_____ ФИЗИЧЕСКАЯ _ АКУСТИКА =

УДК 534.2,535.42

ИНВАРИАНТНОСТЬ ФУНКЦИИ ПРОПУСКАНИЯ АКУСТООПТИЧЕСКОГО УСТРОЙСТВА ПРИ ИЗМЕНЕНИИ УГЛА СНОСА АКУСТИЧЕСКОГО ПУЧКА

© 2019 г. В. В. Проклов^{а,} *, Ю. Г. Резвов^{b,} **, В. А. Подольский^b, О. Д. Сивкова^b

^аФрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН пл. Введенского 1, г. Фрязино, Московская обл., 141190 Россия ^bНовомосковский институт Российского химико-технологического университета им. Д.И. Менделеева

товомосковский институт Российского химико-технологического университети им. д.н. теноелеева ул. Дружбы 8, г. Новомосковск, 301665 Россия

*e-mail: proklov@inbox.ru **e-mail: rezvovyug@mail.ru Поступила в редакцию 11.12.2018 г. После доработки 06.03.2019 г. Принята к публикации 20.03.2019 г.

Показано, что функция пропускания акустооптического устройства остается неизменной при таких вариациях угла акустического сноса и ширины акустического столба, когда сохраняется расстояние, проходимое падающим светом в звуковом столбе. Рассмотренная инвариантность позволяет упростить теоретический анализ акустооптического взаимодействия в некоторых случаях.

Ключевые слова: акустооптическое взаимодействие, анизотропная дифракция света на звуке, плосковолновое приближение, акустический снос, акустооптическая функция пропускания **DOI:** 10.1134/S0320791919040154

введение

Для управления характеристиками оптического излучения используются разнообразные физические эффекты. В частности, акустооптические (AO) методы основаны на изменении оптических параметров среды в поле бегущей или стоячей акустической волны. Монографии [1–4] освещают как фундаментальные основы AO-взаимодействия, так и накопленный опыт конструирования разнообразных AO-устройств.

Известно, что использование в акустооптике анизотропных сред существенно расширяет разнообразие возможных геометрий АО-взаимодействия и диапазон их функциональных параметров. При этом необходимо учитывать специфические явления, характерные для волновых процессов в анизотропной среде. Например, оптические и акустические моды могут испытывать снос – отклонение направления переноса энергии от направления волнового вектора. Ярким примером является наиболее распространенный АО-материал – парателлурит (TeO₂), обладающий чрезвычайно большой акустические и АО явления [5–13].

Акустический снос для используемой в АОустройствах на основе парателлурита медленной квазипоперечной моды может составлять десятки градусов. Это создает определенные сложности при теоретическом анализе АО взаимодействия, и влияние акустического сноса остается предметом научного исследования [14—18]. Данная работа предлагает в плосковолновом приближении существенное упрощение рассматриваемой проблемы.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

На рис. 1 представлены геометрия и векторная диаграмма возможного варианта АО-взаимодействия в анизотропной среде. Обычно ультразвук возбуждается плоским пъезопреобразователем, нормаль к которому задает направление волново-

го вектора К. Его модуль равен
$$K = \frac{\Omega}{m}$$
, где Ω –

циклическая частота колебаний, v_s — фазовая скорость звука. Вследствие сноса групповая скорость звука **S** отклонена от волнового вектора **K** на угол α . Если пренебречь дифракцией, то возмущенная звуком область среды представляет собой плоскопараллельный слой, толщина которого равна $l_z = L \cos \alpha$, где L - длина преобразователя.

Анализ будем вести в такой системе координат, где ось x направлена вдоль вектора **S**, ось z – по нормали к слою, ось y – перпендикулярно ри-

Рис. 1. (а) Геометрия и (б) векторная диаграмма варианта АО взаимодействия в анизотропной среде.

сунку. Пусть в плоскости АО дифракции xz на слой падает плоская монохроматическая световая волна (индекс "*i*") определенной поляризационной моды. При брэгговском взаимодействии внутри слоя оптическое поле образовано совокупностью двух плоских волн: проходящей (индекс "*t*", той же поляризационной моды) и дифрагированной ("*d*") волны иной поляризационной моды. При использовании метода связанных волн полагают, что амплитуды оптических волн в пределах возмущенного слоя меняются вдоль оси *z*.

Пусть \mathbf{k}_t и ω_t – волновой вектор и циклическая частота падающей волны, причем $k_t = \frac{2\pi n_t}{\lambda}$, где $n_t - \frac{2\pi n_t}{\lambda}$ показатель преломления, λ – длина световой волны в вакууме. Из граничных условий при z = 0следует, что при брэгговской дифракции в +1 порядок на параметры дифрагированной волны наложены условия: $\omega_d = \omega_t + \Omega$, $k_{dx} = k_{tx} + K_x$. Так как $\Omega \ll \omega_t$, то длина волны света при дифракции почти не изменится. Зная угловые зависимости показателя преломления n_d и модуля волнового вектора $k_d = \frac{2\pi n_d}{\lambda}$, можно рассчитать проекцию волнового вектора k_{dz}. Эффективность АО дифракции существенно зависит от расстройки АО синхронизма $\Delta k_z = k_{tz} + K_z - k_{dz}$. Расстройку также можно считать вектором, направленным нормально к слою, т.е. $\Delta \mathbf{k} = \mathbf{k}_t + \mathbf{K} - \mathbf{k}_d = \Delta k_z \mathbf{e}_z$, где \mathbf{e}_z – единичный вектор вдоль оси z. Таким образом, вектор \mathbf{k}_d задается такой точкой на поверхности волновых векторов (дифракционной моды), в которую можно попасть, двигаясь из конца вектора $\mathbf{k}_{t} + \mathbf{K}$ вдоль вектора е. На рис. 16 показано, как определить параметры дифрагированной волны, отно-

АКУСТИЧЕСКИЙ ЖУРНАЛ том 65 № 4 2019

сящейся к необыкновенной моде. Обычно такую связь выражают через углы падения θ_t и дифракции θ_d , которые составляют волновые векторы световых волн с волновым фронтом звуковой волны.

Характер взаимодействия также зависит от величины АО-связи, которая пропорциональна амплитуде звука. Величину связи характеризует индекс фазовой модуляции v. Наиболее компактно анализ АО взаимодействия выглядит при использовании следующих обозначений [19, 20]: $Z = z/l_z$,

$$\delta = \frac{1}{2}\Delta k_z l_z, V = \frac{v}{2} \exp(j\varphi_s), E_{t,d}(z) = E_i C_{t,d}(z), j - мнимая единица. Таким образом, безразмерные параметры имеют следующий смысл: $0 \le Z \le 1 - длина$ взаимодействия, δ – расстройка синхронизма, V – комплексный коэффициент АО-связи (φ_s – фаза звуковой волны), $C_{t,d}$ – амплитуды (E_i – амплитуда падающей волны). Система, описывающая эволюцию взаимодействующих волн, хорошо известна из литературы (с некоторой вариацией обозначений), и в приведенных обозначениях имеет вид:$$

$$\frac{dC_d}{dZ} = V \exp(2j\delta Z) C_t,$$

$$\frac{dC_t}{dZ} = -V^* \exp(-2j\delta Z) C_d.$$
(1)

С учетом граничных условий ($C_t(0) = 1, C_d(0) = 0$) легко получить аналитическое решение (здесь $W = \sqrt{|V|^2 + \delta^2}$):

Рис. 2. Векторная диаграмма при изменении акустического сноса.

$$C_{d} = \frac{V \exp(j\delta Z)}{W} \sin(WZ),$$

$$C_{t} = \left(\cos(WZ) + \frac{j\delta}{W} \sin(WZ)\right) \exp(-j\delta Z).$$
(2)

Эффективность дифракции, т.е. доля энергии, переходящей в дифрагированное излучение на выходе из области взаимодействия (при Z = 1), рассчитывается по формуле $\eta = |C_d|^2 = \frac{|V|^2}{|V|^2 + \delta^2} \sin^2(\sqrt{|V|^2 + \delta^2})$. При условии точного брэгговского синхронизма ($\delta = 0$) это выражение примет вид $\eta = \sin^2(|V|)$. Вообще говоря, в анизотропной среде выражения (1)–(2) получают такой вид после некоторой параметризации АО-связи, обусловленной различием групповых скоростей взаимодействующих световых мод. Величина связи зависит от параметров акустической и световых волн, а также от фотоупругих свойств среды, и может быть записана в виде

$$|V| = \frac{\pi}{\lambda} \sqrt{\frac{M_2 P_s L}{2h}} \frac{\cos \alpha}{\sqrt{\cos \gamma_t \cos \gamma_d \cos \beta_t \cos \beta_d}}.$$
 (3)

Здесь *h* — высота преобразователя (размер вдоль оси *y*), *P_s* — акустическая мощность, $\gamma_{t,d}$ — углы сноса оптических волн, $\beta_{t,d} = \theta_{t,d} + \gamma_{t,d} + \alpha$ — углы между групповой скоростью световых волн и нормалью к возмущенному слою. Параметр *M*₂ = $= \frac{n_{t}^{3} n_{d}^{3} p_{eff}^{2}}{\rho v_{s}^{3}},$ где p_{eff} – эффективная фотоупругая константа для данной геометрии взаимодействующих волн, ρ – плотность материала, называют АО-качеством. В рассматриваемой геометрии угол падения является отрицательным, поэтому при формальном различии по форме выражение (3) фактически идентично выражениям, приведенным в [21, 22].

Пусть $p_s = \frac{P_s}{Lh}$ – звуковая мощность, излучаемая с единицы площади преобразователя, $l_t = \frac{L \cos \alpha}{\cos \beta_t}$ и $l_d = \frac{L \cos \alpha}{\cos \beta_d}$ – протяженность звукового столба, измеренная вдоль групповой скорости проходящего и дифрагированного света соответственно. Для характерных углов оптического сноса можно принять, что соз $\gamma_t \cos \gamma_d = 1$. Теперь АО-связь можно написать в наиболее компактном и наглядном виде (аналогичный вид предложен в [23]):

$$|V| = \frac{\pi}{\lambda} \sqrt{\frac{1}{2} M_2 p_s l_l l_d}.$$
 (3a)

Рассмотрим мысленный эксперимент, состоящий в формальном изменении угла акустического сноса (и длины преобразователя) без изменения остальных акустических свойств. Известно, что проекция вектора **S** на направление волнового вектора равна фазовой скорости звука v_s , поэтому изменение Δ **S** будет ортогонально вектору **K**. Таким образом, ориентация параллельных границ звукового поля в плоскости АО-взаимодействия изменится. При этом вектор расстройки Δ **k** повернется, его модуль изменится.

На рис. 2 показана векторная диаграмма рассматриваемого преобразования. В качестве опорной примем такую геометрию, когда вектор расстройки $\Delta \mathbf{k}_0$ и волновой вектор дифрагированного света **k**_{d0} параллельны (распространение дифрагированного света по нормали к звуковому слою). Штриховые прямые обозначают касательную и нормаль к поверхности волновых векторов в точке, которую задает вектор \mathbf{k}_{d0} . Видно, что нормаль отклонена от волнового вектора на небольшой угол γ_{d0} – явление оптического сноса. Другой вариант геометрии соответствует представленному на рис. 1. Расстройка *Д***к** повернута в плоскости АО-дифракции (плоскость рисунка) на угол ф. Такой же угол между групповыми скоростями звука S и \mathbf{S}_0 , соответственно угол акустического сноса в опорном варианте $\alpha_0 = \alpha - \phi$.

При этом преобразовании вектор \mathbf{k}_d отклонится на малый угол ψ от вектора \mathbf{k}_{d0} . Вследствие оптической анизотропии может измениться модуль волнового вектора дифрагированного света. Рас-

 L_0

смотрим это изменение в параболическом приближении: $k_d = k_{d0} \left(1 + g_1 \psi + g_2 \psi^2\right)$. В случае монохроматического излучения групповая скорость света направлена по нормали к поверхности волновых векторов. Отсюда следует, что $g_1 = -\operatorname{tg} \gamma_{d0}$. Так как оптическая анизотропия невелика, всегда справедливы оценки $g_{1,2} \ll 1$.

Рассмотрим треугольник на рис. 2, две стороны которого образованы векторами $\Delta \mathbf{k}$ и \mathbf{k}_d . Для целей исследования необходимо определить, как зависят величина расстройки Δk и малый угол Ψ от Δk_0 и угла поворота φ . Удобно использовать малые параметры $\varepsilon_0 = \Delta k_0/k_{d0}$ и $\varepsilon = \Delta k/k_{d0}$. Как известно, в случае брэгговского характера АО-взаимодействия существенную эффективность дифракции можно наблюдать при условии $\Delta k_z l_z \le 2\pi$, которое можно представить в виде $\varepsilon \le \lambda/n_d l_z$. При типичных значениях $\lambda = 1$ мкм, $n_d = 2$, $l_z = 5$ мм имеем оценку $\varepsilon \le 1 \times 10^{-4}$.

Решение поставленной геометрической задачи можно представить в виде рядов:

$$\varepsilon = \varepsilon_0 G \left(1 + \frac{\varepsilon_0}{2} (G \sin \phi)^2 (1 + g_2) + ... \right),$$

$$\psi = \varepsilon_0 G \sin \phi + \left(\frac{1}{2} (1 + g_2) G \sin \phi + \operatorname{tg} \gamma \right) \times$$

$$\times (\varepsilon_0 G \sin \phi)^2 + ...,$$

$$G = \frac{\cos \gamma_{d0}}{\cos (\phi + \gamma_{d0})}.$$
(4)

Установим, как при рассматриваемом преобразовании меняются безразмерные параметры АО-связи |V| и расстройки δ . Для падающего света обыкновенной поляризации сноса нет, а угол между групповой скоростью и осью *z* изменится до некоторого угла β_t (см. рис. 1а), составив угол $\beta_{t0} = \beta_t + \varphi$ в опорном варианте. Для дифрагированного света угол сноса изменится очень незначительно – от γ_{d0} до $\gamma_{d0} - g_2 \psi$, соответственно второй угол изменится от $\beta_{d0} = \gamma_{d0}$ до $\beta_d = \gamma_{d0} - g_2 \psi + \psi + \varphi$.

Если при рассматриваемом преобразовании пренебречь малым изменением эффективной фотоупругой константы p_{eff} , то с учетом формул (3)—(4) получим

$$\frac{|V|}{|V_0|} = \sqrt{\frac{p_s}{p_{s0}}} \frac{L\cos\alpha}{L_0\cos(\alpha-\phi)} \left(1 + g_1\psi + g_2\psi^2\right)^{\frac{3}{2}} \times \sqrt{\frac{\cos^2\gamma_{d0}\cos(\alpha-\phi)}{\cos(\gamma_{d0} - g_2\psi)\cos\beta_t\cos(\gamma_{d0} + \psi - g_2\psi + \phi)}},$$
$$\frac{\delta}{\delta_0} = \frac{L\cos\alpha}{L_0\cos(\alpha-\phi)} G\left(1 + \frac{\varepsilon_0}{2}(G\sin\phi)^2(1+g_2) + \dots\right).$$

АКУСТИЧЕСКИЙ ЖУРНАЛ том 65 № 4 2019

Анализ этих выражений показывает, что при выполнении условий

$$p_{s0} = p_s, \quad L_0 \cos(\alpha - \varphi) \cos\beta_t =$$

= $L \cos\alpha \cos(\varphi + \beta_t), \quad (5)$
$$\cos(\alpha - \varphi) \cos(\varphi + \gamma_{d0}) = L \cos\alpha \cos\gamma_{d0}$$

указанные безразмерные параметры будут меняться слабо. В частности, в линейном по малому параметру ε_0 приближении имеем

$$\frac{|V|}{|V_0|} = 1 + \frac{1}{2}G\sin\varphi \times$$
$$\times ((1 - g_2)\operatorname{tg}(\gamma_{d0} + \varphi) - (3 + g_2)\operatorname{tg}\gamma_{d0})\varepsilon_0 + \dots,$$
$$\frac{\delta}{\delta_0} = 1 + \frac{1}{2}(1 + g_2)(G\sin\varphi)^2\varepsilon_0 + \dots$$

С учетом малости оптической анизотропии ($\gamma_{d0}, g_2 \ll 1$) при углах $\phi \gg \gamma_{d0}$ можно принять, что $\frac{|V|}{|V_0|} = \frac{\delta}{\delta_0} = 1 + \frac{\varepsilon_0}{2} \operatorname{tg}^2 \phi + \dots, \ \psi = \varepsilon_0 \operatorname{tg} \phi + \dots$ Отсюда следует, что параметры |V| и δ инвариантны при условии $\varepsilon_0 \operatorname{tg}^2 \phi \ll 2$, которое выполняется в большом диапазоне углов. Например, при $\varepsilon_0 \le 1 \times 10^{-4}$

и $\phi \le 80^{\circ}$ имеем $\varepsilon_0 \operatorname{tg}^2 \phi \le 3.2 \times 10^{-3}$.

Как следует из (1)–(2), при рассматриваемом преобразовании с наложенными условиями (5) результат АО-дифракции останется практически неизменным (но дифрагированный свет отклонится на малый угол ψ). Поэтому сохранятся такие важные характеристики, как ширина полосы пропускания акустических частот или оптических длин волн, доступный диапазон углов падения и др.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рассмотрим трактовку условий (5). При формальном изменении только угла акустического сноса режим работы преобразователя не изменится (т.к. не меняется акустический импеданс), поэтому сохранится излучаемая акустическая мощность $P_s = p_s Lh$. Поток энергии распространяется со скоростью S перпендикулярно площадке размером $h \times L\cos\alpha$, при этом плотность акустической энергии пропорциональна квадрату амплитуды звуковой волны. Так как $S\cos\alpha = v_s$, то первое условие означает, что амплитуда звуковой волны не меняется при преобразовании (при этом излучаемая мощность пропорциональна длине преобразователя: $P_s \sim L$). Второе условие можно трактовать как сохранение размера звукового столба вдоль групповой скорости проходящего света: $l_{t0} = l_t$, где

 $l_t = \frac{L \cos \alpha}{\cos \beta_t}, \ l_{t0} = \frac{L_0 \cos (\alpha - \phi)}{\cos (\beta_t + \phi)}.$ Наконец, последнее равенство имеет аналогичный смысл для ди-

Рис. 3. Эквивалентные конфигурации акустического столба в плоскости АО дифракции.

фрагированного света ($l_{d0} = l_d$), если пренебречь малым изменением направления его распространения. Для АО-связи эти условия очевидны при анализе выражения (3а).

Полученные выражения показывают, что результат АО-дифракции не меняется при значительном отклонении от опорной геометрии, поэтому он останется инвариантным для любых геометрий в этом диапазоне. Существенное искажение возможно, только когда падающий или дифрагированный свет пересекают акустический столб почти касательно.

Обычно угол между падающим и дифрагированным светом мал, поэтому $l_t \approx l_d$, $\beta_t \approx \beta_d$. В этом случае эквивалентны такие геометрии, при которых остается неизменным расстояние вдоль групповой скорости падающего света. На рис. 3 показаны варианты такого преобразования. Вариант "0" — нормальное падение света на акустический слой, что примерно (с учетом соотношения $K \ll k_{t,d}$) соответствует обозначениям с индексом "0" на рис. 2. При варианте "1" звук распространяется без сноса (угол $\alpha_1 = 0$), в случае "2" снос очень большой. Во всех случаях волновой вектор **К** направлен по нормали к преобразователю, в отличие от векторов групповой скоро-

сти
$$\mathbf{S}_{0,2}$$
. При этом $\frac{P_{s0}}{L_0} = \frac{P_{s1}}{L_1} = \frac{P_{s2}}{L_2}$.

Рассмотрим качественно возможность преобразования указанного типа при переходе от плосковолнового к пучковому приближению. Учет дифракционного искажения акустического пучка, обусловленного ограниченностью размера преобразователя, приводит к сложной структуре акустического поля. В этом случае профиль звукового поля вдоль светового пучка зависит как от размера преобразователя, так и от расстояния от него до места входа пучка. Исходя из результатов работ [24, 25], можно предположить, что в пределах ближней зоны преобразователя такое преобразование допустимо. При рассмотрении пучков света мы считаем их наборами плоских волн в некотором условном угловом диапазоне. Можно предположить, что если в пределах совокупности плоских волн, несущих основной поток энергии каждого из световых пучков, выполняется условие $\varepsilon_0 \operatorname{tg}^2 \phi \ll 2$ (фактически $\varepsilon_0 \operatorname{tg}^2 \beta_t \ll 2$), преобразование также допустимо.

Рассмотренная инвариантность позволяет упростить теоретический анализ АО-взаимодействия в некоторых конкретных случаях. Например, при анализе "поперечного" АО-взаимодействия можно выбрать эквивалентный столб, не имеющий сноса. В случае многочастотной АО-фильтрации удобно перейти к такой конфигурации, когда границы столба параллельны фронту звуковой волны [19, 20].

ЗАКЛЮЧЕНИЕ

1. В плосковолновом приближении получены выражения, определяющие результат брэгговского АО-взаимодействия в анизотропной среде при формальном изменении акустического сноса в плоскости АО-дифракции и длины преобразователя.

2. Сформулировано условие, при котором результат АО-дифракции практически инвариантен в широком диапазоне углов акустического сноса. Его геометрическая трактовка состоит в неизменности расстояния, проходимого падающим лучом света в звуковом поле при совместном изменении угла акустического сноса в плоскости АО-взаимодействия и ширины акустического столба. Исключением является такая геометрия, когда падающая или дифрагированная световая волна пересекает звуковой столб почти касательно.

3. Рассмотренная инвариантность позволяет в некоторых случаях упростить теоретический анализ АО-взаимодействия, выбрав в качестве области взаимодействия эквивалентный столб с иным акустическим сносом.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 16-02-00124-а).

489

СПИСОК ЛИТЕРАТУРЫ

- Балакший В.И., Парыгин В.Н., Чирков Л.Е. Физические основы акустооптики. М.: Радио и связь, 1985. 278 с.; V.I. Balakshy, V.N. Parygin, and L.E. Chirkov, *The Physical Principles of Acousto-Optics* (Radio & Svyaz, Moscow, 1985) [in Russian].
- 2. Xu J., Stroud R. Acousto-optic devices. New York: Wiley, 1992.
- 3. *Kopnen A*. Акустооптика. М.: Мир, 1993. 238 с.; А. Korpel, *Acoustooptics* (CRC, Boca Raton, Florida, 1996).
- Молчанов В.Я., Китаев Ю.И., Колесников А.И., Нарвер В.Н., Розенитейн А.З., Солодовников Н.П., Шаповаленко К.Г. Теория и практика современной акустооптики. М.: МИСиС, 2015. 459 с. ISBN 978-5-87623-483-4.
- Belyi V.N., Kazak N.S., Pavlenko V.K., Katranji E.G., Kurilkina S.N. Propagation of ultrasonic beams in paratellurite crystal // Ultrasonics. 1999. V. 37. № 5. P. 377–383.
- Declercq N.F., Polikarpova N.V., Voloshinov V.B., Leroy O., Degrieck J. Enhanced anisotropy in paratellurite for inhomogeneous waves and its possible importance in the future development of acousto-optic devices // Ultrasonics. 2006. V. 44. P. e833–e837.
- Voloshinov V.B., Polikarpova N.V. Acousto-optic investigation of propagation and reflection of acoustic waves in paratellurite crystal // Applied Optics. 2009. V. 48. N
 N
 7. P. C55–C66.
- Дьяконов Е.А., Волошинов В.Б., Поликарпова Н.В. Акустооптическое исследование необычных случаев отражения объемных упругих волн в кристалле парателлурита // Акуст. журн. 2012. Т. 58. № 1. С. 121–131.
- 9. Балакший В.И., Манцевич С.Н. Распространение акустических пучков в кристалле парателлурита // Акуст. журн. 2012. Т. 58. № 5. С. 600–609.
- Антонов С.Н., Вайнер А.В., Проклов В.В., Резвов Ю.Г. Модификация параболического приближения теории дифракции ультразвукового пучка в сильноанизотропном кристалле // Журн. техн. физ. 2013. Т. 83. № 12. С. 11–16.
- Дьяконов Е.А., Волошинов В.Б., Поликарпова Н.В. Полуколлинеарный режим дифракции света на ультразвуке в среде с сильной упругой анизотропией // Оптика и спектроскопия. 2015. Т. 118. № 1. С. 172–181.
- Mantsevich S.N., Molchanov V.Ya, Yushkov K.B., Khorkin V.S., Kupreychik M.I. Acoustic field structure simulation in quasi-collinear acousto-optic cells with ultrasound beam reflection // Ultrasonics. 2017. V. 78. P. 175–184.
- 13. Voloshinov V.B., Polikarpova N.V., Ivanova P.A., Khorkin V.S. Acousto-optic control of internal acoustic

АКУСТИЧЕСКИЙ ЖУРНАЛ том 65 № 4 2019

reflection in tellurium dioxide crystal in case of strong elastic anisotropy // Applied Optics. 2018. V. 57. № 10. P. C19–C25.

- Балакший В.И., Волошин А.С. Акустооптическое взаимодействие в кристаллах с большой акустической анизотропией // Оптика и спектроскопия. 2011. Т. 110. № 5. С. 840–846.
- 15. Балакший В.И., Волошин А.С., Молчанов В.Я. Анизотропная дифракция света в кристаллах с большим сносом акустической энергии // Оптика и спектроскопия. 2014. Т. 117. № 5. С. 827–832.
- Балакший В.И., Волошин А.С. Передаточные функции акустооптического взаимодействия в средах с сильной акустической анизотропией // Известия РАН. Сер. физическая. 2015. Т. 79. № 10. С. 1471–1475.
- Voloshin A.S., Balakshy V.I. Anisotropic light diffraction by ultrasound in crystals with strong acoustic anisotropy // Physics Procedia. 2015. V. 70. P. 737–740.
- Balakshy V.I., Voloshin A.S., Molchanov V.Y. Influence of acoustic energy walk-off on acousto-optic diffraction characteristics // Ultrasonics. 2015. V. 59. P. 102–108.
- 19. Проклов В.В., Резвов Ю.Г. Особенности формирования многополосной функции пропускания на базе многочастотной акустооптической дифракции // Оптика и спектроскопия. 2018. Т. 124. № 1. С. 122–128.
- Проклов В.В., Резвов Ю.Г., Подольский В.А. Теория акустооптической фильтрации излучения в многочастотном акустическом поле в ближней зоне плоского пьезоэлектрического преобразователя // Акуст. журн. 2018. Т. 64. № 6. С. 669–675.
- 21. Voloshinov V., Gupta N. Ultraviolet-visible imaging acousto-optic tunable filters in kdp // Applied Optics. 2004. V. 43. № 19. P. 3901–3909.
- 22. *Gupta N., Voloshinov V.B.* Development and characterization of two-transducer imaging tunable acousto-optic filters with extended tuning range // Applied Optics. 2007. V. 46. № 7. P. 1081–1088.
- 23. Балакший В.И., Волошинов В.Б., Князев Г.А., Кулакова Л.А. Исследование акустооптических характеристик кристаллов теллура в режиме анизотропной дифракции света // Журн. техн. физ. 2008. Т. 78. № 10. С. 87–95.
- Антонов С.Н., Вайнер А.В., Проклов В.В., Резвов Ю.Г. Новый акустооптический эффект – брэгговская дифракция без перемодуляции // Журн. техн. физ. 2009. Т. 79. № 6. С. 119–123.
- 25. Антонов С.Н., Вайнер А.В., Проклов В.В., Резвов Ю.Г. Влияние пространственной структуры звукового поля на брэгговскую акустооптическую дифракцию в условиях сильной акустической анизотропии // Журн. техн. физ. 2010. Т. 80. № 3. С. 97–106.