т		
Пестиц	TA I	TLI
TICCIMU		ш

УДК 632.952:631.811.98:631.559:633.11"321"

ВЛИЯНИЕ ФУНГИЦИДОВ И ИХ СМЕСЕЙ С РЕГУЛЯТОРОМ РОСТА НА УРОЖАЙНОСТЬ И КАЧЕСТВО ЗЕРНА ЯРОВОЙ ПШЕНИЦЫ

© 2021 г. В. Г. Доронин¹, Е. Н. Ледовский^{1,*}

¹Омский аграрный научный центр 644012 Омск, просп. Академика Королёва, 26, Россия *E-mail: 55asc@bk.ru Поступила в редакцию 29.04.2021 г. После доработки 30.05.2021 г. Принята к публикации 12.07.2021 г.

Оценили влияние фунгицидов и их баковых смесей с регулятором роста растений на урожайность и качество зерна яровой мягкой пшеницы. Исследование проведено в 2018 и 2019 гг. в южной лесостепи Омской обл., в полевом однофакторном опыте на лугово-черноземной, среднемощной среднегумусовой тяжелосуглинистой почве в севообороте пар чистый — яровая пшеница — яровая пшеница, ячмень, предшественник — пар чистый. Выявлено значительное влияние фунгицидов и их баковых смесей с регулятором роста Лариксин на урожайность зерна и его качество. Биологическая эффективность против основных инфекций — бурой листовой и линейной ржавчин в среднем составила от 89.5 до 97.5%. Средний рост урожайности зерна к контролю был от 0.99 (препарат Титул дуо + Лариксин) до 1.91 т/га (препарат Рекс плюс), хозяйственная эффективность менялась от 37.4 до 53.5%. При этом улучшались показатели качества зерна — натура зерна, масса 1000 зерен, содержание клейковины и сырого белка.

Ключевые слова: яровая пшеница, урожайность, качество зерна, фунгициды, регулятор роста.

DOI: 10.31857/S0002188121100057

ВВЕДЕНИЕ

Современные технологии выращивания зерновых культур практически невозможны без защиты растений от листостеблевых инфекций. На юге Западной Сибири, где расположены основные площади посевов яровой мягкой пшеницы, недобор урожая в годы эпифитотий может достигать 40-60%. Наиболее актуальна эта проблема для сортов со слабой полевой устойчивостью к грибным инфекциям. Исследования показали, что наиболее вредоносными в регионе являются: бурая листовая и линейная ржавчины (Puccinia triticina Eriks., Puccinia graminis Rers.), мучнистая роса (Erysiphe graminis DC.) и септориоз (Septoria ssp.). Наряду со снижением урожайности, ухудшается и качество продукции, например, уменьшается содержание в зерне белка и клейковины, моносахаров и дисахаров, снижается его стекловидность [1-4].

Значительным резервом роста производства зерна яровой пшеницы и повышения его качества может стать защита посевов от листостеблевых грибных инфекций. В этом случае на первый план выступают химические фунгициды, своевременное применение которых позволяет эф-

фективно защищать культуру, минимизировать потери и значительно повышать урожайность. Определенный научно-практический интерес представляет изучение эффективности регуляторов роста, предположительно повышающих иммунитет и стрессоустойчивость культуры. Цель работы — изучение влияния фунгицидов и их смесей с регулятором роста на урожайность и качество зерна яровой пшеницы.

МЕТОДИКА ИССЛЕДОВАНИЯ

Условия вегетации 2018 г. были характерны холодной погодой, с большим количеством осадков в мае, а также продолжительными сухими периодами в первых 2-х декадах июня и июля. 2019 г. отличался прохладной погодой с повышенным количеством осадков в июне и теплой с дефицитом влаги во 2-й половине июля и отчасти в августе. В целом условия были благоприятными для массового развития листостеблевых болезней. В период исследования из листостеблевых инфекций на опытном поле преобладали бурая листовая и стеблевая (линейная) ржавчины, в меньшей степени — мучнистая роса.

Исследование выполнено на опытных полях Омского аграрного научного центра в посевах яровой мягкой пшеницы сорта Омская 36. Особенность этого популярного в регионе сорта слабая полевая устойчивость к основным листостеблевым инфекциям [5]. Севооборот: пар чистый – яровая пшеница – яровая пшеница – ячмень. Предшественник – чистый пар. Почва опытного участка – лугово-черноземная, среднемощная тяжелосуглинистая, содержание гумуса в пахотном слое 6.4-6.6% (по Тюрину), подвижного фосфора и обменного калия – соответственно 105-128 и 350-420 мг/кг почвы (по Чирикову), pH_{KCI} 6.4–6.7. Содержание нитратного азота в почве на момент посева в 2018 г. – 18.2, в 2019 г. – 17.8 мг/кг почвы. Основная обработка почвы плоскорезная на глубину 10-12 см. Агротехника возделывания пшеницы — зональная. Минеральные удобрения не вносили. Площадь делянки в опытах -25 м^2 , размещение вариантов - рендомизированное, повторность четырехкратная. В схеме опыта применяли 3 химических системных комбинированных фунгицида (препараты Титул Дуо, Рекс плюс, Солигор), регулятор роста биологического происхождения Лариксин и баковые смеси его с фунгицидами. Лариксин — это биологический регулятор роста и развития растений, индуктор иммунитета к грибным заболеваниям, действующее вещество – биофлавоноид дигидрокверцитин, получаемый из древесины лиственницы сибирской, относится к числу наиболее перспективных и эффективных регуляторов роста с антистрессовым и иммунопротекторным свойствами [6, 7]. Рекомендуется для повышения полевой всхожести семян, иммунитета к болезням и неблагоприятным факторам среды, увеличения урожайности и повышения качества зерна [8]. Положительным качеством препарата является его экологичность.

Внесение препаратов проводили ранцевым опрыскивателем "PJ-18" при появлении первых пустул бурой ржавчины, фаза развития культуры – начало колошения. Норма расхода рабочего раствора 250 л/га. Методика фитопатологических исследований – общепринятая. При учете пораженности листостеблевыми болезнями определяли распространенность и развитие инфекций. Развитие мучнистой росы (интенсивность пораженности растений) определяли по шкале Гешеле, бурой ржавчины – Петерсона и др. Расчет проводили по формуле: $R = \Sigma (a \times b) - N$, где R развитие болезни, %; $\Sigma (a \times b)$ — сумма произведений числа больных растений (a) на соответствующую величину (%) пораженности (b); N – общее количество растений в пробе. В работе приведены результаты анализа пораженности растений через 20 сут после обработки [9—11]. Учет урожая зерна — однофазная уборка комбайном "Сампо-130". Статистическую обработку урожайных данных проводили методом дисперсионного анализа [12].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Уровни развития основных болезней культуры в контрольном варианте и биологическая эффективность препаратов приведены в табл. 1. Индекс развития мучнистой росы в 2018 г. в контроле составил 13.2%. Эффективность препаратов и смесей против нее была низкой, причем в баковых смесях с Титул дуо и Рекс плюс она заметно снижалась в сравнении с применением только этих препаратов. Исключением стала смесь "Солигор + + Лариксин", когда пораженность уменьшилась на 67.4%, тогда как при применении только Солигора эффективность была практически нулевая. Наиболее вредоносными патогенами были бурая листовая и линейная ржавчины с уровнем пораженности 79%. Биологическая эффективность Лариксина против ржавчин составила 49.4, химических фунгицидов и баковых смесей — от 96.2 до 100%.

В 2019 г. уровень развития мучнистой росы в посеве в контрольном варианте достиг 20.8%. Эффективность вариантов защиты против нее варьировала от 54.3 (Лариксин) до 98.6% (Рекс плюс + Лариксин). Как и в предыдущем году доминировали ржавчинные инфекции с уровнем развития в контроле 74%. Лариксин практически не повлиял на развитие ржавчин, тогда как эффективность фунгицидов и смесей с ним была достаточно высокой — от 78.4 (Рекс плюс) до 97.2% (Рекс плюс + Лариксин). При этом была заметна тенденция к ее росту в вариантах применения смесей с Лариксином в сравнении с применением только фунгицидов.

Средние показатели биологической эффективности в варианте применения Лариксина против мучнистой росы были равны 39.4, ржавчин — 26.5%. Эффективность фунгицидов и их смесей с Лариксином против мучнистой росы варьировали от 50.0 (Солигор) до 81.5% (Солигор + Лариксин), видов ржавчин — от 89.5 (Рекс плюс) до 98.6% (Рекс плюс + Лариксин).

В период созревания зерна пораженность пшеницы в контроле возрастала до 80—90%, в основном за счет линейной ржавчины. Наиболее пролонгированным защитным действием против ржавчин отличались варианты применения препарата Рекс плюс.

Обработка посевов фунгицидами в составе баковых смесей значительно повышала урожай-

Таблица 1. Биологическая эффективность препаратов против листостеблевых болезней яровой пшеницы сорта Омская 36 после пара, $\%$							
	Мучнистая роса		Виды ржавчины		Средние		
Вариант	2018 г.	2019 г.	2018 г.	2019 г.	мучнистая	ВИДЫ ржавчины	

	Мучнистая роса		Виды ржавчины		Средние	
Вариант	2018 г.	2019 г.	2018 г.	2019 г.	мучнистая роса	виды ржавчины
1. Контроль	13.2	20.8	79.0	74.0	17.0	76.5
2. Лариксин	15.9	54.3	49.4	2.0	39.4	26.5
3. Титул дуо	48.5	80.3	100	86.0	67.9	93.2
4. Титул дуо + Лариксин	24.2	89.4	96.2	94.3	64.1	95.3
5. Рекс плюс	30.3	63.5	100	78.4	50.6	89.5
6. Рекс плюс + Лариксин	16.7	98.6	100	97.2	66.8	98.6
7. Солигор	1.5	80.8	99.1	92.3	50.0	95.8
8. Солигор + Лариксин	67.4	90.4	99.7	95.1	81.5	97.5

Таблица 2. Влияние фунгицидов и их баковых смесей с регулятором роста на урожайность зерна яровой пшеницы сорта Омская 36 после пара

	Норма расхода, л/га	Урожа	айность зерн	а, т/га	<u>±</u>	Хозяйственная
Вариант		2018 г.	2019 г.	среднее	к контролю	эффективность, %
1. Контроль	_	1.56	1.76	1.66	_	_
2. Лариксин	0.03 + 0.03	2.14	1.88	2.01	0.35	17.4
3. Титул дуо	0.32	2.50	2.96	2.73	1.07	39.2
4. Титул дуо + Лариксин	0.32 + 0.03	2.54	2.76	2.65	0.99	37.4
5. Рекс плюс	0.9	3.40	3.74	3.57	1.91	53.5
6. Рекс плюс + Лариксин	0.9 + 0.03	2.89	4.02	3.46	1.8	52.0
7. Солигор	0.5	3.20	3.12	3.16	1.5	47.7
8. Солигор + Лариксин	0.5 + 0.03	2.98	2.9	2.94	1.28	43.5
HCP_{05}		0.55	0.45			

ность зерна культуры (табл. 2). В условиях 2018 г. рост урожайности к контролю в варианте применения Лариксина составил 0.58, в вариантах применения фунгицидов и их смесей с Лариксином от 0.94 (Титул дуо) до 1.84 (Рекс плюс). В 2019 г. прибавки варьировали от 1.0 (Титул дуо + Лариксин) до 2.26 т/га (Рекс плюс + Лариксин). Несмотря на отмеченную выше тенденцию к росту биологической эффективности баковых смесей против ржавчины, тенденция к изменению урожайности была обратной – отмечено некоторое снижение (недостоверное) урожайности в сравнении с вариантами применения только фунгицидов. Однако следует учитывать, что при раздельном применении фунгицидов и регуляторов роста в производственных условиях увеличиваются затраты на их внесение, дополнительно повреждаются посевы и усложняются организационные задачи.

В среднем за 2 года урожайность зерна при применении Лариксина возросла на 0.35, фунгицидов и баковых смесей с ним — на 0.99 (Титул дуо + Лариксин) и 1.91 т/га (Рекс плюс). Хозяйственная эффективность лучших вариантов защиты яровой пшеницы превысила 50%.

Применение фунгицидов и баковых смесей с Лариксином положительно повлияло на показатели качества зерна (табл. 3). Натура зерна в 2018 г. увеличилась к контролю на 75-97 г/л, масса 1000 зерен — на 10.0—15.0 г. Максимальными эти показатели были в варианте применения смеси Рекс плюс + Лариксин. Содержание сырой клейковины увеличилось на 2.7-5.1%, сырого белка наиболее заметно в вариантах применения смесей Рекс плюс + Лариксин и Солигор + Лариксин (на 0.85% к контролю).

В 2019 г. применение фунгицидов и баковых смесей с регулятором роста также существенно увеличили натуру и массу 1000 зерен. Менее зна-

Таблица 3. Влияние применения фунгицидов и регулятора роста на качество зерна яровой пшеницы сорта Омская 36 после пара

Вариант	Натура, г/л	Масса 1000 зерен, г	Стекло- видность, %	Клейковина		C		
				%	ИДК, ед. прибора	Сырой белок, %		
2018 г.								
1. Контроль	638	24.5	50	26.6	60	14.3		
2. Лариксин	665	27.0	52	27.0	62	14.2		
3. Титул дуо	717	34.5	53	31.7	77	14.8		
4. Титул дуо + Лариксин	713	35.6	50	29.3	58	14.4		
5. Рекс плюс	713	38.7	51	30.3	67	14.9		
6. Рекс плюс + Лариксин	735	39.5	53	30.6	57	15.2		
7. Солигор	718	37.9	52	30.8	65	14.4		
8. Солигор + Лариксин	718	37.4	51	30.8	67	15.2		
HCP_{05}	28	4.6	_	1.5	_	0.4		
	l	20)19 г.		l	l		
1. Контроль	704	28.3	50	25.5	56	12.2		
2. Лариксин	708	30.1	52	26.4	54	13.2		
3. Титул дуо	740	32.5	50	25.8	54	12.0		
4. Титул дуо + Лариксин	737	31.8	49	26.7	58	13.4		
5. Рекс плюс	773	37.2	50	27.4	57	13.9		
6. Рекс плюс + Лариксин	771	37.6	50	26.6	61	13.2		
7. Солигор	738	32.8	49	23.9	58	11.2		
8. Солигор + Лариксин	735	32.5	50	24.7	61	12.4		
HCP_{05}	23	3.0	_	1.2	_	1.0		

чительно изменялось содержание клейковины, существенный рост был только в вариантах применения смеси Титул дуо + Лариксин и препарата Рекс плюс: соответственно на 1.2 и 1.9%. В варианте применения Солигора было отмечено даже снижение содержания клейковины. Неоднозначно препараты повлияли на содержание сырого белка. Достоверный рост его содержания произошел в вариантах применения Лариксина, смеси Титул дуо + Лариксин и препарата Рекс плюс: соответственно на 0.97, 1.19 и 1.71%, уменьшение его содержания — в варианте применения Солигора (на 1.03%). Вероятно, на показатели качества могло негативно повлиять сильное полегание культуры из-за ливневых осадков со шквалистым ветром.

Показатель упругости клейковины (на приборе ИДК) в целом варьировал в пределах оптимума (50—70 ед. прибора ИДК), кроме повышения до 77 ед. в варианте применения Титул дуо в 2018 г. Аналогичные положительные результаты были получены в условиях Липецкой обл. на яровой пшенице сорта Тризо, обработанной Лариксином в фазе кущения в баковой смеси с гербицида-

ми: содержание белка к контролю увеличилось на 1.7%, сырой клейковины — на 15.3% [13].

ЗАКЛЮЧЕНИЕ

Таким образом, выявлено значительное влияние фунгицидов и их баковых смесей с регулятором роста Лариксин на урожайность зерна мягкой яровой пшеницы и его качество. Средние показатели биологической эффективности против основных листостеблевых болезней - бурой листовой и линейной ржавчин варьировали от 89.5 до 98.6% (препарат Рекс плюс + Лариксин). Рост урожайности зерна к контролю составил от 0.99 (препарат Титул дуо + Лариксин) до 1.91 т/га (препарат Рекс плюс), хозяйственная эффективность — от 37.4 до 53.5%. При этом в основном улучшались показатели качества зерна - натура зерна, масса 1000 зерен, содержание клейковины и сырого белка. Показатели биологической и хозяйственной эффективности применения только Лариксина значительно уступали фунгицидам и баковым смесям с ним.

СПИСОК ЛИТЕРАТУРЫ

- Доронин В.Г., Ледовский Е.Н., Кривошеева С.В. Защита яровой мягкой пшеницы от листостеблевых болезней в южной лесостепи Западной Сибири // Земледелие. 2016. № 6. С. 43–46.
- Доронин В.Г., Кривошеева С.В. Препараты для защиты яровой мягкой пшеницы от листостеблевых болезней // Земледелие. 2010. № 1. С. 46–48.
- 3. *Шупинская И.А.*, *Самсонова Н.Е.*, *Антонова Н.А.* Влияние корневого и фолиарного питания растений минеральными удобрениями и соединениями кремния на показатели фотосинтетической деятельности и урожайность зерна яровой пшеницы // Агрохимия. 2017. № 2. С. 11—17.
- 4. Чулкина В.А., Торопова Е.Ю., Медведчиков Б.М., Стецов Г.Я. Современные экологически безопасные системы фитосанитарной оптимизации растениеводства Сибири. Новосибирск, 2003. 116 с.
- Сорта сельскохозяйственных культур селекции ГНУ СибНИИСХ / Под ред. Рутц Р.И. Омск: Вариант-Омск, 2013. 144 с.
- Шаповалова А.А., Зубкова Н.Ф. Отечественные регуляторы роста растений // Агрохимия. 2003. № 11. С. 33–47.

- 7. *Шатилова Т.И., Витол И.С., Герчиу Я.П., Белопу-хов С.Л., Семко В.Т.* Действие препаратов-фиторегуляторов на формирование качества зерновых культур // Достиж. науки и техн. АПК. 2010. № 12. С. 47—48.
- 8. Список пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации. 2019 год. Справ. изд-е // Прилож. к журн. "Защита и карантин растений". 2019. № 4. 848 с.
- 9. Методические указания по государственным испытаниям фунгицидов, антибиотиков и протравителей семян сельскохозяйственных культур. М.: Госхимкомиссия, ВИЗР, 1985. 130 с.
- Гешеле Э.Э. Болезни зерновых культур в Сибири. М., 1956. 127 с.
- 11. *Чумаков А.Е., Захарова Т.И.* Вредоносность болезней сельскохозяйственных культур. М.: Агропромиздат. 1990. 127 с.
- 12. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). 4-е изд., перераб. и доп. М.: Колос, 1979. 416 с.
- 13. Белопухов С.Л., Шатилова Т.И., Гаврилина О.В., Витол И.С., Карпиленко Г.П. Фиторегулятор Лариксин и показатели качества зерновых культур // Достиж. науки и техн. АПК. 2013. № 9. С. 34—35.

Effect of Fungicides and Their Mixtures with a Growth Regulator on the Yield and Quality of Spring Wheat Grain

V. G. Doronin^a and E. N. Ledovsky^{a, #}

^a Omsk Agricultural Research Center prosp. Akademika Koroleva 26, Omsk 644012, Russia [#]E-mail: 55asc@bk.ru

The influence of fungicides and their tank mixtures with a plant growth regulator on the yield and grain quality of spring soft wheat was evaluated. The study was conducted in 2018 and 2019 in the southern forest-steppe of the Omsk region, in a field one-factor experiment on meadow-chernozem, medium-sized medium-humus thick-yellow loamy soil in the crop rotation of pure steam: spring wheat — spring wheat, barley, the predecessor — pure steam. A significant influence of fungicides and their tank mixtures with the growth regulator Larixin on the grain yield and its quality was revealed. The biological effectiveness against the main infections-brown leaf rust and linear rust on average ranged from 89.5 to 97.5%. The average increase in grain yield to control was from 0.99 (Titul duo + Larixin) to 1.91 t/ha (Rex plus), the economic efficiency varied from 37.4 to 53.5%. At the same time, the indicators of grain quality improved-the nature of the grain, the weight of 1000 grains, the content of gluten and raw protein.

Key words: spring wheat, yield, grain quality, fungicides, growth regulator.