Blumberg P.M. Vanilloid (Capsaicin) receptors and mechanisms. // Pharmacological Reviews. 1999. V. 51. № 2. P. 159–212.

  127. Szallasi A. The vanilloid (capsaicin) receptor TRPV1 in blood pressure regulation: a novel therapeutic target in hypertension? // International J. Molecular Sciences. 2023. V. 24. № 10. P. 8769. https://doi.org/10.3390/ijms24108769

  128. Szolcsányi J. Forty years in capsaicin research for sensory pharmacology and physiology // Neuropeptides. 2004. V. 38. № 6. P. 377–384. https://doi.org/10.1016/j.npep.2004.07.005

  129. Szolcsányi J., Barthó L. Capsaicin-sensitive afferents and their role in gastroprotection: An update // J. Physiology (Paris). 2001. V. 95. № 1–6. P. 181–188. https://doi.org/10.1016/s0928-4257(01)00023-7

  130. Tache Y., Larauche M., Yuan P.Q., Million M. Brain and gut CRF signaling: biological actions and role in the gastrointestinal tract // Current Molecular Pharmacology. 2018. V. 11. № 1. P. 51–71. https://doi.org/10.2174/1874467210666170224095741

  131. Taché Y., Gunion M., Lauffenberger M., Goto Y. Inhibition of gastric acid secretion by intracerebral injection of calcitonin gene related peptide in rats // Life Sciences. 1984. V. 35. № 8. P. 871–878. https://doi.org/10.1016/0024-3205(84)90413-2

  132. Taché Y., Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function // J. Clinical Investigation. 2007. V. 117. № 1. P. 33–40. https://doi.org/10.1172/JCI30085

  133. Tache Y., Maeda-Hagiwara M., Turkelson C.M. Central nervous system action of corticotropin-releasing factor to inhibit gastric emptying in rats // American J. Physiology. 1987. V. 253. № 2 Pt 1. P. G241-5. https://doi.org/10.1152/ajpgi.1987.253.2.G241

  134. Taché Y., Million M. Role of corticotropin-releasing factor signaling in stress-related alterations of colonic motility and hyperalgesia // J. Neurogastroenterology and Motility. 2015. V. 21. № 1. P. 8–24. https://doi.org/10.5056/jnm14162

  135. Takeuchi K., Tanaka A., Suzuki K., Mizoguchi H. Gastrointestinal sparing anti-inflammatory drugs-effects on ulcerogenic and healing responses // Current Pharmaceutical Design. 2001. V. 7. № 1. P. 49–69. https://doi.org/10.2174/1381612013398464

  136. Takeuchi K., Ueshima K., Matsumoto J., Okabe S. Role of capsaicin-sensitive sensory nerves in acid-induced bicarbonate secretion in rat stomach // Digestive Diseases and Sciences. 1992. V. 37. № 5. P. 737–743. https://doi.org/10.1007/BF01296432

  137. Takeuchi K. Pathogenesis of NSAID-induced gastric damage: Importance of cyclooxygenase inhibition and gastric hypermotility // World J. Gastroenterology. 2012. V. 18. № 18. P. 2147–2160. https://doi.org/10.3748/wjg.v18.i18.2147

  138. Takeuchi K., Abe N., Kumano A. Influence of adrenalectomy on protective effects of urocortin I, a corticotropin-releasing factor, against indomethacin-induced enteropathy in rats. // Current Neuropharmacology. 2016. V. 14. № 8. P. 866–875. https://doi.org/10.2174/1570159x14666160701020807

  139. Takeuchi K., Satoh H. NSAID-induced small intestinal damage – Roles of various pathogenic factors // Digestion. 2015. V. 91. № 3. P. 218–232. https://doi.org/10.1159/000374106

  140. Tebbe J.J., Mronga S., Schäfer M.K. et al. Stimulation of neurons in rat ARC inhibits gastric acid secretion via hypothalamic CRF1/2- and NPY-Y1 receptors // American J. Physiology. Gastrointestinal and Liver Physiology. 2003. V. 285. № 6. P. G1075-83. https://doi.org/10.1152/ajpgi.00125.2003

  141. Vale W., Spiess J., Rivier C., Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin // Science. 1981. V. 213. № 4514. P. 1394–1397. https://doi.org/10.1126/science.6267699

  142. Vasconcelos M., Stein D.J., Gallas-Lopes M., Landau L., de Almeida R.M.M. Corticotropin-releasing factor receptor signaling and modulation: implications for stress response and resilience // Trends in Psychiatry and Psychotherapy. 2020. V. 42. № 2. P. 195–206. https://doi.org/10.1590/2237-6089-2018-0027

  143. Wallace J.L. Nonsteroidal anti-inflammatory drugs and gastroenteropathy: The second hundred years // Gastroenterology. 1997. V. 112. № 3. P. 1000–1016. https://doi.org/10.1053/gast.1997.v112.pm9041264

  144. Wang L., Cardin S., Martínez V., Taché Y. Intracerebroventricular CRF inhibits cold restraint-induced c-fos expression in the dorsal motor nucleus of the vagus and gastric erosions in rats // Brain Research. 1996. V. 736. № 1–2. P. 44–53. https://doi.org/10.1016/0006-8993(96)00726-3

  145. Ward S.M., Bayguinov J., Won K.J., Grundy D., Berthoud H.R. Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract. // J. Comparative Neurology. 2003. V. 465. № 1. P. 121–35. https://doi.org/10.1002/cne.10801

  146. Wei P., Keller C., Li L. Neuropeptides in gut-brain axis and their influence on host immunity and stress // Computational and Structural Biotechnology J. 2020. V. 18. P. 843–851. https://doi.org/10.1016/j.csbj.2020.02.018

  147. Whittle B.J.R., Lopez-Belmonte J., Moncada S. Regulation of gastric mucosal integrity by endogenous nitric oxide: interactions with prostanoids and sensory neuropeptides in the rat // British J. Pharmacology. 1990. V. 99. № 3. P. 607–611. https://doi.org/10.1111/j.1476-5381.1990.tb12977.x

  148. Williams C.L., Peterson J.M., Villar R.G., Burks T.F. Corticotropin-releasing factor directly mediates colonic responses to stress // American J. Physiology. 1987. V. 253. № 4 Pt 1. P. G582-6.https://doi.org/10.1152/ajpgi.1987.253.4.G582

  149. De Winter B.Y., Bredenoord A.J., Van Nassauw L. et al. Involvement of afferent neurons in the pathogenesis of endotoxin-induced ileus in mice: Role of CGRP and TRPV1 receptors // European J. Pharmacology. 2009. V. 615. № 1–3. P. 177–184. https://doi.org/10.1016/j.ejphar.2009.04.055

  150. Wolter H.J. Corticotropin-releasing factor is contained within perikarya and nerve fibres of rat duodenum // Biochemical and Biophysical Research Communications. 1984. V. 122. № 1. P. 381–387. https://doi.org/10.1016/0006-291x(84)90486-8

  151. Xiang Y., Xu X., Zhang T. et al. Beneficial effects of dietary capsaicin in gastrointestinal health and disease // Experimental Cell Research. 2022. V. 417. № 2. P. 113227. https://doi.org/10.1016/j.yexcr.2022.113227

  152. Yang D., Luo Z., Ma S. et al. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension // Cell Metabolism. 2010. V. 12. № 2. P. 130–141. https://doi.org/10.1016/j.cmet.2010.05.015

  153. Yang L.Z., Tovote P., Rayner M. et al. Corticotropin-releasing factor receptors and urocortins, links between the brain and the heart // European J. Pharmacology. 2010. V. 632. № 1–3. P. 1–6. https://doi.org/10.1016/j.ejphar.2010.01.027

  154. Yarushkina N.I., Bagaeva T.R., Filaretova L.P. Involvement of corticotropin-releasing factor receptors type 2, located in periaquaductal gray matter, in central and peripheral CRF-induced analgesic effect on somatic pain sensitivity in rats. // J. Physiology and Pharmacology. 2016. V. 67. № 4. P. 595–603.

  155. Yarushkina N.I., Filaretova L.P. The peripheral corticotropin-releasing factor (CRF)-induced analgesic effect on somatic pain sensitivity in conscious rats: involving CRF, opioid and glucocorticoid receptors // Inflammopharmacology. 2018. V. 26. № 2. P. 305–318. https://doi.org/10.1007/s10787-018-0445-5

  156. Yuan P.Q., Wu S.V., Stengel A., Sato K., Taché Y. Activation of CRF1 receptors expressed in brainstem autonomic nuclei stimulates colonic enteric neurons and secreto-motor function in male rats // Neurogastroenterology and Motility. 2021. V. 33. № 11. P. e14189. https://doi.org/10.1111/nmo.14189

  157. Zhang S., Tang L., Xu F. et al. TRPV1 receptor-mediated hypoglycemic mechanism of capsaicin in streptozotocin-induced diabetic rats // Frontiers in Nutrition. 2021. V. 8. P. 750355. https://doi.org/10.3389/fnut.2021.750355

  158. Zhou S.Y., Lu Y., Song I., Owyang C. Inhibition of gastric motility by hyperglycemia is mediated by nodose ganglia KATP channels // American J. Physiology. Gastrointestinal and Liver Physiology. 2011. V. 300. № 3. P. 394–400. https://doi.org/10.1152/ajpgi.00493.2010

  159. Zittel T.T., Meile T., Huge A. et al. Preoperative intraluminal application of capsaicin increases postoperative gastric and colonic motility in rats // J. Gastrointestinal Surgery. 2001. V. 5. P. 503–13. https://doi.org/10.1016/s1091-255x(01)80088-3

Дополнительные материалы отсутствуют.