——— НЕЛИНЕЙНАЯ АКУСТИКА —

УДК 534.2

ОСОБЕННОСТИ УПРУГИХ СВОЙСТВ ВТСП-КЕРАМИКИ В ОБЛАСТИ ПЕРЕХОДА В СВЕРХПРОВОДЯЩУЮ ФАЗУ

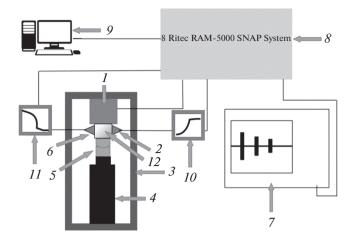
© 2019 г. А. И. Коробов^{а, *}, А. И. Кокшайский^а, Н. В. Ширгина^а, Н. И. Одина^а, А. А. Агафонов^а, В. В. Ржевский^а

^а Московский государственный университет им. М.В. Ломоносова, Физический факультет, Москва, 119991 Россия *e-mail: aikor42@mail.ru

Поступила в редакцию 19.06.2019 г. После доработки 19.06.2019 г. Принята к публикации 09.07.2019 г.

В работе приведены результаты исследований упругих свойств высокотемпературной сверхпроводящей керамики $YBa_2Cu_3O_{(7-x)}$ в окрестности фазового перехода в сверхпроводящее состояние при температуре 91.3 К, а также при комнатной температуре 293 К. В окрестности температуры фазового перехода шириной порядка 10 К впервые обнаружено локальное увеличение продольного нелинейного акустического параметра N, характеризующего ангармонизм межатомного взаимодействия в материале. Проведенные экспериментальные исследования линейных и нелинейных упругих свойств ВТСП-керамики $YBa_2Cu_3O_{(7-x)}$ в области сверхпроводящего перехода показывают, что электронный фазовый переход оказывает существенное влияние на ее упругие свойства.

Ключевые слова: скорость ультразвуковых волн, сверхпроводящая керамика, нелинейный упругий параметр


DOI: 10.1134/S0320791919060066

ВВЕДЕНИЕ

Открытие в 1986 г. высокотемпературной сверхпроводимости (ВТСП) у металлооксидных соединений - керамик - стимулировало интенсивное исследование их физических свойств, в том числе упругих. Интервал экспериментально найденных критических температур ВТСП соединений разной природы к настоящему времени составляет от $T_{\rm c}=30~{\rm K}$ для ${\rm La_{2}}_{-x}{\rm Ba}_{x}{\rm CuO_{4}}$ [1] до $T_{\rm c}=265~{\rm K}$ для ${\rm LaH_{10}}$ при давлении ~170 Мбар [2]. Причем в последнем случае $T_{\rm c}$ была не только обнаружена, но и предсказана [3]. Последнее стало возможным благодаря численному моделированию новых ВТСП структур на основе уравнений из первых принципов, которые ведут к лучшему пониманию физических и химических явлений в материалах. С другой стороны, для уже найденных высокотемпературных сверхпроводников улучшаются прежние и разрабатываются новые методики их изготовления, что позволяет получать материалы ВТСП нового поколения, обладающие определенными заданными характеристиками: большим содержанием сверхпроводящей фазы, оптимальной пористостью, способностью пропускать большие плотности как постоянного, так и переменного тока, с малыми энергетическими потерями. При этом упругие свойства материалов, получаемых с помощью новых технологий изготовления, могут значительно отличаться от ранее изученных образцов.

В настоящей работе рассматриваются линейные и нелинейные упругие свойства ВТСП керамики $YBa_2Cu_3O_{(7-x)}$, с критической температурой $T_{\rm c} = 91 \, {\rm K}$, которая является первым соединением с температурой перехода в сверхпроводящее состояние выше температуры кипения азота (77 К) [4]. Большой интерес к исследованию свойств этой керамики, в том числе, к изучению ее упругих характеристик [5–7], вызван тем, что она является перспективным ВТСП материалом в различных областях электроники и электроэнергетики, при этом способы ее изготовления в последнее время значительно усовершенствованы. Наноструктурированные ВТСП материалы на основе ҮВа, $Cu_3O_{(7-x)}$ отличаются высокой долей сверхпроводящей фазы, оптимально насыщенной кислородом, обеспечением структуры образцов центрами пиннинга из элементов этого же соединения [8]. В частности, исходные компоненты нанопорошка претерпевают несколько фазовых превращений в процессе синтеза, что вызывает отклонение стехиометрии частиц и приводит к структурным и механическим дефектам.

Вместе с тем, актуальной остается задача создания контролируемых дефектов в ВТСП соединениях и определения условий, при которых кон-

Рис. 1. Блок-схема экспериментальной ультразвуковой установки для измерения упругих свойств твердых тел: 1 – датчик давления, 2 – пьезоэлектрический преобразователь, 3 – рама, 4 – домкрат, 5 – шарнир, 6 – образец, 7 – цифровой осциллограф DSO7034B.

центрация этих дефектов вела бы к повышению критического тока сверхпроводников. Критический ток является параметром, весьма чувствительным к наличию дефектов, поскольку он определяется взаимодействием решетки вихрей Абрикосова с системой центров пиннинга, роль которых выполняют различные дефекты кристаллической решетки образца. Максимальная величина критического тока достигается при оптимальной концентрации дефектов. Избыточная концентрация дефектов ведет к разрушению сверхпроводимости.

Целью данной работы является исследование особенностей упругих свойств ВТСП керамики $YBa_2Cu_3O_{(7-x)}$, изготовленной современным промышленным способом в Национальном исследовательском центре "Курчатовский институт". Особое внимание уделено экспериментальному исследованию продольного нелинейного упругого параметра второго порядка при нелинейной диагностике структуры сверхпроводящего соединения $YBa_2Cu_3O_{(7-x)}$ в окрестности температуры сверхпроводящего перехода при $T_c = 91.3$ K.

ЭКСПЕРИМЕНТАЛЬНЫЕ ОБРАЗЦЫ, УСТАНОВКА И МЕТОДИКА ИЗМЕРЕНИЙ

Экспериментальные исследования линейных и нелинейных упругих свойств ВТСП керамики $YBa_2Cu_3O_{(7-x)}$ проводились ультразвуковыми методами с помощью автоматизированного измерительного комплекса, состоящего из ультразвуковой системы Ritec RAM-5000, 4-канального цифрового осциллографа DS09104A и механического устройства для создания в исследуемом материале контролируемого одноосного давления P, ко-

торый ранее нами применялся в работах [9–11]. Ультразвуковой комплекс Ritec RAM-5000 SNAP SYSTEM работает в импульсном режиме и предназначен для измерения линейных и нелинейных упругих свойств твердых тел (рис. 1).

В комплексе реализованы следующие методики для одновременного исследования механических и упругих свойств твердых тел:

- а) Импульсный метод измерения скорости ультразвуковых волн для определения всех компонент тензора упругости второго порядка C_{ijkl} в исследуемых образцах твердых тел.
- б) Квазистатический метод Терстона—Браггера для определения всех компонент тензора упругости третьего порядка C_{ijklqr} в твердых телах.
- в) Спектральный метод для определения нелинейных упругих свойств твердых тел, основанный на исследовании эффективности генерации высших гармоник при распространении акустических волн конечной амплитуды в исследуемом образце. Исследование эффективности генерации второй гармоники объемной акустической волны (OAB) A_{2f} проводилось на частоте 2f = 10 МГц при распространении в исследуемом материале ОАВ конечной амплитуды A_f на частоте f = 5 МГц. Для выделения сигналов амплитуд первой и второй гармоник из спектра сигнала, прошедшего через образец, применялись фильтры нижних и высоких частот. Это позволило по двум независимым каналам проводить одновременное измерение амплитуды А и фазы ф сигналов первой и второй гармоник в зависимости от амплитуды зондирующего сигнала при различных температурах исследуемого образца.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для проведения ультразвуковых измерений линейных и нелинейных упругих свойств ВТСП керамики $YBa_2Cu_3O_{(7-x)}$ из одной заготовки были изготовлены три образца в форме прямоугольных параллелепипедов с размерами $36.22 \times 9.79 \times 7.19$ мм. Противоположные грани образцов тщательно полировались. В этих образцах ультразвуковым методом вдоль трех ортогональных направлений, параллельных 3-м ребрам параллелепипеда, были измерены скорости продольных и сдвиговых ОАВ при комнатной температуре T = 300 K. Численные значения как для продольных, так и для сдвиговых скоростей ОАВ в образце в пределах погрешности 1.5% совпали. Это позволило считать исследуемые образцы акустически изотропными материалами. Также была измерена плотность образцов ВТСП $\rho_0 = 5690 \pm 70 \; \mathrm{kr/m^3}$. В изотропных твердых телах имеется 12 отличных от нуля коэффициентов упругости второго порядка (КУВП), но только 2 из них являются независи-

Плот- ность, кг/м ³	V_L , м/с	<i>V_S</i> , м/с	C ₁₁ , ГПа	$C_{44} = = \mu, \Gamma \Pi a$	S_{11}	S_{12}	<i>K</i> , ГПа	<i>E</i> , ГПа	σ , Па	λ, ΓΠa
5690 ± 70	4530 ± 70	2630 ± 40	116.74 ± ± 3.48	39.35 ± 1.18	$(1.02 \pm 0.03) \times 10^{-11}$	$(-2.5 \pm 0.07) \times 10^{-12}$	64.2 ± 1.9	98 ± 3	0.25 ± 0.07	38 ± 1

Таблица 1. Упругие параметры ВТСП керамики $YBa_2Cu_3O_{(7-x)}$

мыми. Обычно такими принято считать коэффициенты C_{11} и C_{44} . В табл. 1 приведены результаты измерения скоростей продольной и сдвиговой ОАВ, значение плотности керамики $YBa_2Cu_3O_{(7-x)}$ и рассчитанные по формулам (1) и (2) значения $KYB\Pi$ в исследованном образце [12].

$$C_{11} = \rho_0 V_L^2, \tag{1}$$

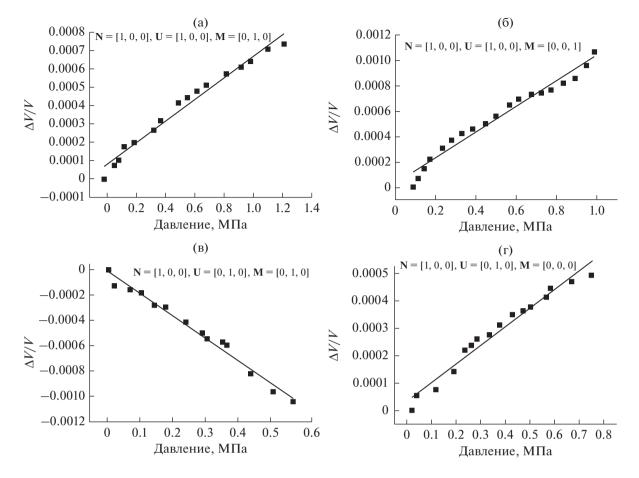
$$C_{44} = \rho_0 V_T^2, \tag{2}$$

где ρ_0 — плотность образца, V_L — продольная скорость, V_T — сдвиговая скорость ОАВ. Измерение скорости продольных ОАВ проводилось на частоте 10 МГц, а сдвиговых ОАВ на частоте 5 МГц.

Для описания упругих свойств изотропных твердых тел наряду с тензорными коэффициентами C_{11} и C_{44} часто используются скалярные величины: λ , μ — коэффициенты Ламе, S_{ij} — модуль податливости второго порядка, E — модуль Юнга, K — коэффициент Всестороннего сжатия, σ — коэффициент Пуассона. Любая пара этих коэффициентов однозначно описывает упругие свойства твердых тел. Экспериментально определенные коэффициенты C_{11} и C_{44} позволили рассчитать коэффициенты Ламэ λ , μ , модуль Юнга E, коэффициент Пуассона σ , коэффициент всестороннего сжатия K. Значение этих коэффициентов в ВТСП керамике приведено в табл. 1. Методика расчета коэффициентов приводится в [13].

Исследования нелинейных упругих свойств образцов ВТСП проводились двумя ультразвуковыми методами:

- а) при комнатной температуре измерения проводились квазистатическим методом Терстона—Браггера, основанном на упругоакустическом эффекте зависимости скорости ОАВ в исследуемом образце твердого тела от величины приложенного к нему внешнего давления;
- б) в области сверхпроводящего перехода спектральным методом по эффективности генерации второй упругой гармоники.


В изотропном твердом теле имеется 18 отличных от нуля компонент тензора коэффициентов упругости третьего порядка (КУТП), но только три коэффициента (C_{111} ; C_{112} ; C_{123}) считаются независимыми, а остальные являются их линейной комбинацией [14]. Для определения трех независимых КУТП методом Терстона—Браггера в об-

разцах ВТСП-керамики были измерены зависиотносительного изменения скорости $(\Delta V/V)$ продольных и сдвиговых OAB от величины одноосного сжатия P при различных направлениях единичных векторов N, U, определяющих направление распространения и поляризацию акустических волн, и вектора М, определяющего направление одноосного сжатия Р. Направление одноосного сжатия М при всех измерениях было перпендикулярно направлению распространения упругой волны N. Расчет КУТП производился по методу Терстона-Браггера, заключающемуся в решении системы уравнений, полученной на основе результатов экспериментальных измерений зависимости скорости упругих волн от величины одноосного сжатия P:

$$\left[\frac{\partial \left(\rho_0 W^2\right)}{\partial P}\right]_{P=0} = 2\rho_0 W^2 F + G,\tag{3}$$

где W- "естественная скорость" ОАВ, ρ_0- плотность, $F=S_{jkab}^TM_aM_bU_jU_k$, $G=S_{ipab}^TC_{jrksip}U_jU_kN_r \times N_sM_aM_b$, S_{ipab}^T- коэффициенты податливости второго порядка, $C_{jrksip}-$ КУТП в исследуемом материале, U_k- компоненты вектора поляризации ОАВ U, N_r- компоненты волнового вектора ОАВ N, M_i- компоненты единичного вектора M в направлении одноосного сжатия P [15].

Измерения относительного изменения скорости ОАВ $\Delta V/V$ в образце, вызванного приложенным к нему одноосным статическим давлением P, проводились импульсным ультразвуковым методом. Ультразвуковой комплекс автоматически измеряет изменение фазы акустической волны $\Delta φ = 2π f \Delta τ$, вызванное изменением времени ее распространения τ в образце при приложении к нему давления P. Измерение величины $\Delta \phi$ позволяет определить относительное изменение скорости акустической волны согласно выражению $\Delta V/V = -\Delta \tau/\tau = \Delta \phi/2\pi f \tau$ (где f – частота OAB). Измерения зависимости относительного изменения скорости в образце от величины одноосного сжатия P проводились в интервале давлений $0-1.4~\mathrm{M\Pi a.~B}$ этом интервале зависимость относительного изменения скорости $\Delta V/V$ OAB в образце от величины его одноосного сжатия Рбыла близка к линейной. При этом направление одностороннего сжа-

Рис. 2. Зависимости относительного изменения скоростей продольных и сдвиговых OAB от величины одноосного сжатия образца P при различных направлениях единичных векторов N, U, M.

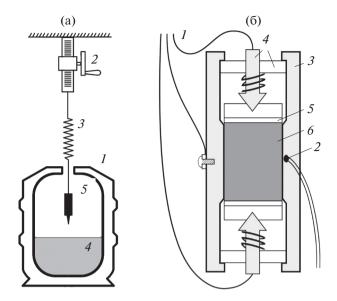
тия **М** при всех измерениях было ортогонально направлению распространения ОАВ в образце **N**.

Результаты измерений $\Delta V/V$ в исследованном образце ВТСП приведены на рис. 2. Экспериментальные зависимости, приведенные на рис. 2, были аппроксимированы методом наименьших квадратов прямыми линиями, тангенс угла наклона которых равен $\left(\frac{\partial V}{V\partial P}\right)_{P=0}$. Коэффициент детерминации для каждой из прямых R^2 составил более 0.97, что соответствует высокой точности аппроксимации. Выполненные измерения зависимостей скоростей ОАВ от одноосного сжатия позволили определить в исследуемых образцах

величину
$$\left[\frac{\partial \left(\rho_0 W^2\right)}{\partial P}\right]_{P=0} = \left[2\rho_0 V^2 \left(\frac{\partial V}{V \partial P}\right)\right]_{P=0}$$
 для

всех случаев возможной взаимной ориентации векторов **M**, **N**, **U**.

На основе экспериментально измеренных ве-


личин
$$\left[\frac{\partial \left(\rho_0 W^2\right)}{\partial P}\right]_{P=0}$$
 и соотношения (3) для повы-

шения точности определения трех независимых КУТП в образцах была получена переопределенная система из четырех линейных уравнений. Эта система была решена на компьютере методом наименьших квадратов и определены все три независимые КУТП: C_{111} , C_{112} , C_{123} , значения которых представлены в табл. 2.

Для проведения ультразвуковых измерений в образцах ВТСП керамики $YBa_2Cu_3O_{(7-x)}$ в интервале температур 78—300 К комплекс Ritec RAM-5000 (рис. 1) был дополнен низкотемпературной

Таблица 2. Коэффициенты упругости третьего порядка ВТСП керамики

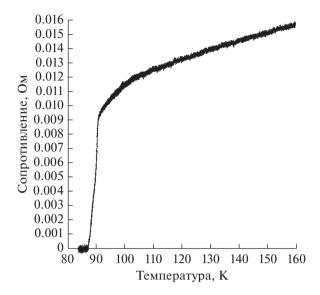
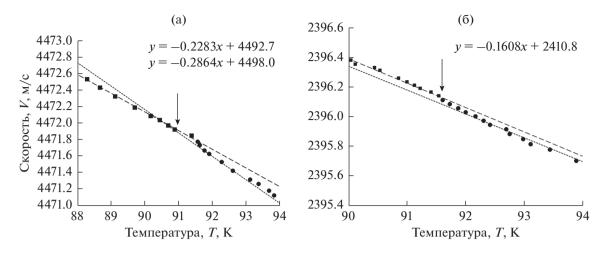

C_{111} , Па	C_{112} , Па	C_{123} , Па
$-7.31 \times 10^{13} \pm 1.93 \times 10^{13}$	$0.058 \times 10^{13} \pm 0.03 \times 10^{13}$	$-0.247 \times 10^{13} \pm 0.09 \times 10^{13}$

Рис. 3. (а) — 1 — Сосуд Дьюара, 2 — ручная лебедка с миллиметровой подачей, 3 — упругая виброразвязка, 4 — жидкий азот, 5 — экспериментальная капсула с образцом. (б) — в сосуде Дьюара: 1 — сигнальные провода с общей землей, 2 — термопара, 3 — толстостенная медная оболочка капсулы, 4 — подпружиненный механизм закрепления преобразователей и образца, 5 — пьезоэлектрический преобразователь, 6 — образец.

термостатируемой акустической ячейкой с исследуемым образцом, электрической схемой для измерения сопротивления образца методом четырех точек (на рис. 3 не показана), системой для измерения температуры образца с помощью термопары (рис. 3). В качестве хладагента использовался жидкий азот. Акустическая ячейка помещалась в дьюар с жидким азотом. Ячейка состояла из кристаллодержателя, в который помещался исследуемый образец с термопарой. Температура образца изменялась путем плавного перемещения ячейки в парах азота. Скорость изменения температуры во всем диапазоне не превышала 0.5 К/мин, а в окрестности сверхпроводящего перехода — 0.1 К/мин. К противоположным полированным плоскопараллельным сторонам образца для возбуждения и приема продольных и сдвиговых акустических волн прикреплялись преобразователи из ниобата лития. Акустический контакт осуществлялся с помощью силиконового масла. Кристаллодержатель с образцом помещался в полый герметичный толстостенный цилиндр из бронзы. Бронза обладает высокими коэффициентами теплопроводности и теплоемкости, что позволяло предотвратить неоднородность температуры в исследуемом образце.

Экспериментальная установка была автоматизирована с помощью персонального компьютера (ПК). Разработанный пакет программ обеспечил автоматическую регистрацию измеряемых ком-


Рис. 4. Зависимость сопротивления ВТСП керамики YBA $_2$ CU $_3$ O $_{(7-x)}$ от температуры в области фазового перехода при $T_{\rm c}=91.3$ K.

плексом величин и полный контроль над комплексом с помощью ПК.

Для определения температуры сверхпроводящего перехода из ВТСП керамики $YBa_2Cu_3O_{(7-x)}$ был приготовлен образец размером $1\times 1\times 7$ мм. Сопротивление образца было измерено в интервале температур 78-300 К методом четырех точек при токе через образец J=1 мА. Определенная в работе температура перехода материала в сверхпроводящее состояние равнялась $T_c=91.3\pm0.1$ К (ширина перехода порядка 1 K) (рис. 4).

Линейные упругие свойства керамики в интервале 79—300 К исследовались импульсным методом путем измерения скорости продольных и сдвиговых волн. Были измерены температурные зависимости амплитуды первой продольной гармоники, а также температурные зависимости скоростей продольной и сдвиговой ОАВ. На фоне монотонного роста с понижением температуры у скорости как продольных, так и сдвиговых волн обнаружено аномальное поведение при температуре порядка 91 К. Особенно тщательно были проведены измерения температурных зависимостей скоростей ОАВ в области сверхпроводящего перехода.

В случае продольных волн при $T=T_{\rm c}=91.3~{\rm K}$ отмечены аномалии как самой зависимости, так и ее производной по температуре (рис. 5). Для оценки величин наблюдаемых скачков кривая зависимости была кусочно аппроксимирована отрезками прямых с использованием метода наименьших квадратов на участках выше ($T=92.5-94~{\rm K}$) и ниже ($T=88-90~{\rm K}$) температуры перехода, после чего обе прямые были экстраполированы до точ-

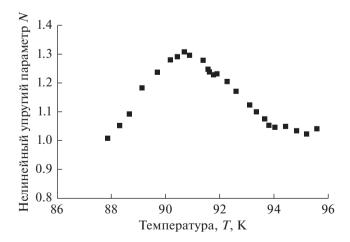
Рис. 5. Зависимость скорости: (a) — продольных ОАВ и (б) — сдвиговых ОАВ от температуры в ВТСП керамике вблизи температуры фазового перехода $T_c = 91.3 \; \mathrm{K}.$

ки $T_{\rm c}$. Согласно оценкам скачок относительного изменения скорости V_L продольной волны $\frac{\Delta V_L}{V_L}(T_{\rm c})=1.5\times 10^{-4}$ (рис. 5а), при этом изменение производной было равно $\Delta\left[\frac{d}{dT}\left(\frac{\Delta V_L}{V_L}\right)\right]=1.3\times 10^{-4}$ 1/K. Для зависимости скорости сдвиговой волны от температуры $\frac{\Delta V_T}{V_T}(T_{\rm c})$, аппроксимированной аналогично $\frac{\Delta V_L}{V_L}(T_{\rm c})$, в пределах ошибки измерений скачка величины $\frac{\Delta V_T}{V_T}$ не наблюдалось, величина же скачка производной при $T=T_{\rm c}$ составила (рис. 5б) $\Delta\left[\frac{d}{dT}\left(\frac{\Delta V_T}{V_T}\right)\right]=1.02\times 10^{-4}$ 1/K.

Нелинейные свойства ВТСП керамики в области фазового перехода исследовались спектральным методом по эффективности генерации второй продольной упругой гармоники. В спектре гармонической продольной ОАВ конечной амплитуды, распространяющейся в твердом теле, кроме волны основной частоты $A_f = A_1 \sin(2\pi ft - kl)$ наблюдается вторая гармоника ОАВ $A_{2f} = A_2 \sin[2(\omega t - kl)]$:

$$A = A_1 \sin(\omega t - kl) + A_2 \sin[2(\omega t - kl)]. \tag{4}$$

Зависимость амплитуды второй гармоники A_2 от амплитуды продольной ОАВ первой гармоники A_1 в (4) определяется уравнением [16]:


$$A_2 = \frac{1}{8} \left(N k_f^2 L \right) A_1^2, \tag{5}$$

где $k_f = 2\pi f/V_L$ — волновое число, f — частота первой упругой гармоники, L — длина области взаи-

модействия, $N=\left(3C_{11}+C_{111}\right)/C_{11}$ — нелинейный акустический параметр для продольной ОАВ в изотропном твердом теле, C_{11} и C_{111} — коэффициенты упругости второго и третьего порядков соответственно. Экспериментальные исследования температурных зависимостей амплитуды второй гармоники $A_2(T)$ от амплитуды первой гармоники $A_1(T)$ продольной ОАВ позволяют определить температурную зависимость нелинейного параметра N(T).

Из уравнения (5) следует:

$$N(T) = \frac{8A_2(T)}{(k_f^2 L)A_1^2(T)}.$$
 (6)

Рис. 6. Температурная зависимость нормированного нелинейного упругого параметра второго порядка N(T) для продольных упругих волн от температуры в ВТСП керамике вблизи температуры фазового перехода при $T_{\rm c}=91.3~{\rm K}.$

На рис. 6 представлена температурная зависимость упругого нелинейного параметра второго порядка N(T) в области сверхпроводящего перехода при $T=91.3~\mathrm{K}$, нормированного на его значение при температуре 88 K .

Как следует из рис. 6, в окрестности температуры T=91.3 K, соответствующей сверхпроводящему фазовому переходу, было обнаружено локальное увеличение продольного нелинейного акустического параметра: его величина увеличилась примерно в 1.3 раза.

ЗАКЛЮЧЕНИЕ

В ВТСП керамике $YBa_2Cu_3O_{(7-x)}$ при температуре 293 К в приближении изотропного материала измерены все независимые компоненты тензоров упругости второго и третьего порядков. В диапазоне температур 87—300 К измерена зависимость сопротивления образца от его температуры. При T=91.3 К обнаружен переход исследуемого образца в сверхпроводящее состояние.

В области температур вблизи перехода ВТСП керамики $YBa_2Cu_3O_{(7-x)}$ в высокотемпературное состояние при $T \sim 91.3$ К в исследованном образце было обнаружено аномальное поведение линейных и нелинейных упругих характеристик, которое связывается с его переходом в сверхпроводящее состояние.

В окрестности температуры фазового перехода шириной порядка 10 К впервые обнаружено локальное увеличение продольного нелинейного акустического параметра N, характеризующего ангармонизм межатомного взаимодействия в ВТСП керамике $YBa_2Cu_3O_{(7-x)}$.

Проведенные экспериментальные исследования упругих свойств $YBa_2Cu_3O_{(7-x)}$ в области сверхпроводящего перехода при T=91.3 К показывают, что его переход в сверхпроводящее состояние оказывает существенное влияние на линейные и нелинейные упругие свойства ВТСП керамики $YBa_2Cu_3O_{(7-x)}$.

Полученные результаты могут быть использованы в физике твердого тела, материаловедении, при создании новых методик неразрушающего контроля конструкционных материалов методами нелинейной акустической диагностики.

БЛАГОДАРНОСТИ

Авторы благодарят В.С. Круглова за предоставленные образцы.

Исследования упругих характеристик выполнены за счет гранта Российского научного фонда (проект № 14-22-00042).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Bednorz J.G.*, *Muller K.A.* Possible high-Tc superconductivity in the Ba–La–Cu–O system // J. Phys. B. Condens. Matter. 1986. V. 64. № 2. P. 189–193.
- 2. Somayazulu M., Ahart M., Mishra A.K., Geballe Z.M., Baldini M., Meng Y., Struzhkin V.V., Hemley R.J. Evidence for superconductivity above 260 K in Lanthanum superhydride at megabar pressures // Phys. Rev. Lett. 2019. V. 122. № 2. P. 027001–6.
- 3. *Boeri L., Bachelet G.B.* Viewpoint: the road to room-temperature conventional superconductivity // J. Phys. B. Condens. Matter. 2019. V. 31. № 23. P. 234002.
- 4. Wu M.K., Ashburn J.R., Torng C.J., Hor P.H., Meng R.L., Gao L., Huang Z.J., Wang Y.Q., Chu C.W. Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure // Phys. Rev. Lett. 1987. V. 58. № 9. P. 908–910.
- 5. *Воронов Б.Б., Коробов А.И.* Термодинамический анализ поведения скорости звука в соединении YBaCuO вблизи Тс // Физ. низких температур. 1991. Т. 17. № 11–12. С. 1573–1576.
- 6. Воронов Б.Б., Коробов А.И., Мощалков В.В. Экспериментальное исследование линейных и нелинейных упругих свойств керамики YBa₂Cu₃O_(7 − x) // Сверхпроводимость: физика, химия, техника. 1990. Т. 3. № 12. С. 2733—2744.
- 7. *Nikiforov V.N., Bulychev N.A., Rzhevskii V.V.* Elastic properties of HTSC ceramics // Bull. Lebedev Phys. Inst. 2016. V. 43. № 2. P. 74–79.
- 8. Гаджимагомедов С.Х., Палчаев Д.К., Рабаданов М.Х., Мурлиева Ж.Х., Шабанов Н.С., Палчаев Н.А., Мурлиев Э.К., Эмиров Р.М. Керамические материалы на основе YBa₂Cu₃O_{7 δ}, полученные из нанопорошков // Письма в ЖТФ. 2016. Т. 42. № 1. С. 9—16.
- 9. Коробов А.И., Кокшайский А.И., Прохоров В.М., Евдокимов И.А., Перфилов С.А., Волков А.Д. Механические и нелинейные упругие характеристики поликристаллического алюминиевого сплава AMg6 и нанокомпозита *n*-AMg6/C60 // ФТТ. 2016. Т. 58. № 12. С. 2384—2392.
- 10. Волков А.Д., Кокшайский А.И., Коробов А.И., Прохоров В.М. Коэффициенты упругости второго и третьего порядков в поликристаллическом сплаве алюминия марки АМг6 // Акуст. журн. 2015. Т. 61. № 6. С. 685–691.
- Коробов А.И., Ширгина Н.В., Кокшайский А.И., Прохоров В.М. Влияние статической реверсивной нагрузки на механические и упругие свойства поликристаллического сплава алюминия АМг6 // Акуст. журн. 2018. Т. 64. № 4. С. 424—431.
- 12. *Труэлл Р.*, *Эльбаум Ч.*, *Чик Б*. Ультразвуковые методы в физике твердого тела. М.: Мир, 1972. 307 с.
- 13. *Мэзон У.* Физическая акустика. Т. 1. Методы и приборы ультразвуковых исследований. М.: Мир, 1966. 588 с.
- 14. Сиротин Ю.И., Шаскольская М.П. Основы кристаллоакустики. М.: 1975. 680 с.
- 15. Brugger K., Thurston R.N. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media // Phys. Rev. 1964. V. 133. № 6A. P. A1604—A1610.
- 16. Зарембо Л.К., Красильников В.А. Введение в нелинейную акустику. М.: Наука, 1966. 309 с.