Высокомолекулярные соединения (серия С), 2023, T. 65, № 1, стр. 91-109

ИСТОРИЯ И ПЕРСПЕКТИВЫ АТОМИСТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПОЛИСАХАРИДОВ

В. И. Дещеня ab*, Н. Д. Кондратюк abc

a Московский физико-технический институт (национальный исследовательский университет)
141701 Московская обл., Долгопрудный, Институтский пер., 9, Россия

b Объединенный институт высоких температур Российской академии наук
125412 Москва, ул. Ижорская, 13, стр.2, Россия

c Национальный исследовательский университет Высшая школа экономики
101000 Москва, ул. Мясницкая, 20, Россия

* E-mail: deshchenia.vi@phystech.edu

Поступила в редакцию 17.04.2023
После доработки 09.06.2023
Принята к публикации 13.07.2023

Аннотация

Представлены история и перспективы развития потенциалов межатомного взаимодействия для моделирования молекулярных систем и, в частности, полисахаридов. Рассмотрены популярные семейства потенциалов, такие как CHARMM, GROMOS, AMBER и OPLS. Обозначены проблемы применимости данных моделей для мономеров сахаров: плохая воспроизводимость экспериментальных свойств и гиперагрегация при малых концентрациях. Также рассмотрены векторы развития данной области: модификация невалентных взаимодействий в потенциале и использование поляризуемых потенциалов. Продемонстрированы примеры применения атомистического моделирования полисахаридов в актуальных фундаментальных и промышленных задачах на примере целлюлозы. Приведены важные вычислительные работы, внесшие существенный вклад в понимание структуры и процессов, происходящих в кристалле целлюлозы. Кроме того, дан обзор доступных на сегодня масштабов времен и характерных размеров систем для моделирования в пакетах GROMACS, LAMMPS, OpenMM и AMBER для модели раствора сахарозы.

Список литературы

  1. Venturoli D. and Rippe B., American Journal of Physiology-Renal hysiology. 2005. V. 288. P. F605.

  2. Yuan Y., Yang Y., Tian Y., Park J., Dai A., Roberts R.M., Liu Y., and Han X., Scientific Reports. 2016. V. 6. P. 34476.

  3. Zhao G., Liu X., Zhu K., and He X., Advanced Healthcare Materials. 2017. V. 6. P. 1700988.

  4. Mao Y., Han X., and Zhang Y., International Journal of Heat and Mass Transfer. 2018. V. 127. P. 319.

  5. Shahid S., Hasan I., Ahmad F., Hassan M.I., and Islam A., Biomolecules. 2019. V. 9. P. 477.

  6. Gore M., Narvekar A., Bhagwat A., Jain R., and Dandekar P., Journal of Materials Chemistry B. 2022. V. 10. P. 143.

  7. Vatanpour V., Pasaoglu M.E., Barzegar H., Teber O.O., Kaya R., Bastug M., Khataee A., and Koyuncu I., Chemosphere. 2022. V. 295. P. 133914.

  8. Li S., Wang X., Guo Y., Hu J., Lin S., Tu Y., Chen L., Ni Y., and Huang L., Journal of Cleaner Production. 2022. V. 333. P. 130171.

  9. Spiridonov V.V., Panova I.G., Sybachin A.V., Kuznetsov V.V., Afanasov M.I., Alekhina Y.A., Melik-Nubarov N.S., and Yaroslavov A.A., Polymer Science, Series A. 2019. V. 61. P. 296.

  10. Zashikhina N.N., Yudin D.V., Tarasenko I.I., Osipova O.M., and Korzhikova-Vlakh E.G., Polymer Science, Series A. 2020. V. 62. P. 43.

  11. Shibaev A.V., Doroganov A.P., Larin D.E., Smirnova M.E., Cherkaev G.V., Kabaeva N.M., Kitaeva D.K., Buyanov-skaya A.G., and Philippova O.E., Polymer Science, Series A. 2021. V. 63. P. 24.

  12. Lander S., Vagin M., Gueskine V., Erlandsson J., Boissard Y., Korhonen L., Berggren M., W˚agberg L., and Crispin X., Advanced Energy and Sustainability Research. 2022. V. 3. P. 2200016.

  13. Yang H., Edberg J., Gueskine V., Vagin M., Say M.G., Erlandsson J., Wågberg L., Engquist I., and Berggren M., Carbohydrate Polymers. 2022. V. 278. P. 118938.

  14. Demina T.S., Akopova T.A., and Zelenetsky A.N., Polymer Science, Series C. 2021. V. 63. P. 219.

  15. Bogdanova O.I. and Chvalun S.N., Polymer Science, Series A. 2016. V. 58. P. 629.

  16. Ewen J., Gattinoni C., Thakkar F., Morgan N., Spikes H., and Dini D., Materials. 2016. V. 9. P. 651.

  17. Glova A.D., Volgin I.V., Nazarychev V.M., Larin S.V., Lyulin S.V., and Gurtovenko A.A., RSC Advances. 2019. V. 9. P. 38834.

  18. Orekhov N., Ostroumova G., and Stegailov V., Carbon. 2020. V. 170. P. 606.

  19. Nazarychev V.M., Glova A.D., Volgin I.V., Larin S.V., Lyulin A.V., Lyulin S.V., and Gurtovenko A.A., International Journal of Heat and Mass Transfer. 2021. V. 165. P. 120639.

  20. Bakulin I., Kondratyuk N., Lankin A., and Norman G., The Journal of Chemical Physics. 2021. V. 155. P. 154501.https://doi.org/10.1063/5.0059337

  21. Vaganova M., Nesterova I., Kanygin Y., Kazennov A., and Khlyupin A., Chemical Engineering Science. 2022. V. 250. P. 117383.

  22. Mackerell A.D., Journal of Computational Chemistry. 2004. V. 25. P. 1584.

  23. Perez S. and Makshakova O., Chemical Reviews. 2022. V. 122. P. 15914.

  24. Salzner U. and Schleyer P.v.R., The Journal of Organic Chemistry. 1994. V. 59. P. 2138.

  25. Glennon T.M., Zheng Y.-J., Le Grand S.M., Shutzberg B.A., and Merz K.M., Journal of Computational Chemistry. 1994. V. 15. P. 1019.

  26. Barrows S.E., Dulles F.J., Cramer C.J., French A.D., and Truhlar D.G., Carbohydrate Research. 1995. V. 276. P. 219.

  27. Brown J.W. and Wladkowski B.D., Journal of the American Chemical Society. 1996. V. 118. P. 1190.

  28. Alder B.J. and Wainwright T.E., The Journal of Chemical Physics. 1957. V. 27. P. 1208.

  29. Gibson J.B., Goland A.N., Milgram M., and Vineyard G.H., Phys. Rev. 1960. V. 120. P. 1229.

  30. Rahman A., Phys. Rev. 1964. V. 136. P. A405.

  31. Singharoy A., Maffeo C., Delgado-Magnero K.H., Swainsbury D.J., Sener M., Kleinekathöfer U., Vant J.W., Nguyen J., Hitchcock A., Isralewitz B., Teo I., Chandler D.E., Stone J.E., Phillips J.C., Pogorelov T.V., Mallus M.I., Chipot C., Luthey-Schulten Z., Tieleman D.P., Hunter C.N., Tajkhorshid E., Aksimentiev A., and Schulten K., Cell. 2019. V. 179. P. 1098.

  32. Nguyen-Cong K., Willman J.T., Moore S.G., Belonosh-ko A.B., Gayatri R., Weinberg E., Wood M.A., Thompson A.P., and Oleynik I.I., in Proceedings of the international conference for high performance computing, networking, storage and analysis, SC ’21 (2021).

  33. Shaw D.E., Deneroff M.M., Dror R.O., Kuskin J.S., Larson R.H., Salmon J.K., Young C., Batson B., Bowers K.J., Chao J.C., Eastwood M.P., Gagliardo J., Grossman J.P., Ho C.R., Ierardi D.J., Kolossv’ary I., Klepeis J.L., Layman T., McLeavey C., Moraes M.A., Mueller R., Priest E.C., Shan Y., Spengler J., Theobald M., Towles B., and Wang S.C., Communications of the ACM. 2008. V. 51. P. 91.

  34. Shaw D.E., Dror R.O., Salmon J.K., Grossman J.P., Mackenzie K.M., Bank J.A., Young C., Deneroff M.M., Batson B., Bowers K.J., Chow E., Eastwood M.P., Ierardi D.J., Klepeis J.L., Kuskin J.S., Larson R.H., Lindorff-Larsen K., Maragakis P., Moraes M.A., Piana S., Shan Y., and Towles B., in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (Nov. 2009). P. 1–11.

  35. Shaw D.E., Grossman J., Bank J.A., Batson B., Butts J.A., Chao J.C., Deneroff M.M., Dror R.O., Even A., Fenton C.H., Forte A., Gagliardo J., Gill G., Greskamp B., Ho C.R., Ierardi D.J., Iserovich L., Kuskin J.S., Larson R.H., Layman T., Lee L.-S., Lerer A.K., Li C., Killebrew D., Mackenzie K.M., Mok S.Y.-H., Moraes M.A., Mueller R., Nociolo L.J., Peticolas J.L., Quan T., Ramot D., Salmon J.K., Scarpazza D.P., Schafer U.B., Siddique N., Snyder C.W., Spengler J., Tang P.T.P., Theobald M., Toma H., Towles B., Vitale B., Wang S.C., and Young C., in SC14: International Conference for High Performance Computing, Networking, Storage and Analysis (Nov. 2014). P. 41–53.

  36. Shaw D.E., Adams P.J., Azaria A., Bank J.A., Batson B., Bell A., Bergdorf M., Bhatt J., Butts J.A., Correia T., Dirks R.M., Dror R.O., Eastwood M.P., Edwards B., Even A., Feldmann P., Fenn M., Fenton C.H., Forte A., Gagliardo J., Gill G., Gorlatova M., Greskamp B., Grossman J., Gullingsrud J., Harper A., Hasenplaugh W., Heily M., Heshmat B.C., Hunt J., Ierardi D.J., Iserovich L., Jackson B.L., Johnson N.P., Kirk M.M., Klepeis J.L., Kuskin J.S., Mackenzie K.M., Mader R.J., McGowen R., McLaughlin A., Moraes M.A., Nasr M.H., Nociolo L.J., O’Donnell L., Parker A., Peticolas J.L., Pocina G., Predescu C., Quan T., Salmon J.K., Schwink C., Shim K.S., Siddique N., Spengler J., Szalay T., Tabladillo R., Tartler R., Taube A.G., Theobald M., Towles B., Vick W., Wang S.C., Wazlowski M., Weingarten M.J., Williams J.M., and Yuh K.A., in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (Nov. 2021). P. 1–11.

  37. Swope W.C., Andersen H.C., Berens P.H., and Wilson K.R., The Journal of Chemical Physics. 1982. V. 76. P. 637.

  38. Hockney R. and Eastwood J., Computer Simulation Using Particles, 0th ed. (CRC Press, Mar. 2021).

  39. Lorentz H.A., Ann. Phys. 1881. V. 248. P. 127.

  40. Berthelot D., Comptes rendus hebdomadaires des s’eances de l’Acad’emie des Sciences. 1898. V. 126. P. 1703.

  41. Weiner S.J., Kollman P.A., Case D.A., Singh U.C., Ghio C., Alagona G., Profeta S., and Weiner P., J. Am. Chem. Soc. 1984. V. 106. P. 765.

  42. Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., and M. Karplus, J. Comput. Chem. 1983. V. 4. P. 187.

  43. Zhu X., Lopes P.E.M., and MacKerell A.D., WIREs Comput Mol Sci. 2012. V. 2. P. 167.

  44. Jorgensen W.L. and Tirado-Rives J., Journal of the American Chemical Society. 1988. V. 110. P. 1657.

  45. Van Gunsteren W.F. and Karplus M., Macromolecules. 1982. V. 15. P. 1528.

  46. Hermans J., Berendsen H.J.C., Van Gunsteren W.F., and Postma J.P.M., Biopolymers. 1984. V. 23. P. 1513.

  47. Kondratyuk N.D. and Pisarev V.V., Fluid Phase Equilibria. 2019. V. 498. P. 151.

  48. Kondratyuk N.D., Journal of Physics: Conference Series 1385, 012048 (2019).

  49. Kondratyuk N.D., Pisarev V.V., and Ewen J.P. The Journal of Chemical Physics. 2020. V. 153. P. 154502, (2020).https://doi.org/10.1063/5.0028393

  50. Rappe A.K., Casewit C.J., Colwell K.S., Goddard W.A., and Skiff W.M., Journal of the American Chemical Society. 1992. V. 114. P. 10024.

  51. Sun H., The Journal of Physical Chemistry B. 1998. V. 102. P. 7338.

  52. Halgren T.A., Journal of Computational Chemistry. 1999. V. 20. P. 730.

  53. Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., and Simmerling C., Journal of Chemical Theory and Computation. 2015. V. 11. P. 3696.

  54. Damm W., Frontera A., Tirado-Rives J., and Jorgensen W.L., Journal of Computational Chemistry. 1997. V. 18. P. 1955.

  55. Kirschner K.N., Yongye A.B., Tschampel S.M., Gonz’alez-Outeirin˜o J., Daniels C.R., Foley B.L., and Woods R.J., Journal of Computational Chemistry. 2008. V. 29. P. 622.

  56. Shi Y., Xia Z., Zhang J., Best R., Wu C., Ponder J.W., and Ren P., Journal of Chemical Theory and Computation. 2013. V. 9. P. 4046.

  57. Ponder J.W., Wu C., Ren P., Pande V.S., Chodera J.D., Schnieders M.J., Haque I., Mobley D.L., Lambrecht D.S., DiStasio R.A., HeadGordon M., Clark G.N.I., Johnson M.E., and Head-Gordon T., The Journal of Physical Chemistry B. 2010. V. 114. P. 2549.

  58. Lemkul J.A., Huang J., Roux B., and MacKerell A.D., Chemical Reviews. 2016. V. 116. P. 4983.

  59. Lewis-Atwell T., Townsend P.A., and Grayson M.N., Tetrahedron. 2021. V. 79. P. 131865.

  60. Allinger N.L., Journal of the American Chemical Society. 1977. V. 99. P. 8127.

  61. Allinger N.L., Yuh Y.H., and Lii J.H., Journal of the American Chemical Society. 1989. V. 111. P. 8551.

  62. Martin M.G., Fluid Phase Equilibria. 2006. V. 248. P. 50.

  63. Martin M.G. and Siepmann J.I., The Journal of Physical Chemistry B. 1998. V. 102. P. 2569.

  64. Martin M.G. and Siepmann J.I., The Journal of Physical Chemistry B. 1999. V. 103. P. 4508.

  65. Wick C.D., Martin M.G., and Siepmann J.I., The Journal of Physical Chemistry B. 2000. V. 104. P. 8008.

  66. Chen B., Potoff J.J., and Siepmann J.I., The Journal of Physical Chemistry B. 2001. V. 105. P. 3093.

  67. Lubna N., Kamath G., Potoff J.J., Rai N., and Siepmann J.I., The Journal of Physical Chemistry B. 2005. V. 109. P. 24100.

  68. MacKerell A.D., Bashford D., Bellott M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuchnir L., Kuczera K., Lau F.T.K., Mattos C., Michnick S., Ngo T., Nguyen D.T., Prodhom B., Reiher W.E., Roux B., Schlenkrich M., Smith J.C., Stote R., Straub J., Watanabe M., Wi’orkiewicz-Kuczera J., Yin D., and Karplus M., J. Phys. Chem. B. 1998. V. 102. P. 3586.

  69. Jorgensen W.L. and Swenson C.J., Journal of the American Chemical Society. 1985. V. 107. P. 569.

  70. Jorgensen W.L., Maxwell D.S., and Tirado-Rives J., Journal of the American Chemical Society. 1996. V. 118. P. 11225.

  71. Kaminski G.A., Friesner R.A., Tirado-Rives J., and Jorgensen W.L., The Journal of Physical Chemistry B. 2001. V. 105. P. 6474.

  72. Horta B.A.C., Merz P.T., Fuchs P.F.J., Dolenc J., Riniker S., and Hu¨nenberger P.H., Journal of Chemical Theory and Computation. 2016. V. 12. P. 3825.

  73. Kashefolgheta S., Wang S., Acree W.E., and Hünenberger P.H., Physical Chemistry Chemical Physics. 2021. V. 23. P. 13055.

  74. Patel D.S., He X., and MacKerell A.D., The Journal of Physical Chemistry B. 2015. V. 119. P. 637.

  75. Jana M. and MacKerell A.D., The Journal of Physical Chemistry B. 205. V. 119. P. 7846.

  76. Yang M., Aytenfisu A.H., and MacKerell A.D., Carbohydrate Research. 2018. V. 457. P. 41.

  77. Aytenfisu A.H., Yang M., and MacKerell A.D., Journal of Chemical Theory and Computation. 2018. V. 14. P. 3132.

  78. Mackerell A.D., Feig M., and Brooks C.L., Journal of Computational Chemistry. 2004. V. 25. P. 1400.

  79. MacKerell A.D., Feig M., and Brooks C.L., Journal of the American Chemical Society. 2004. V. 126. P. 698.

  80. Foloppe N. and MacKerell Jr.A.D., J. Comput. Chem. 2000. V. 21. P. 86.

  81. Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., Mondragon-Ramirez C., Vorobyov I., MacKerell A.D., and Pastor R.W., J. Phys. Chem. B. 2010. V. 114. P. 7830.

  82. Denning E.J., Priyakumar U.D., Nilsson L., and Mackerell A.D., J. Comput. Chem. 2011. V. 32. P. 1929.

  83. Hart K., Foloppe N., Baker C.M., Denning E.J., Nilsson L., and MacKerell A.D., J. Chem. Theory Comput. 2012. V. 8. P. 348.

  84. Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmüller H., and MacKerell A.D., Nat Methods. 2017. V. 14. P. 71.

  85. Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I., and Mackerell A.D., J. Comput. Chem., NA. 2009.

  86. Soteras Guti’errez I., Lin F.-Y., Vanommeslaeghe K., Lemkul J.A., Armacost K.A., Brooks C.L., and MacKerell A.D., Bioorganic & Medicinal Chemistry. 2016. V. 24. P. 4812.

  87. Ha S.N., Giammona A., Field M., and Brady J.W., Carbohydrate Research.1988. V. 180. P. 207.

  88. Brady J.W., Journal of the American Chemical Society. 1989. V. 111. P. 5155.

  89. Grootenhuis P.D.J. and Haasnoot C.A.G., Molecular Simulation. 1993. V. 10. P. 75.

  90. Kouwizjer M.L.C.E. and Grootenhuis P.D.J., The Journal of Physical Chemistry. 1995. V. 99. P. 13426.

  91. Reiling S., Schlenkrich M., and Brickmann J., Journal of Computational Chemistry. 1996. V. 17. P. 450.

  92. Palma R., Zuccato P., Himmel M.E., Liang G., and Brady J.W., “Molecular Mechanics Studies of Cellulases”, in Glycosyl Hydrolases for Biomass Conversion, V. 769, ACS Symposium Series (American Chemical Society, Oct. 2000). P. 112–130.

  93. Kuttel M., Brady J.W., and Naidoo K.J., Journal of Computational Chemistry. 2002. V. 23. P. 1236.

  94. Guvench O., Greene S.N., Kamath G., Brady J.W., Venable R.M., Pastor R.W., and Mackerell A.D., J. Comput. Chem. 2008. V. 29. P. 2543.

  95. Hatcher E., Guvench O., and MacKerell A.D., J. Phys. Chem. B. 2009. V. 113. P. 12466.

  96. Raman E.P., Guvench O., and MacKerell A.D., J. Phys. Chem. B. 2010. V. 114. P. 12981.

  97. Vanommeslaeghe K. and MacKerell A., Biochimica et Biophysica Acta (BBA) – General Subjects. 2015. V. 1850. P. 861.

  98. Huang J., Lopes P.E.M., Roux B., and MacKerell A.D., The Journal of Physical Chemistry Letters. 2014. V. 5. P. 3144.

  99. Baker C.M., Anisimov V.M., and MacKerell A.D., The Journal of Physical Chemistry B. 2011. V. 115. P. 580.

  100. Daura X., Mark A.E., and Van Gunsteren W.F., Journal of Computational Chemistry. 1998. V. 19. P. 535.

  101. Lins R.D. and Hu¨nenberger P.H., J. Comput. Chem. 2005. V. 26. P. 1400.

  102. Oostenbrink C., Villa A., Mark A.E., and Van Gunsteren W.F., Journal of Computational Chemistry. 2004. V. 25. P. 1656.

  103. Pereira C.S., Kony D., Baron R., Müller M., van Gunsteren W.F., and Hünenberger P.H., Biophysical Journal. 2006. V. 90. P. 4337.

  104. Franca E.F., Lins R.D., Freitas L.C.G., and Straatsma T.P., Journal of Chemical Theory and Computation. 2008. V. 4. P. 2141.

  105. Bergenstråhle M., Thormann E., Nordgren N., and Berglund L.A., Langmuir. 2009. V. 25. P. 4635.

  106. Kräutler V., Müller M., and Hüenberger P.H., Carbohydrate Research. 2007. V. 342. P. 2097.

  107. Autieri E., Sega M., Pederiva F., and Guella G., The Journal of Chemical Physics. 2010. V. 133. P. 095104.

  108. Hansen H.S. and Hünenberger P.H., Journal of Computational Chemistry. 2010. V. 31. P. 1.

  109. Hansen H.S. and Hünenberger P.H., J. Comput. Chem. 2011. V. 32. P. 998.

  110. Naumov V.S. and Ignatov S.K., Journal of Molecular Modeling. 2017. V. 23. P. 244.

  111. Nester K., Gaweda K., and Plazinski W., J. Chem. Theory Comput. 2019.

  112. Pol-Fachin L., Rusu V.H., Verli H., and Lins R.D., Journal of Chemical Theory and Computation. 2012. V. 8. P. 4681.

  113. Marrink S.J., Risselada H.J., Yefimov S., Tieleman D.P., and de Vries A.H., J. Phys. Chem. B. 2007. V. 111. P. 7812.

  114. Souza P.C.T., Alessandri R., Barnoud J., Thallmair S., Faustino I., Grünewald F., Patmanidis I., Abdizadeh H., Bruininks B.M.H., Wassenaar T.A., Kroon P.C., Melcr J., Nieto V., Corradi V., Khan H.M., Domański J., Javanainen M., Martinez-Seara H., Reuter N., Best R.B., I. Vattulainen, Monticelli L., Periole X., Tieleman D.P., de Vries A.H., and Marrink S.J., Nature Methods. 2021. V. 18. P. 382.

  115. López C.A., Rzepiela A.J., de Vries A.H., Dijkhuizen L., Hünenberger P.H., and Marrink S.J., J. Chem. Theory Comput. 2009. V. 5. P. 3195.

  116. Lutsyk V., Wolski P., and Plazinski W., Journal of Chemical Theory and Computation. 2022. V. 18. P. 5089.

  117. Gru¨newald F., Punt M.H., Jefferys E.E., Vainikka P.A., K¨onig M., Virtanen V., Meyer T.A., Pezeshkian W., Gormley A.J., Karonen M., Sansom M.S.P., Souza P.C.T., and Marrink S.J., Journal of Chemical Theory and Computation. 2022. V. 18. P. 7555.

  118. Tian C., Kasavajhala K., Belfon K.A.A., Raguette L., Huang H., Migues A.N., Bickel J., Wang Y., Pincay J., Wu Q., and Simmerling C., J. Chem. Theory Comput. 2020. V. 16. P. 528.

  119. Hornak V., Abel R., Okur A., Strockbine B., Roitberg A., and Simmerling C., Proteins: Structure, Function, and Bioinformatics. 2006. V. 65. P. 712.

  120. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., and Kollman P.A., Journal of the American Chemical Society. 1995. V. 117. P. 5179.

  121. Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., and Orozco M., Biophysical Journal. 2007. V. 92. P. 3817.

  122. ZgarbováM., Sponer J., Otyepka M., Cheatham T.E., Galindo-Murillo R., and Jurečka P., J. Chem. Theory Comput. 2015. V. 11. P. 5723.

  123. Ivani I., Dans P.D., Noy A., Pérez A., Faustino I., Hospital A., Walther J., Andrio P., Gonĩ R., Balaceanu A., Portella G., Battistini F., Gelpí J.L., González C., Vendruscolo M., Laughton C.A., Harris S.A., Case D.A., and Orozco M., Nature Methods. 2016. V. 13. P. 55.

  124. Dickson C.J., Walker R.C., and Gould I.R., J. Chem. Theory Comput. 2022. V. 18. P. 1726.

  125. He X., Man V. H., Yang W., Lee T.-S., and Wang J., J. Chem. Phys. 2020. V. 153. P. 114502.

  126. Woods R.J., Dwek R.A., Edge C.J., and Fraser-Reid B., The Journal of Physical Chemistry. 1995. V. 99. P. 3832.

  127. Kirschner K.N. and Woods R.J., Proceedings of the National Academy of Sciences. 2001. V. 98. P. 10541.

  128. Basma M., Sundara S., Cąlgan D., Vernali T., and Woods R.J., Journal of Computational Chemistry. 2001. V. 22. P. 1125.

  129. Tschampel S.M., Kennerty M.R., and Woods R.J., Journal of Chemical Theory and Computation. 2007. V. 3. P. 1721.

  130. Homans S.W., Biochemistry. 1990. V. 29. P. 9110.

  131. Edge C.J., Singh U.C., Bazzo R., Taylor G.L., Dwek R.A., and Rademacher T.W., Biochemistry. 1990. V. 29. P. 1971.

  132. Momany F. and Willett J., Carbohydrate Research. 2000. V. 326. P. 194.

  133. Momany F.A., Willett J., and Schnupf U., Carbohydrate Polymers. 2009. V. 78. P. 978.

  134. Jorgensen W.L., Journal of the American Chemical Society. 1978. P. 8.

  135. Jorgensen W.L., The Journal of Chemical Physics. 1979. V. 71. P. 5034.

  136. Jorgensen W.L. and Ibrahim M., Journal of the American Chemical Society. 1980. V. 102. P. 3309.

  137. Jorgensen W.L., Journal of the American Chemical Society. 1981. V. 103. P. 335.

  138. Maxwell D.S., Tirado-Rives J., and Jorgensen W.L., J. Comput. Chem. 1995. V. 16. P. 984.

  139. Dunbrack R.L. and Karplus M., Nat Struct Mol Biol. 1994. V. 1. P. 334.

  140. Kony D., Damm W., Stoll S., and Van Gunsteren W.F., Journal of Computational Chemistry. 2002. V. 23. P. 1416.

  141. Dodda L.S., Vilseck J.Z., Tirado-Rives J., and Jorgensen W.L., The Journal of Physical Chemistry B 121, 3864 (2017).

  142. Dodda L.S., Cabeza de Vaca I., Tirado-Rives J., and Jorgensen W.L., Nucleic Acids Research. 2017. V. 45. P. W331.

  143. Deshchenya V.I., Kondratyuk N.D., Lankin A.V., and Norman G.E., Russian Journal of Physical Chemistry A. 2022. V. 96. P. 556.

  144. Deshchenya V., Kondratyuk N., Lankin A., and Norman G., Journal of Molecular Liquids. 2022. V. 367. P. 120456.

  145. Foley B.L., Tessier M.B., and Woods R.J., WIREs Comput Mol Sci. 2012. V. 2. P. 652.

  146. Sauter J. and Grafmüller A., Journal of Chemical Theory and Computation. 2015. V. 11. P. 1765.

  147. Lay W.K., Miller M.S., and Elcock A.H., Journal of Chemical Theory and Computation. 2016. V. 12. P. 1401.

  148. Batista M.L.S., Pérez-Sánchez G., Gomes J.R.B., Coutinho J.A.P., and Maginn E.J., The Journal of Physical Chemistry B. 2015. V. 119. P. 15310.

  149. Kopanichuk I., Scerbacova A., Ivanova A., Cheremisin A., and Vishnyakov A., Journal of Molecular Liquids. 2022. V. 360. P. 119525.

  150. Yoo J. and Aksimentiev A., Physical Chemistry Chemical Physics. 2018. V. 20. P. 8432.

  151. Yoo J. and Aksimentiev A., The Journal of Physical Chemistry Letters. 2012. V. 3. P. 45.

  152. Yoo J. and Aksimentiev A., Journal of Chemical Theory and Computation. 2016. V. 12. P. 430.

  153. Yoo J. and Aksimentiev A., The Journal of Physical Chemistry Letters. 2016. V. 7. P. 3812.

  154. Yoo J., Wilson J., and Aksimentiev A., Biopolymers. 2016. V. 105. P. 752.

  155. Lay W.K., Miller M.S., and Elcock A.H., Journal of Chemical Theory and Computation. 2017. V. 13. P. 1874.

  156. Bhargava B.L. and Balasubramanian S., The Journal of Chemical Physics. 2007. V. 127. P. 114510.

  157. Youngs T.G.A. and Hardacre C., Chem Phys Chem. 2008. V. 9. P. 1548.

  158. Schröder C., Phys. Chem. Chem. Phys. 2012. V. 14. P. 3089.

  159. Jamali S.H., Westen T.V., Moultos O.A., and Vlugt T.J.H., Journal of Chemical Theory and Computation. 2018. V. 14. P. 6690.

  160. Kovalenko V.I., Russian Chemical Reviews. 2010. V. 79. P. 231.

  161. Nishiyama Y., Journal of Wood Science. 2009. V. 55. P. 241.

  162. Nishiyama Y., Sugiyama J., Chanzy H., and Langan P., Journal of the American Chemical Society. 2003. V. 125. P. 14300.

  163. Nishiyama Y., Langan P., and Chanzy H., Journal of the American Chemical Society. 2002. V. 124. P. 9074.

  164. Wada M., Chanzy H., Nishiyama Y., and Langan P., Macromolecules. 2004. V. 37. P. 8548.

  165. Hori R. and Wada M., Cellulose. 2006. V. 13. P. 281.

  166. Wada M., Heux L., and Sugiyama J., Biomacromolecules. 2004. V. 5. P. 1385.

  167. Newman R.H., Cellulose. 2008. V. 15. P. 769.

  168. Kulshreshtha A.K., The Journal of the Textile Institute. 1979. V. 70. P. 13.

  169. Dufresne A., Materials Today. 2013. V. 16. P. 220.

  170. Vanderfleet O.M. and Cranston E.D., Nature Reviews Materials. 2020. V. 6. P. 124.

  171. Dhali K., Ghasemlou M., Daver F., Cass P., and Adhikari B., Science of  the Total Environment. 2021. V. 775. P. 145871.

  172. Rao A., Divoux T., Owens C.E., and Hart A.J., Cellulose. 2022. V. 29. P. 2387.

  173. Mu R., Hong X., Ni Y., Li Y., Pang J., Wang Q., Xiao J., and Zheng Y., Trends in Food Science & Technology. 2019. V. 93. P. 136.

  174. Kalashnikova I., Bizot H., Cathala B., and Capron I., Langmuir. 2011. V. 27. P. 7471.

  175. Li R., Liu Y., Seidi F., Deng C., Liang F., and Xiao H., Advanced Materials Interfaces. 2022. V. 9. P. 2101293.

  176. Lugoloobi I., Maniriho H., Jia L., Namulinda T., Shi X., and Zhao Y., Journal of Controlled Release. 2021. V. 336. P. 207.

  177. Aziz T., Ullah A., Fan H., Ullah R., Haq F., Khan F.U., Iqbal M., and Wei J., Journal of Polymers and the Environment. 2021. V. 29. P. 2062.

  178. Heiner A.P., Sugiyama J., and Teleman O., Carbohydrate Research. 1995. V. 273. P. 207.

  179. Wu X., Moon R. J., and Martini A., Cellulose. 2014. V. 21. P. 2233.

  180. van Duin A.C.T., Dasgupta S., Lorant F., and Goddard W.A., The Journal of Physical Chemistry A. 2001. V. 105. P. 9396.

  181. Bergenstråhle M., Berglund L.A., and Mazeau K., The Journal of Physical Chemistry B. 2007. V. 111. P. 9138.

  182. Miyamoto H., Umemura M., Aoyagi T., Yamane C., Ueda K., and Takahashi K., Carbohydrate Research. 2009. V. 344. P. 1085.

  183. Miyamoto H., Ago M., Yamane C., Seguchi M., Ueda K., and Okajima K., Carbohydrate Research. 2011. V. 346. P. 807.

  184. Yang G., Miyamoto H., Yamane C., and Okajima K., Polymer Journal. 2007. V. 39. P. 34.

  185. Yamane C., Miyamoto H., Hayakawa D., and Ueda K., Carbohydrate Research. 2013. V. 379. P. 30.

  186. López C.A., Bellesia G., Redondo A., Langan P., Chundawat S.P.S., Dale B.E., Marrink S.J., and Gnanakaran S., The Journal of Physical Chemistry B. 2015. V. 119. P. 465.

  187. Liu H., Sale K.L., Holmes B.M., Simmons B.A., and Singh S., The Journal of Physical Chemistry B. 2010. V. 114. P. 4293.

  188. Kostritskii A.Y., Tolmachev D.A., Lukasheva N.V., and Gurtovenko A.A., Langmuir. 2017. V. 33. P. 12793.

  189. Gurtovenko A.A., Mukhamadiarov E.I., Kostritskii A.Y., and Karttunen M., The Journal of Physical Chemistry B. 2018. V. 122. P. 9973.

  190. Gurtovenko A.A. and Karttunen M., Langmuir. 2019. V. 35. P. 13753.

  191. Gurtovenko A.A. and Karttunen M., Soft Matter. 2021. V. 17. P. 6507.

  192. Guvench O., Hatcher E., Venable R.M., Pastor R.W., and MacKerell A.D., J. Chem. Theory Comput. 2009. V. 5. P. 2353.

  193. Tchipev N., Seckler S., Heinen M., Vrabec J., Gratl F., Horsch M., Bernreuther M., Glass C.W., Niethammer C., Hammer N., Krischok B., Resch M., Kranzlmüller D., Hasse H., Bungartz H.-J., and Neumann P., Int. J. High Perf. Comp. Applications 0, 1094342018819741. (2019).

  194. Kutzner C., Páll S., Fechner M., Esztermann A., de Groot B.L., and Grubmüler H., Journal of computational chemistry. 2015. V. 36. P. 1990.

  195. Kutzner C., Páll S., Fechner M., Esztermann A., de Groot B.L., and Grubmüller H., Journal of Computational Chemistry. 2019. V. 40. P. 2418.

  196. Stegailov V., Dlinnova E., Ismagilov T., Khalilov M., Kondratyuk N., Makagon D., Semenov A., Simonov A., Smirnov G., and Timofeev A., The International Journal of High Performance Computing Applications. 2019. V. 33. P. 507.

  197. Pisarev V. and Kondratyuk N., Fluid Phase Equilibria. 2019. V. 501. P. 112273.

  198. Smirnov G.S. and Stegailov V.V., Journal of Physics: Condensed Matter. 2019. V. 31. P. 235704.

  199. Antropov A. and Stegailov V., Journal of Nuclear Materials. 2020. V. 533. P. 152110.

  200. Kolotinskii D. and Timofeev A., Computer Physics Communications. 2023. V. 288. P. 108746.

  201. Plimpton S., J. Comput. Phys. 1995. V. 117. P. 1.

  202. Berendsen H., van der Spoel D., and van Drunen R., Computer Physics Communications. 1995. V. 91. P. 43.

  203. Salomon-FerrerR., Case D.A., and Walker R.C., WIREs Computational Molecular Science. 2013. V. 3. P. 198.

  204. Brown W.M., Wang P., Plimpton S.J., and Tharrington A.N., Computer Physics Communications. 2011. V. 182. P. 898.

  205. Brown W.M., Kohlmeyer A., Plimpton S.J., and Tharrington A.N., Computer Physics Communications. 2012. V. 183. P. 449.

  206. Brown W.M. and Yamada M., Computer Physics Communications. 2013. V. 184. P. 2785.

  207. Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., and Lindahl E., SoftwareX. 2015. V. 1–2. P. 19.

  208. Götz A.W., Williamson M.J., Xu D., Poole D., Le Grand S., and Walker R.C., Journal of Chemical Theory and Computation. 2012. V. 8. P. 1542.

  209. Salomon-Ferrer R., Götz A.W., Poole D., Le Grand S., and Walker R.C., Journal of Chemical Theory and Computation. 2013. V. 9. P. 3878.

  210. Anderson J.A., Lorenz C.D., and Travesset A., Journal of Computational Physics. 2008. V. 227. P. 5342.

  211. Glaser J., Nguyen T.D., Anderson J.A., Lui P., Spiga F., Millan J.A., Morse D.C., and Glotzer S.C., Computer Physics Communications. 2015. V. 192. P. 97.

  212. Eastman P., Friedrichs M.S., Chodera J.D., Radmer R.J., Bruns C.M., Ku J.P., Beauchamp K.A., Lane T.J., Wang L.-P., Shukla D., Tye T., Houston M., Stich T., Klein C., Shirts M. R., and Pande V.S., Journal of Chemical Theory and Computation. 2013. V. 9. P. 461.

  213. Eastman P., Swails J., Chodera J.D., McGibbon R.T., Zhao Y., Beauchamp K.A., Wang L.-P., Simmonett A.C., Harrigan M.P., Stern C.D., Wiewiora R.P., Brooks B.R., and Pande V.S., PLOS Comput. Biology. 2017. V. 13. P. 1.

  214. Dong W., Kang L., Quan Z., Li K., Li K., Hao Z., and Xie X., in 2016 ieee 18th international conference on high performance computing and communications; ieee 14th international conference on smart city; ieee 2nd international conference on data science and systems (hpcc/smartcity/dss) (Dec. 2016). P. 443–450.

  215. Dong W., Li K., Kang L., Quan Z., and Li K., Concur. and Comput.: Practice and Experience. 2018. V. 30. P. e4468.

  216. Yu Y., An H., Chen J., Liang W., Xu Q., and Chen Y., in Algorithms and architectures for parallel processing, edited by S. Ibrahim, K.-K. R. Choo, Z. Yan, and W. Pedrycz. 2017. P. 18–32.

  217. Duan X., Gao P., Zhang T., Zhang M., Liu W., Zhang W., Xue W., Fu H., Gan L., Chen D., Meng X., and Yang G., in Sc18: international conference for high performance computing, networking, storage and analysis. Nov. 2018. P. 148–159.

  218. Nikolskii V. and Stegailov V., Lobachevskii Journal of Mathematics. 2018. V. 39. P. 1228.

  219. Abascal J.L. and Vega C., J. Chem. Phys. 2005. V. 123. P. 234505.

  220. Nos’e S., Mol. Phys. 1984. V. 52. P. 255.

  221. Hoover W.G., Phys. Rev. A. 1985. V. 31. P. 1695.

  222. Shinoda W., Shiga M., and Mikami M., Phys. Rev. B. 2004. V. 69. P. 134103.

  223. Andrea T.A., Swope W.C., and Andersen H.C., The Journal of Chemical Physics. 1983. V. 79. P. 4576.

  224. Kondratyuk N., Nikolskiy V., Pavlov D., and Stegailov V., The International Journal of High Performance Computing Applications. 2021. V. 35. P. 312.

  225. Dubbeldam D., Calero S., and Vlugt T.J., Molecular Simulation. 2018. V. 44. P. 653.

  226. James C.J., Mulcahy D.E., and Steel B.J., Journal of Physics D: Applied Physics. 1984. V. 17. P. 225.

  227. Rampp M., Buttersack C., and Lüdemann H.-D., Carbohydrate Research. 2000. V. 328. P. 561.

  228. Chenlo F., Moreira R., Pereira G., and Ampudia A., Journal of Food Engineering. 2002. V. 54. P. 347.

  229. Telis V., Telis-Romero J., Mazzotti H., and Gabas A., International Journal of Food Properties. 2007. V. 10. P. 185.

  230. Gomes T.C.F. and Skaf M.S., Journal of Computational Chemistry. 2012. V. 33. P. 1338.

Дополнительные материалы отсутствуют.