——— ФИЗИЧЕСКАЯ АКУСТИКА ——

УДК 541.183.5

ОСОБЕННОСТИ ГЕНЕРАЦИИ НОРМАЛЬНЫХ АКУСТИЧЕСКИХ ВОЛН ВЫСШИХ ПОРЯДКОВ В ТОНКИХ ПЬЕЗОЭЛЕКТРИЧЕСКИХ ПЛАСТИНАХ

© 2020 г. В. И. Анисимкин^{а, *}, Н. В. Воронова^b

^аИнститут радиотехники и электроники им. В.А. Котельникова РАН, Моховая ул. 11, стр. 7, Москва, 125009 Россия ^bОАО НИИ Элпа, Панфиловский пр. 10, Москва, Зеленоград, 124460 Россия *e-mail: anis@cplire.ru Поступила в редакцию 10.04.2019 г. После доработки 22.08.2019 г. Принята к публикации 05.09.2019 г.

Исследован спектр акустических колебаний, генерируемых встречно-штыревыми преобразователями в пластине пьезокристалла LiNbO₃ толщиной порядка длины акустической волны. Показано, что наряду с модами нулевого и высших порядков этот спектр содержит также нечетные гармоники тех же мод. При этом в отличие от волн поверхностного типа, не обладающих дисперсией, частоты гармоник нормальных волн не кратны в точности их основной частоте из-за дисперсии скорости, а амплитуды гармоник могут отличаться от амплитуд волн на основных частотах из-за дисперсии коэффициента электромеханической связи. Температурные чувствительности мод и гармоник отличаются друг от друга и меняются с жидкостной нагрузкой поверхности.

Ключевые слова: нормальные акустические волны, пьезоэлектрическая пластина, моды, гармоники **DOI:** 10.31857/S0320791920010013

введение

В связи с возможностью практического применения нормальных акустических волн в пьезоэлектрических пластинах появился целый ряд публикаций, посвященных исследованию процессов их возбуждения, распространения и преобразования [1]. Такие волны делятся на три типа – эллиптические Лэмба, поперечно-горизонтальные SH и квазипродольные QL с доминирующим смещением вдоль направления распространения [2, 3]. В зависимости от нормированной толщины H/λ (H – толщина, λ – длина волны) в пластине существует определенное число мод нормальных волн, которые относятся к разным типам и номерам. При изменении H/λ один тип волн может трансформироваться в другой [4–7] и при этом менять свои характеристики (скорость V, коэффициент электромеханической связи K², температурный коэффициент задержки ТКЗ, направления потока энергии и т.д.) [8–18].

Возбуждение нормальных волн обычно производится встречно-штыревыми преобразователями (ВШП), работа которых хорошо изучена для поверхностных волн [19], но недостаточно для волн нормального типа. Существуют работы [20–24], в которых показана возможность использования ВШП для возбуждения волн в пластинах и исследовано влияние различных параметров ВШП (пространственный период, количество пар штырей, апертура) на характеристики возбуждаемых акустических сигналов. Однако, по прежнему, остаются вопросы о влиянии дисперсии характеристик распространения на генерацию этих волн, возможно ли возбуждение высших гармоник нормальных волн, как скажется наличие гармоник на спектре акустических колебаний, генерируемых ВШП в пьезоэлектрической пластине.

Цель настоящей работы — найти ответы на эти вопросы, используя в качестве примера ВШП с периодической топологией и пьезоэлектрические пластины ниобата лития LiNbO₃ толщиной H порядка длины акустической волны λ .

МЕТОДИКА ИЗМЕРЕНИЙ И РАСЧЕТОВ

Тестируемая структура представляла собой обычную линию задержки с входным и выходным ВШП. Подложкой служил LiNbO₃ поворотного $64^{\circ}Y,X$ -среза толщиной 370 мкм с направлением распространения волн перпендикулярно оси *X* (углы Эйлера 0°, -26° , 90°). Входной и выходной ВШП содержали 19.5 пар золотых электродов (толщина 1200°А) и имели период $\lambda = 500$ мкм. Расстояние между преобразователями равнялось L = 28 мм.

Рис. 1. Амплитудно-частотные характеристики нормальных акустических волн, генерируемых в пластине 64° YX + 90°-LINBO₃ толщиной $H/\lambda = 0.74$. 0-5, 7 и 8 – моды разных номеров на основных частотах; 6 – суперпозиция 3-й гармоники моды 0 и 3-й гармоники моды 1; 9 - 5-я гармоника моды 0.

На основной частоте f длина волны λ нормальных волн равнялась периоду ВШП (500 мкм), а нормированная толщина пластины и полный набег фазы составляли, соответственно, $H/\lambda = 0.74$ и $\phi = 360^{\circ}L/\lambda = 20160^{\circ}$.

На частотах 3-й и 5-й гармоник тех же волн длина волны, нормированная толщина и полная фаза менялись и равнялись, соответственно, $\lambda/3$, $H/(\lambda/3) = 2.22$, и $\lambda/5$, $H/(\lambda/5) = 3.7$ и $5\phi = 100\,800^\circ$.

Спектр колебаний, генерируемых в пьезопластине, измерялся анализатором четырехполюсников KEYSIGHT E5061B, который работал в амплитудном режиме. По максимумам сигналов в спектре определялись частоты $f_{\mathfrak{I}}$ возбужденных волн и гармоник, которые затем идентифицировались.

Идентификация проводилась путем сравнения экспериментальных значений f_{9} с частотами $f_{T} = V/\lambda$, $V/(\lambda/3)$ и $V/(\lambda/5)$, которые рассчитывались из скоростей волн V при толщинах пластины H/λ , $H/(\lambda/3)$ и $H/(\lambda/5)$ по методике [4, 10] с использованием материальных констант из [25]. Для тех же волн и толщин контролировались величины коэффициентов электромеханической связи K^2 , которые характеризовали эффективность возбуждения волн с помощью ВШП: при $K^2 = 0$ акустические колебания не возбуждались и поэтому не рассматривались. В результате устанавливалось соответствие измеренных частот спектра f_3 либо основной частоте одной из мод нормальных волн, либо частоте гармоники, которая кратна основной или близка к ней.

Для идентифицированных мод и гармоник измерялись также температурные коэффициенты задержки (ТКЗ), которые характеризуют их температурную чувствительность. Величина ТКЗ определялась как $(1/\phi)(\Delta\phi/\Delta t)$, где ϕ – полный бег фазы волны между излучающим и приемным преобразователями, а $\Delta \phi$ – изменение фазы при изменении температуры на величину Δt . Измерения проводились с помощью температурной камеры UC-20CE и анализатора четырехполюсников KEYSIGHT E5061В, работающем в фазовом режиме. Исследовались три случая: пластина со свободными поверхностями (на воздухе) и пластина, одна из поверхностей которой нагружена дистиллированной водой (вязкость 1.3 сПуаз) или глицерином (вязкость 1490 сПуаз). Детали измерений представлены в [26].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 и в таблице представлен спектр и характеристики акустических колебаний, генерируемых в пластине LiNbO₃. Видно, что колебания ∂ -5, 7 и 8, имеющие высокие значения коэффициентов электромеханической связи K^2 , эффективно возбуждаются в эксперименте, а их частоты f_3 хорошо совпадают с расчетными значениями $f_{\rm T}$, соответствующими обычным нормальным волнам разных номеров.

С другой стороны, колебания 6 и 9, присутствующие в спектре рис. 1, генерируются в пластине вопреки расчетам, согласно которым в пластине толщиной $H/\lambda = 0.74$ не существует нормальных волн, основные частоты которых равны f_{3} , а коэффициенты K^{2} имеют достаточно большие

Таблица 1. Сравнение расчетных $f_{\rm T}$ и измеренных $f_{\rm 9}$ частот акустических колебаний с ненулевыми значениями коэффициентов электромеханической связи K^2 в спектре рис. 1. * – 3-я гармоника моды θ и 3-я гармоника моды 1 для нормированной толщины пластины $H/\lambda = 2.22$; ** – 5-я гармоника моды θ для $H/\lambda = 3.7$

n	0	1	2	3	4	5	6	7	8	9
<i>K</i> ² , %	1.4	0.64	1.9	2.4	0.9	0.25	0.86* 0.48*	2.05	1.4	1.26**
$f_{\mathrm{T}}, \mathrm{M}\Gamma$ ц	7	9.4	12.9	16.7	17.9	23.7	23.2* 23.4*	27.8	33.9	38.5**
<i>f</i> _э , МГц	6.9	9.4	13.1	16.9	18.1	22.8	24.3	28.8	35.2	38.3

S₁₂, дБ

Рис. 2. Дисперсионные кривые скорости мод 0, 1 и 2 в пластине $64^{\circ}YX + 90^{\circ}$ -LINBO₃. Стрелки – толщины пластины, соответствующие основной частоте ($H/\lambda = 0.74$), частоте 3-й гармоники ($H/\lambda = 2.22$) и частоте 5-й гармоники ($H/\lambda = 3.7$) тех же мод. ПАВ – поверхностная акустическая волна.

величины для обеспечения эффективной генерации (более 0.25%). Вместе с тем, частота f_3 колебания 6 почти совпадает с частотами 3-х гармоник θ -й и 1-й мод, которые существуют в пластине толщиной $H/\lambda = 2.22$ и имеют высокие $K^2 = 0.86$ и 0.48%, соответственно (таблица, рис. 2, 3). Поэтому можно заключить, что колебание 6 представляет собой суперпозицию третьих гармоник θ -й и 1-й мод. Аналогично, колебание 9 идентифицируется как 5-я гармоника моды θ (таблица, рис. 2, 3).

Отметим, что из-за дисперсии скорости (рис. 2) частоты гармоник нормальных волн, определяемые значениями скоростей при толщинах $H/\lambda = 2.22$ или 3.7, не кратны в точности их основной частоте при $H/\lambda = 0.74$. Так, частота 3-й гармоники моды 0составляет 3.31 частоты моды 0, а частота 3-й гармоники моды 1 - 2.49 частоты моды 1 (таблица). Увеличение частоты в первом и ее уменьшение во втором случае соответствует ходу дисперсионных кривых мод 0 и 1 на рис. 2.

Точно также в отличие от поверхностных волн, для которых значения коэффициента K^2 на основной частоте и частоте гармоники одинаковы, амплитуды нормальных волн и гармоник могут дополнительно отличаться из-за различия (дисперсии) коэффициента K^2 при $H/\lambda = 0.74$, 2.22 и 3.7 (рис. 3).

Наконец, температурная чувствительность нормальных волн и гармоник также различна (рис. 4), т.к. для волн этого типа она зависит от нормированной толщины пластины H/λ [26]. Величины ТКЗ также меняются в зависимости от жидкостной нагрузки поверхности (рис. 5), что

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 1 2020

Рис. 3. Дисперсионные кривые коэффициента электромеханической связи мод θ , I и 2 в пластине $64^{\circ}YX + 90^{\circ}$ -LINBO₃. Стрелки – толщины пластины, соответствующие основной частоте ($H/\lambda = 0.74$), частоте 3-й гармоники ($H/\lambda = 2.22$) и частоте 5-й гармоники ($H/\lambda = 3.7$) тех же мод. ПАВ – поверхностная акустическая волна.

объясняется отличием температурных и диэлектрических характеристик жидкостей, а также различной глубиной проникновения акустических волн в разные аналиты [18, 26]. Эта особенность делает, к сожалению, нормальные волны непри-

Рис. 4. Температурные изменения фазы акустической моды 0 на 1 – основной частоте $F_0 = 6.9$ МГц и 2 – частоте ее 5-й гармоники $5F_0 = 38.3$ МГц в пластине $64^{\circ}YX + 90^{\circ}$ -LINBO₃ толщиной $H/\lambda = 0.74$. 1 – полный набег фазы волны $\phi_0 = 20160^{\circ}$, TK3 = $+25 \times 10^{-6}/^{\circ}$ C, 2 – полный набег фазы волны гармоники $5\phi_0 = 100800^{\circ}$, TK3 = $+30 \times 10^{-6}/^{\circ}$ C. Точки – эксперимент, линии – апроксимирующие кривые, полученные с помощью программы Original 9 LAB Program.

Рис. 5. Температурные изменения фазы акустической моды θ на основной частоте $F_0 = 6.9$ МГц, измеренные 1 – на воздухе, 2 – при нагрузке водой, 3 – при нагрузке глицерином.

годными для прецизионного измерения температуры жидкостной пробы.

выводы

Проведенные исследования показали, что встречно-штыревые преобразователи, нанесенные на одну из поверхностей пьезоэлектрической пластины, генерируют в ней как нормальные волны разных номеров, так и нечетные гармоники этих волн. При близости скоростей амплитудно-частотные характеристики мод и гармоник могут располагаться слишком близко друг к другу и даже интерферировать между собой, искажая весь спектр акустических колебаний. Поэтому наиболее пригодными для практических применений являются пластины толщиной до 3-х длин волн, преобразователи с полосой пропускания до 5% и рабочие частоты менее частоты первой из гармоник.

Работа выполнена за счет бюджетного финансирования в рамках исполнения государственного задания и частично за счет финансирования по гранту РФФИ № 18-07-00074-а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Зайцев В.В., Кузнецова И.Е. Акустические волны в тонких пьезоэлектрических пластинах. М.: Радиотехника, 2018. 240 с.
- Анисимкин И.В. Новый тип акустических мод колебаний тонких пьезоэлектрических пластин: квазипродольные нормальные волны // Акуст. журн. 2004. Т. 50. № 4. С. 442–447.
- 3. *Auld B.A.* Acoustic fields and waves in solids. V. 2. New York: Willey, 1973.

- Anisimkin V.I., Pyataikin I.I., Voronova N.V. Propagation of the Anisimkin Jr. and quasi-longitudinal acoustic plate modes in low-symmetry crystals of arbitrary orientation // IEEE Trans. 2012. V. UFFC-59. № 10. P. 2363–2367.
- 5. Anisimkin V.I. New acoustic plate modes with quasilinear polarization // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014. V. 61. № 1. P. 120–132.
- Zaitsev B.D., Kuznetsova I.E., Joshi S.G. Hybrid acoustic waves in thin potassium niobate plates // J. Appl. Phys. 2001. V. 90. № 7. P. 3648–3649.
- Kuznetsova I.E., Zaitsev B.D., Teplykh A.A., Borodina I.A. Hybridization of acoustic waves in piezoelectric plates // Acoust. Phys. 2007. V. 53. № 1. P. 64–69.
- 8. *Kuznetsova I.E., Zaitsev B.D., Borodina I.A., Teplykh A.A., Shurygin V.V., Joshi S.G.* Investigation of acoustic plate waves of higher order propagating in plates of lithium niobate // Ultrasonics. 2004. V. 42. № 1–9. P. 179–182.
- 9. Soluch W., Lysakowska M. Properties of shear horizontal acoustic plate modes in BT-cut quartz // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011. V. 58. № 10. P. 2239–2243.
- Anisimkin V.I. Anisotropy of the acoustic plate modes in ST-quartz and 128°Y-LiNbO₃ // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2014. V. 61. № 1. P. 120–132.
- 11. Di Pietrantonio F., Benetti M., Cannata D., Beccherelli R., Verona E. Guided Lamb wave electroacoustic devices on micromachined AIN/AI plates // IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2010. V. 57. № 5. P. 1175–1182.
- 12. *Caliendo C., Lo Castro F.* Quasi-linear polarized modes in Y-rotated piezoelectric GaPO4 plates // Crystals. 2014. V. 4. № 3. P. 228–240.
- 13. *Chen Z., Fan L., Zhang S., Zhang H.* Theoretical research on ultrasonic sensors based on high-order Lamb waves // J. Appl. Phys. 2014. V. 115. № 20.
- Tao R., Wang W.B., Luo J.T., Hasan S.A., Torun H., Canyelles-Pericas P., Zhou J., Xuan W.P., Cooke M.D., Gibson D., Wu Q., Ng W.P., Luo J.K., Fu Y.Q. Thin film flexible/bendable acoustic wave devices: Evolution, hybridization and decoupling of multiple acoustic wave modes // Surface & Coatings Technology. 2019. V. 357. P. 587–594.
- Wang Y.-F., Wang T.-T., Liu J.-P., Wang Y.-S., Laude V. Guiding and splitting Lamb waves in coupled-resonator elastic waveguides // Composite Structures. 2018. V. 206. P. 588–593.
- 16. *Kuznetsova I.E., Zaitsev B.D., Joshi S.G.* Temperature characteristics of acoustic waves propagating in thin piezoelectric plates // Proc. IEEE Int. Ultras. Symp. 7–10 Oct. 2001. Atlanta. USA. V. 1. P. 157–160.
- 17. Burkov S.I., Zolotova O.P., Sorokin B.P., Turchin P.P. Calculation of thermostable directions and the effect of external electric field on the propagation of Lamb and SH waves in a langasite-crystal plate // Acoust. Phys. 2012. V. 58. № 6. P. 650–657.
- 18. Zaitsev B.D., Kuznetsova I.E., Joshi S.G. New method of change in temperature coefficient delay of acoustic waves in thin piezoelectric plates // IEEE Trans. Ultras. Ferroel. and Freq. Contr. 2006 V. 53. № 11. P. 2113–2120.

6

- Дьелесан Э., Руайе Д. Упругие волны в твердых телах. М.: Наука, 1982. 424 с.
- 20. Zaitsev B.D., Kuznetsova I.E., Joshi S.G. Improved equivalent circuits for acoustic plate wave devices // Ul-trasonics. 2002. V. 40. № 1–8. P. 943–947.
- Veidta M., Liu T., Kitipornchai S. Modelling of Lamb waves in composite laminated plates excited by interdigital transducers // NDT & E International. 2002. V. 35. № 7. P. 437–447.
- Stepinski T., Manka M., Martowicz A. Interdigital Lamb wave transducers for applications in structural health monitoring // NDT & E International. 2017. V. 86. P. 199–210.
- 23. Samaitis V, Mazeika L. Influence of the spatial dimensions of ultrasonic transducers on the frequency spectrum of guided waves // SENSORS. 2017. V. 17. № 8. P. 1825.
- Zaitsev B.D., Kuznetsova I.E., Nedospasov I.A., Smirnov A.V., Semyonov A.P. New approach to detection of guided waves with negative group velocity: Modeling and experiment // J. Sound and Vib. 2019. V. 442. P. 155–166.
- 25. www.bostonpiezooptics.com/lithium-niobate
- 26. Anisimkin V.I., Voronova N.V., Puchkov Yu.V. General properties of the acoustic plate modes at different temperatures // Ultrasonics. 2015. V. 61. № 9. P. 46–49.