——— НЕЛИНЕЙНАЯ АКУСТИКА ——

УДК 534.21

ЗАКОНЫ ДИСПЕРСИИ, НЕЛИНЕЙНЫЕ УЕДИНЕННЫЕ ВОЛНЫ И МОДЕЛИРОВАНИЕ ЯДЕР ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ОПИСЫВАЮЩИХ ВОЗМУЩЕНИЯ В СРЕДАХ ГИДРОДИНАМИЧЕСКОГО ТИПА С СИЛЬНОЙ ПРОСТРАНСТВЕННОЙ ДИСПЕРСИЕЙ

© 2020 г. А. В. Урсулов^{а, b, *, **}

^аУральский федеральный университет имени первого Президента России Б.Н. Ельцина, Институт естественных наук и математики, Департамент фундаментальной и прикладной физики, ул. Мира 19, Екатеринбург, 620002 Россия ^bУральский федеральный университет имени первого Президента России Б.Н. Ельцина, Научно-исследовательский институт физики и прикладной математики, Отдел математического моделирования, ул. Мира 19, Екатеринбург, 620002 Россия

> *e-mail: AV. Ursulov@urfu.ru **e-mail: urandrey@yandex.ru Поступила в редакцию 10.12.2018 г. После доработки 27.11.2019 г. Принята к публикации 24.12.2019 г.

Рассмотрено интегро-дифференциальное уравнение, моделирующее среды с сильной пространственной дисперсией и нелинейностями гидродинамического типа (уравнение Уизема). Предложен способ построения ядра интегрального члена, позволяющий качественно учитывать особенности законов дисперсии линейных волн в средах с пространственной дисперсией. Подробно рассматривается случай, когда ядро содержит два независимых параметра, характеризующих его амплитуду и ширину. Получены и проанализированы законы дисперсии линейных волн, а также решения в виде уединенных волн предельной и малой амплитуды. В частности, показано, что при соответствующем выборе параметров можно получить значение угла заострения на вершине уединенной волны предельной амплитуды на поверхности слоя жидкости, равное углу Стокса.

Ключевые слова: пространственная дисперсия, нелинейность, уравнение Уизема, закон дисперсии, волна предельной амплитуды, угол Стокса, уединенная волна, уравнение Кортевега–де Фриза **DOI:** 10.31857/S0320791920040103

1. Олним из важных объектов исслелования в теории волн (в том числе акустических) являются волны в различных диспергирующих средах [1-13]. В широком смысле среда называется диспергирующей (средой с дисперсией), если в такой среде отклик на воздействие зависит не только от возмущения в данный момент времени в данной точке пространства, но и от возмущения в предыдущие моменты времени (временная дисперсия) в некоторой области среды, окружающей данную точку (пространственная дисперсия). Временная лисперсия приводит к зависимости функций отклика (диэлектрической или/и магнитной проницаемости, проводимости и т.д.) от частоты, поэтому она также называется частотной дисперсией. Пространственная дисперсия при распространении линейных волн обычно проявляется на достаточно высоких частотах, поэтому ее иногда называют высокочастотной дисперсией.

Учет сильной дисперсии приводит к тому, что уравнения, описывающие распространение возмущений в среде, становятся интегро-дифференциальными [1-3, 10-23]. Вообще говоря, оба вида дисперсии могут присутствовать в каждой диспергирующей среде, однако довольно часто в рамках рассматриваемой задачи удается выделить наиболее существенную из них. Временная дисперсия существенна, когда частоты распространяющихся в среде волн близки к собственным частотам колебаний среды, а также когда в среде имеются процессы типа поглошения или релаксации. В акустике сильная временная дисперсия при распространении линейных и нелинейных волн возникает, например, в релаксирующих жидкостях и газах, полимерах, биологических тканях и других сложно устроенных средах [1-3,6, 13–23]. Образующиеся здесь интегро-дифференциальные уравнения обладают тем свойством, что содержащиеся в них интегралы ограничены сверху текущим моментом времени (либо сводятся к таковым). Последнее непосредственно следует из принципа причинности: реакция среды в текущий момент времени определяется воздействием на нее в прошлом и настоящем. Пространственная дисперсия обусловлена пространственной нелокальностью среды (влиянием всего окружения на каждую точку среды), что приводит в уравнениях к интегралам по всему объёму, занимаемому средой.

Одна из наиболее сложных проблем в анализе интегро-дифференциальных уравнений состоит в том, что часто точный вид ядра интегрального члена не известен. Точный вид ядра можно определить из микроскопического рассмотрения проблемы, что далеко не всегда возможно и выходит за рамки феноменологического подхода. С другой стороны, уравнения не могут быть решены без формального задания ядра. Поэтому возникает необходимость привлечь к моделированию ядра дополнительные физические или математические соображения. Во многих случаях про ядра интегральных членов уравнений заранее можно сказать следующее [1-5, 10-15]. В случае временной дисперсии в ядра наиболее существенный вклал дают времена. меньшие или сравнимые с характерным временем среды (например, со временем релаксации). В случае же пространственной дисперсии основной вклад в ядро вносят пространственные масштабы, меньшие или сравнимые с характерным для рассматриваемой среды размером (постоянной кристаллической решетки, длиной свободного пробега частиц, дебаевским радиусом, толщиной слоя жидкости, характерным размером зерен, диаметром поперечного сечения упругой или электропроводящей проволоки и т.д.). Дальнейшие предположения о структуре ядра могут быть получены, например, из свойств однородности и изотропности среды, однородности времени, соображений симметрии, поведения асимптотик, условий нормировки и т.д. В случае временной дисперсии важным фактором, позволяющим судить о структуре ядра, являются соотношения Крамерса–Кронига, которые являются следствием принципа причинности [1–6]. Соотношения Крамерса–Кронига давно и активно используются в акустике [24-27]. Другие методы, широко используемые в акустике, основаны на восстановлении ядер либо из экспериментальных данных, либо из модельных представлений о внутренней динамике молекулярных или надмолекулярных структур. Такие подходы широко практикуются, например, в медицинской акустике и эластографии [15-17]. Соответствующая математическая процедура восстановления ядра описана в работах [1, 28].

В данной работе на примере конкретного нелинейного интегро-дифференциального уравнения с пространственной дисперсией (так называемого уравнения Уизема) предложен подход к моделированию ядра, основанный на выделении из него "главной" и "поправочной" частей. "Главная" часть учитывает фундаментальные требования к ядру в пределах рассматриваемой задачи (симметрии, нормировки, особенности асимптот ит.д.). Поправки же предназначены для того, чтобы учесть некоторые более тонкие свойства распространяющихся волн (например, особенности законов дисперсии). В рамках данного подхода анализируются уединенные волны на поверхности жидкости. Показано, что для волн на поверхности мелкой воды с помощью подбора параметров можно получить правильное значение угла Стокса.

2. Одним из модельных уравнений, используемых для исследования нелинейных волн в системах гидродинамического типа с сильной пространственной дисперсией, является уравнение [10–12]

$$\eta_t + \eta \eta_x + c_0 \int_{-\infty}^{+\infty} \kappa(x - x') \eta_{x'} dx' = 0, \qquad (1)$$

где c_0 – скорость звука. В теории распространения волн на поверхности воды и математической физике уравнение (1) получило название уравнения Уизема. Это уравнение достаточно универсально. Оно встречается в теории поверхностных и внутренних волн в жидкости, в физике бесстолкновительной плазмы, в нелинейной оптике и т.д. [10-12, 29-37]. Уравнение (1) является интересным объектом для математических исследований, не только как нелинейное интегро-дифференциальное уравнение в частых производных, но и как уравнение, из которого при соответствующем выборе ядра $\kappa(x)$ следуют многие известные нелинейные уравнения: Бенджамина-Оно, Бюргерса, Кортевега-де Фриза (КдФ) и некоторые другие [11, 30, 37–41]. Отметим, что в уравнении (1) с формально математической точки зрения (отвлекаясь от смысла переменных x и t) можно представить ядро х в виде произведения $\kappa(x) = \theta(x)K(x)$, где $\theta(x) - \theta$ -функция Хэвисайда, а K(x) — произвольная функция. Тогда в интегральном члене рассматриваемого уравнения верхний предел интегрирования становится переменным, равным x. В таком виде уравнение (1) становится подобным уравнениям, используемым для описания волн в средах с временной лисперсией. Заметим, что в этом случае уравнение (1) не совпадает с полученным в работе [14] и обобщенным в работе [15] интегро-дифференциальным уравнением (упрощенным за счет одномерности и пренебрежения вязкостью): в (1) не достает дополнительной производной в интегральном слагаемом. Как уже отмечалось, наличие переменного верхнего предела (или, что эквивалентно, θ -функции в ядре) связано с действием принципа причинности, который обязан выполняться, если речь идет о времени *t*. В случае пространственной дисперсии наличие в ядре θ -функции, зависящей от пространственной переменной *x*, соответствует ситуации, когда реакция среды в данной точке пространства *x* определяется областью, находящейся только с одной стороны от этой точки (например, слева), что представляется достаточно специфичным. Поэтому, когда речь идет о пространственной переменной *x*, будем предполагать, что интеграл в (1) берется по всей области пространства, занимаемого средой, в данном случае — в бесконечных пределах.

Для удобства анализа в (1) выбрана калибровка, когла коэффициент перед нелинейным слагаемым равен единице. В результате величина р в (1) имеет размерность скорости. Первое слагаемое в (1) ответственно за нестационарность процесса, второе – учитывает типичную для гидродинамических сред нелинейность, а последний (интегральный) член описывает пространственную дисперсию. Будем считать, что ядро $\kappa(x)$ удовлетворяет следующим условиям: 1) в силу пространственной однородности среды зависит только от разности координат: $\kappa(x - x')$; 2) в силу изотропии среды (эквивалентности прямого и обратного направлений распространения волны) является четной функцией: $\kappa(-x) = \kappa(x)$; 3) спадает на бесконечности $\kappa(\pm\infty) = 0; 4)$ нормировано на единицу:

$$\int_{-\infty}^{+\infty} \kappa(x) dx = 1.$$
 (2)

В общем случае ядро $\kappa(x)$ может быть получено из фазовой скорости линейной волны

$$c_f(k) = \frac{\omega(k)}{k},\tag{3}$$

где $\omega(k)$ — закон дисперсии волны, с помощью обратного преобразования Фурье [10–12]

$$c_0 \kappa(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} c_f(k) e^{ikx} dk.$$
(4)

При известном законе дисперсии выражение (4) определяет ядро $\kappa(x)$.

Часто ограничиваются случаем, когда закон дисперсии линейных волн имеет полиномиальный (степенной) характер

$$\omega(k) = c_0 k + \sum_{n=1}^{N} c_{2n} k^{2n+1}.$$
 (5)

В частности, при N = 1 в правой части выражения (5) получаем полином третьей степени. Соответствующий закон дисперсии имеют волны в средах со слабой пространственной дисперсией. Выражению (5) соответствует ядро

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 4 2020

$$c_0 \kappa(x) = \sum_{n=0}^{N} (-1)^n c_{2n} \frac{d^{2n+1}}{dx^{2n+1}} \delta(x), \qquad (6)$$

где $\delta(x)$ – дельта-функция Дирака. В этом случае уравнение (1) сводится к виду

$$\partial_t \eta + c_0 \partial_x \eta + \sum_{n=1}^N (-1)^n c_{2n} \partial_x^{2n+1} \eta + \eta \partial_x \eta = 0.$$
 (7)

Значение N = 1 соответствует уравнению Кортевега-де Фриза, которое является уравнением третьего порядка. При N > 1 возникают различные уравнения более высоких порядков [35, 42–45].

Если закон дисперсии не является полиномиальным, то в общем случае ядро $\kappa(x)$ вычислить не удается. Иногда ядро $\kappa(x)$ удается аппроксимировать более простой функцией $\gamma(x)$ и тем самым преобразовать интегро-дифференциальное уравнение (1) в дифференциальное. Однако при такой аппроксимации может потеряться часть важной информации, содержащейся в функции

$$r(x) = \kappa(x) - \gamma(x). \tag{8}$$

Последнее может приводить к искажению характеристик исследуемых нелинейных волн, а также, например, к тому, что законы дисперсии линейных волн, соответствующие $\kappa(x)$ и $\gamma(x)$, могут существенно различаться.

Примером такой ситуации является применение уравнения (1) к исследованию слабо нелинейных волн на поверхности слоя жидкости [10– 12]. В этом случае закон дисперсии линейных волн имеет вид

$$\omega = \sqrt{k} \operatorname{th}(k), \tag{9}$$

где ускорение свободного падения *g*, глубина слоя h_0 и скорость $c_0 = \sqrt{gh_0}$ приняты равными единице: $g = h_0 = c_0 = 1$, а частота ω и волновое число *k* считаются безразмерными. График функции (9) приведен на рис. 1.

Ядро интегрального слагаемого в (1), соответствующее закону дисперсии (9), равно

$$\kappa(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sqrt{\frac{\mathrm{th}(k)}{k}} e^{ikx} dk.$$
(10)

Функция (10) имеет асимптоты [10–12]

. 1.

$$\kappa(x) \sim (2\pi x)^{-1/2}, x \to 0,$$
 (11)

$$\kappa(x) \sim \left(\frac{\pi^2}{2}x\right)^{-1/2} \exp\left(-\frac{\pi x}{2}\right), \quad x \to \infty.$$
 (12)

Основываясь на (11) и (12), Уизем предложил аппроксимировать ядро $\kappa(x)$ функцией

$$\gamma(x) = \frac{\pi}{4} \exp\left(-\frac{\pi|x|}{2}\right),\tag{13}$$

УРСУЛОВ

Рис. 1. График закона дисперсии гравитационных волн в слое жидкости (9). При увеличении волнового числа k частота ω стремится к бесконечности.

которая является фундаментальным решением уравнения

$$\left(\partial_x^2 - \left(\frac{\pi}{2}\right)^2\right)\gamma(x) = -\left(\frac{\pi}{2}\right)^2\delta(x).$$
(14)

Подставляя в уравнение (1) вместо ядра к(*x*) выражение (13) (т.е. считая, что к(*x*) = $\gamma(x)$) и действуя на обе части получившегося уравнения оператором $\partial_x^2 - \left(\frac{\pi}{2}\right)^2$, получим дифференциальное уравнение

$$\left(\partial_x^2 - \left(\frac{\pi}{2}\right)^2\right)(\eta_t + \eta\eta_x) - \left(\frac{\pi}{2}\right)^2\eta_x = 0.$$
 (15)

Линеаризуя (15), получим закон дисперсии волн, соответствующих ядру (13)

$$\omega = \frac{k}{1 + \left(\frac{2k}{\pi}\right)^2}.$$
(16)

График функции (16) приведен на рис. 2.

Из рис. 1 и 2 видим, что кривые дисперсии, соответствующие исходному $\kappa(x)$ (9) и аппроксимированному $\gamma(x)$ (13) ядрам, качественно совпадают только при малых k, а при больших kсущественно различаются: первая дисперсионная кривая неограниченно возрастает, а вторая – стремится к нулю. Другим недостатком указанной аппроксимации является невозможность получить значение угла заострения на вершине уединенной волны предельной амплитуды, равное

Рис. 2. График закона дисперсии (16). При увеличении волнового числа k частота ω стремится к нулю.

углу Стокса $\vartheta_s = 2\pi/3$ [10–12]. Приведенный пример указывает на то, что необходима модификация подхода Уизема, лишенная указанных недостатков.

3. Подстановка $\kappa(x) = \gamma(x) + r(x)$ в интегральный член в (1) приводит к появлению двух интегральных слагаемых. Считаем функции r(x) и $\gamma(x)$ четными. Тогда слагаемое, обусловленное функцией r(x), можно представить в виде следующего бесконечного ряда

$$\int_{-\infty}^{+\infty} r(x - x') \eta_{x'} dx' = \partial_x \int_{-\infty}^{+\infty} r(\chi) \eta(x - \chi) d\chi =$$

$$= \partial_x \sum_{n=0}^{\infty} \alpha_{2n} \partial_x^{2n} \eta,$$
(17)

где

$$\alpha_{2n} = \frac{1}{(2n)!} \int_{-\infty}^{\infty} r(\chi) \chi^{2n} d\chi.$$
 (18)

В результате уравнение (1) сводится к интегродифференциальному уравнению бесконечного порядка, которое эквивалентно тому же уравнению Уизема с ядром

$$\kappa(x) = \sum_{n=0}^{\infty} (-1)^n \alpha_{2n} \frac{d^{2n+1}}{dx^{2n+1}} \delta(x) + \gamma(x).$$
(19)

При известном законе дисперсии из выражений (4) и (19) можно получить функцию $\gamma(x)$. В силу обращения в нуль интегралов, содержащих производные от дельта-функций, условие нормиров-

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 4 2020

394

ки (2) после подстановки в него выражения (19) дает

$$\alpha_0 + \int_{-\infty}^{+\infty} \gamma(x) dx = 1.$$
 (20)

Как видим, слагаемые с номерами $n \ge 1$ не дают вкладов в условие нормировки.

В выражении (17) по порядку величины

$$\alpha_{2n}\partial_x^{2n}\eta\sim \left(\frac{\ell}{\Delta}\right)^{2n}\eta,\qquad(21)$$

где Δ — характерный масштаб изменения функции $\eta(x)$, ℓ — характерный масштаб, на котором спадает на бесконечность ядро r(x). Когда функция $\eta(x)$ является гладкой по сравнению с ядром r(x), величина Δ значительно превышает ℓ :

$$\Delta \gg \ell, \tag{22}$$

соответственно, каждый последующий член ряда (17) будет по порядку величины меньше предыдущего члена в $(\ell/\Delta)^2 \ll 1$ раз. В результате, отбрасывая члены, имеющие более высокий порядок малости, ряд (17) (и, соответственно, ряд в выражении (19)) с нужной степенью точности может быть оборван на каком-либо слагаемом с номером n = N. В этом случае уравнение (1) принимает вид

$$\partial_{t} \eta + c_{0} \sum_{n=0}^{N} \alpha_{2n} \partial_{x}^{2n+1} \eta + c_{0} \int_{-\infty}^{+\infty} \gamma(x - x') \eta_{x'} dx' + \eta \partial_{x} \eta = 0.$$
(23)

Уравнению (23) отвечает закон дисперсии

$$\omega(k) = c_0 k \left(\tilde{\gamma}(k) + \sum_{n=1}^{N} (-1)^n \alpha_{2n} k^{2n} \right), \qquad (24)$$

где $\tilde{\gamma}(k) - \Phi$ урье-образ функции $\gamma(x)$. Выражение (24) кроме полинома степени 2N содержит также неполиномиальный вклад, определяемый функцией $\tilde{\gamma}(k)$.

Выберем ядро $\gamma(x)$ в уравнении (23) в виде

$$\gamma(x) = \beta \gamma_0(x), \tag{25}$$

где β – произвольная постоянная, а функция

$$\gamma_0(x) = \frac{q}{2} \exp\left(-q \left|x\right|\right) \tag{26}$$

удовлетворяет уравнению

$$\partial_x^2 - q^2 \Big) \gamma_0(x) = -q^2 \delta(x).$$
 (27)

Величина, обратная q, определяет характерный размер, на котором происходит спадание функции $\gamma_0(x)$.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 4 2020

Используя условие нормировки (20) и обозначая $\alpha_0 = -\alpha$, из (25) и (26) получаем

$$\beta = 1 + \alpha. \tag{28}$$

Как видим, в рассматриваемом случае в силу условия нормировки константа β полностью определяется значением α .

Подставляя выражения (25) и (26) в уравнение (23), действуя на обе части получившегося уравнения оператором $(\partial_x^2 - q^2)$, учитывая (27) и (28), получим дифференциальное уравнение

$$\left(\partial_x^2 - q^2\right) \left(\partial_t \eta + c_0 \sum_{n=1}^N \alpha_{2n} \partial_x^{2n+1} \eta + \eta \partial_x \eta\right) - (29) - \alpha c_0 \partial_x^3 \eta - c_0 q^2 \partial_x \eta = 0.$$

Данное уравнение содержит производные высших порядков и нелинейности вида $\eta\eta_x, \eta\eta_{xxx}, \eta_x\eta_{xx}$. Различные варианты такого типа уравнений обсуждаются в литературе [35, 42–45].

4. Остановимся более подробно на случае, когда в (29) слагаемым, содержащим сумму по n, можно пренебречь. В этом случае уравнение (29) сводится к виду

$$\left(\partial_x^2 - q^2\right)\left(\partial_t \eta + \eta \partial_x \eta\right) - \alpha c_0 \partial_x^3 \eta - c_0 q^2 \partial_x \eta = 0.$$
 (30)

Отметим, что уравнение (30) зависит от единственного параметра α , который входит в него в качестве коэффициента перед третьей производ-

Уравнение (30) соответствует выбору ядра
 $\kappa(x)$ в виде

$$\kappa(x) = -\alpha\delta(x) + (1+\alpha)\gamma_0(x). \tag{31}$$

Функция к(x) (31) содержит два независимых параметра α и q, которые, соответственно, характеризуют ее амплитуду и ширину. Частный случай ядра (31) рассматривался в работе [46] при исследовании нелинейных волн в упругих средах с сильной пространственной дисперсией. Рассмотренный Уиземом случай, когда ядро аппроксимируется функцией (13), соответствует $\alpha = 0$ и

$$q=\frac{\pi}{2}$$
.

Линеаризуя (30), получим закон дисперсии $\omega(k)$, который запишем в виде

$$\omega = c_0 k \frac{1 - \alpha \left(\frac{k}{q}\right)^2}{1 + \left(\frac{k}{q}\right)^2}.$$
(32)

Значение $\alpha = -1$ соответствует акустическому закону дисперсии $\omega = c_0 k$. В этом случае в ядре (31) остается единственное слагаемое, равное дельтаУРСУЛОВ

Рис. 3. График закона дисперсии (32) при $\alpha \ge 1$.

функции Дирака. Экстремумы функции (32) находятся в точках, где обращается в нуль групповая скорость

$$c_g = \frac{d\omega}{dk} = c_0 \frac{1 - (1 + 3\alpha) \left(\frac{k}{q}\right)^2 + \left(\frac{k}{q}\right)^4}{\left(1 + \left(\frac{k}{q}\right)^2\right)^2},$$
 (33)

что достигается при значениях k, равных

$$k_{\pm} = q \sqrt{\frac{-(1+3\alpha) \pm \sqrt{(1+3\alpha)^2 + 4\alpha}}{2\alpha}}.$$
 (34)

Корень k_{-} будет вещественным при $-\frac{1}{9} \le \alpha < 0$, а k_{+} – при $-\frac{1}{9} \le \alpha$. Таким образом, в области $-\frac{1}{9} \le \alpha < 0$ имеется два вещественных корня k_{\pm} , отвечающих максимуму и минимуму функции $\omega(k)$, а в области $0 \le \alpha$ – один вещественный корень, отвечающий максимуму $\omega(k)$.

Характерные графики законов дисперсии приведены на рис. 3–7 ($c_0 = 1, q = 1$). Из приведенных графиков следует, что ядро (31) описывает достаточно широкий спектр законов дисперсии. График для случая $\alpha = 0$ аналогичен графику на рис. 2. Если значение α неотрицательно ($\alpha \ge 0$), то, как видно из рис. 2–4, кривые дисперсии ограничены сверху. Для отрицательных значений параметра α ($\alpha < 0$) при больших значениях волнового числа *k* кривые дисперсии (32) асимптотически выходят на прямую линию

Рис. 4. График закона дисперсии (32) при 0 < α < 1.

$$\omega = -\alpha c_0 k, \tag{35}$$

которая изображена на рис. 5–7 пунктирной линией.

Несмотря на наличие указанной асимптоты, закон дисперсии (32) при отрицательных значениях параметра $\alpha < 0$ качественно отражает свойство функции (9) неограниченно возрастать при $k \rightarrow \infty$. Последнее позволяет сделать вывод о предпочтительности выбора ядра (31) по сравнению с ядром (13) при описании с помощью уравнения Уизема гравитационных волн в слое жидкости.

Отметим, что наличие асимптот в виде прямой линии на графике дисперсионных кривых при $\alpha < 0$ является следствием выбранного приближения, согласно которому в уравнении (29) пренебрегли членами, содержащими все высшие производные, кроме третьей. Действительно, если взять уравнение (29) полностью, то после его линеаризации получим закон дисперсии

$$\omega = c_0 k \left(\frac{1 - \alpha \left(\frac{k}{q}\right)^2}{1 + \left(\frac{k}{q}\right)^2} + \sum_{n=1}^N (-1)^n \alpha_{2n} \left(\frac{k}{q}\right)^{2n} \right).$$
(36)

Поскольку выражение (36) является аппроксимацией точного закона дисперсии, то число N и коэффициенты α_{2n} могут быть подобраны так, что (36) будет качественно правильно отражать особенности аппроксимируемого выражения при любых значениях k. При больших значениях волнового числа ($k \ge q$) из (36) получаем

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 4 2020

$$\omega \approx c_0 k \left(-\alpha + \sum_{n=1}^N (-1)^n \alpha_{2n} \left(\frac{k}{q} \right)^{2n} \right).$$
(37)

Как видим, при больших k закон дисперсии является полиномиальным и асимптоты в виде прямых (35) появляются только в случае, когда в выражении (37) мы пренебрегаем слагаемыми, содержащими все степени k, кроме первой.

5. Рассмотрим теперь стационарные нелинейные волны, удовлетворяющие уравнению (30). Считаем $\eta = \eta(\xi)$, где $\xi = x - ct$, c – скорость возмущения. Тогда в целях удобства дальнейшего анализа уравнение (30) запишем для безразмерной функции $y(\xi)$:

$$\partial_{\xi} \left[\left(\partial_{\xi}^2 - q^2 \right) \left(\sigma y - \frac{y^2}{2} \right) - q^2 y \right] = 0, \qquad (38)$$

где

$$y = \frac{\eta}{c_{\alpha}}, \quad c_{\alpha} = (1 + \alpha)c_0, \tag{39}$$

$$\sigma = 1 + \frac{\Delta c}{c_{\alpha}}, \quad \Delta c = c - c_0. \tag{40}$$

Рассматривая спадающие на бесконечности решения $\partial_{\xi}^{n} y(\pm \infty) = 0$, n = 0, 1, преобразуем уравнение (38) к виду

$$(\sigma - y)^2 {y'}^2 = \frac{q^2 y^2}{4} (y - y_-)(y - y_+), \qquad (41)$$

где штрих означает производную по ξ, а

$$y_{\pm} = 2\left(\sigma - \frac{2}{3} \pm \sqrt{1 - \frac{3}{4}\sigma}\right). \tag{42}$$

Уравнение (41) имеет решение в виде волны предельной амплитуды [10–12], для которой

$$y_{\pm} = \sigma = \frac{4}{3}.$$
 (43)

В этом случае уравнение (41) сводится к виду $y' = \pm qy$, а его решение запишется в форме

$$y = \frac{4}{3}e^{-\frac{q}{2}|\xi - \xi_0|},$$
 (44)

где ξ_0 — произвольная постоянная. Видим, что для волны предельной амплитуды $0 \le y \le \frac{4}{3}$, а сама волна имеет характерное заострение на гребне волны (в точке $\xi = \xi_0$) [10–12]. Возвращаясь к исходной функции $\eta(\xi)$, получаем

$$\eta(\xi) = \eta_{\pm} e^{-\frac{q}{2}|\xi - \xi_0|}, \tag{45}$$

где

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 4 2020

Рис. 5. График закона дисперсии (32) при $-\frac{1}{9} \le \alpha < 0$.

Рис. 6. График закона дисперсии (32) при $-1 < \alpha < -\frac{1}{9}$.

$$\eta_{\pm} = \frac{4}{3}c_{\alpha}.$$
 (46)

Из условия $\sigma = \frac{4}{3}$ и (40) находим, что скорость волны предельной амплитуды равна

Рис. 7. График закона дисперсии (32) при α < -1.

$$c = \frac{4+\alpha}{3}c_0. \tag{47}$$

Из (46) и (47) следует, что амплитуда η_{\pm} и скорость *с* волны предельной амплитуды зависят от параметра α . Так как c > 0, то волны предельной амплитуды существуют только при $\alpha > -4$. При $-4 < \alpha < -1$ имеем дозвуковую волну ($c < c_0$), отрицательная амплитуда которой ограничена снизу значением $\eta_{\min} = -4c_0$: $\eta_{\min} < \eta_{\pm} < 0$. Если же $\alpha > -1$, то волна будет сверхзвуковой ($c > c_0$) и иметь положительную амплитуду ($\eta_+ > 0$).

Угол заострения на вершине волны предельной амплитуды ϑ также определяется параметром α :

$$\vartheta = 2 \operatorname{arctg}\left(\frac{2}{3}qc_0(1+\alpha)\right).$$
(48)

Угол ϑ отрицателен при $-4 < \alpha < -1$, т.е. для сверхзвуковых волн положительной амплитуды, и положителен при $\alpha > -1$, т.е. для дозвуковых волн отрицательной амплитуды. Из (48) видим, что при $c_0 = 1$ и $q = \frac{\pi}{2}$ для волн на поверхности воды угол Стокса $\vartheta_S = 2\pi/3$ [10] соответствует значению $\alpha = \frac{3\sqrt{3}}{\pi} - 1 \approx 0.65$. Таким образом, с помощью подбора параметра α можно получить значение угла заострения для волн предельной амплитуды на поверхности слоя воды, равное углу Стокса.

6. Вблизи $\sigma = 1$ величина *у* мала

$$y_{-} \approx 3(\sigma - 1) \ll 1, \tag{49}$$

а $y_+ \approx \frac{4}{3}$. Вследствие этого при значениях σ , близких к 1, имеем $|y| \le y_- \ll \sigma < y_+$, а уравнение (41) принимает вид

$$y'^{2} = \frac{1}{3}q^{2}y^{2}(y_{-} - y).$$
 (50)

Это уравнение имеет решение с профилем, характерным для односолитонного решения уравнения Кортевега—де Фриза. В результате для исходной функции $\eta(\xi)$ получаем

$$\eta(\xi) = \frac{\eta_{-}}{ch^2 \left(\frac{\xi - \xi_0}{\Delta}\right)},\tag{51}$$

где амплитуда η_{-} определяется выражениями (39), (49), а ширина Δ равна

$$\Delta = \frac{2}{q\sqrt{\sigma - 1}}.$$
(52)

Из полученных выражений следует, что чем ближе σ к 1, тем меньше амплитуда солитона и больше его ширина. Учитывая (40), получаем, что ширина солитона

$$\Delta = \frac{2}{q} \sqrt{\frac{c_{\alpha}}{\Delta c}},\tag{53}$$

а его амплитуда в исходных переменных согласно (39) и (49) равна

$$\eta_{-} = c_{\alpha} y_{-} = 3\Delta c. \tag{54}$$

Как видим из (53) и (54), амплитуда возмущения η_- не зависит от параметра α , а определяется разностью Δc между скоростью возмущения *c* и скоростью звука c_0 . Ширина Δ , наоборот, зависит как от Δc , так и от параметра α . В результате получаем, что при $\alpha > -1$ мы имеем дело со сверхзвуковым солитоном ($c > c_0$) положительной амплитуды $\eta_- > 0$, а при $\alpha < -1$ – с дозвуковым ($c < c_0$) солитоном отрицательной амплитуды $\eta_- < 0$.

7. Будем считать, что профиль волны медленно изменяется в пространстве, а уравнение (30) запишем в сопровождающей (сопутствующей) системе координат [1-3]. Для этого положим $\eta = \eta(\tau, \varepsilon x)$, где $\tau = t - \frac{x}{c_0}$, а ε – малый параметр. В нулевом порядке по ε получаем

$$\partial_{\theta} \left(\left(\partial_{\theta}^2 - q^2 \right) \frac{\eta^2}{2} - c_{\alpha} \partial_{\theta}^2 \eta \right) = 0, \tag{55}$$

где $\theta = c_0 \tau$. Для уединенных возмущений

$$\eta(\pm\infty) = \eta_0, \ \partial_{\theta}^n \eta = 0, \ n = 1, 2, ...,$$
 (56)

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 4 2020

в результате чего уравнение (55) преобразуется к виду

$$\partial_{\theta}^{2}\left(\frac{\eta^{2}}{2}-c_{\alpha}\eta\right)=\frac{q^{2}}{2}\left(\eta^{2}-\eta_{0}^{2}\right).$$
(57)

Положим

$$\eta = \eta_0 + \eta_1, \quad z_0 = \frac{\eta_0}{c_\alpha}, \quad z = \frac{\eta_1}{c_\alpha}, \tag{58}$$

где функция z (соответственно η_1) удовлетворяет условиям

$$z(\pm\infty) = 0, \quad \partial_{\theta}^{n} z = 0, \quad n = 1, 2, \dots$$
 (59)

После несложных преобразований уравнение (57) приводится к виду

$$(s-z)^{2}z^{2} = \frac{q^{2}z^{2}}{4}(z-z_{-})(z-z_{+}), \qquad (60)$$

где $s = 1 - z_0$, штрих означает производную по θ , а

$$z_{\pm} = \frac{2}{3} \left(1 - 3z_0 \pm \sqrt{1 + 3z_0} \right). \tag{61}$$

Волнам предельной амплитуды соответствует

$$z_0 = -\frac{1}{3}, \quad z_{\pm} = \frac{4}{3},$$
 (62)

что приводит к решению

$$\eta(\theta) = \eta_0 + \eta_{\pm} e^{-\frac{q}{2}|\theta - \theta_0|}.$$
 (63)

Волна малой амплитуды возникает вблизи $z_0 = 0$. В этом случае

$$z_{-} \approx -3z_0, \quad z_{+} \approx \frac{4}{3}. \tag{64}$$

Считая, что $|z| \le z_{-} \ll 1 < z_{+}$, получаем уравнение

$$z'^{2} = \frac{1}{3}q^{2}z^{2}(z_{-} - z), \qquad (65)$$

которое по форме совпадает с (50). Из (65) и (58) получаем

$$\eta(\theta) = \eta_0 - \frac{3\eta_0}{ch^2 \left(\frac{\theta - \theta_0}{\Delta}\right)},\tag{66}$$

где

$$\Delta = \frac{2}{q} \sqrt{\frac{c_{\alpha}}{-\eta_0}}.$$
 (67)

Нетрудно видеть, что функции $\eta(\xi)$ и $\eta(\theta)$ связаны между собой преобразованием

$$\eta(\xi) = \eta(-\theta - \Delta ct) - \eta_0. \tag{68}$$

Для волн предельной амплитуды $\eta_0 = -c_{\alpha}/3$, а для волн малой амплитуды $\eta_0 = -\Delta c$.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 4 2020

Поскольку преобразование (68) не затрагивает параметров q и α , то выводы, сделанные в координатах ξ о связи этих параметров со свойствами уединенных волн, остаются справедливыми также в координатах θ .

СПИСОК ЛИТЕРАТУРЫ

- 1. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн (2-е изд.). М.: Наука, 1990. 432 с.
- 2. Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики. М.: Наука, 1975. 287 с.
- 3. *Красильников В.А., Крылов В.В.* Введение в физическую акустику. М.: Наука, 1984. 400 с.
- 4. *Наугольных К.А., Островский Л.А.* Нелинейные волновые процессы в акустике. М.: Наука, 1990. 237 с.
- 5. *Агранович В.М., Гинзбург В.Л.* Кристаллооптика с учетом пространственной дисперсии и теория экситонов. М.: Наука, 1960. 376 с.
- 6. *Туров Е.А.* Материальные уравнения электродинамики. М.: Наука, 1983. 160 с.
- 7. *Бхатнагар П*. Нелинейные волны в одномерных диспергирующих системах. М.: Мир, 1983. 136 с.
- 8. *Кариман В.И*. Нелинейные волны в диспергирующих средах. М.: Наука, 1973. 175 с.
- 9. Багдоев А.Г., Ерофеев В.И., Шекоян А.В. Линейные и нелинейные волны в диспергирующих сплошных средах. М.: ФИЗМАТЛИТ, 2009. 320 с.
- Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. 622 с.
- 11. *Рыскин Н.М., Трубецков Д.И*. Нелинейные волны. М.: ЛЕНАНД, 2017. 312 с.
- 12. Габов С.А. Введение в теорию нелинейных волн. М.: Изд.-во МГУ, 1988. 176 с.
- 13. *Кельберт М.Я., Сазонов И.А.* Распространение импульсов в жидкостях. М.: Наука, 1991. 158 с.
- Руденко О.В., Солуян С.И., Хохлов Р.В. Проблемы теории нелинейной акустики // Акуст. журн. 1974. Т. 20. № 3. С. 449–457.
- 15. Руденко О.В. Нелинейные интегро-дифференциальные модели для интенсивных волн в средах типа биотканей и геоструктур со сложной внутренней динамикой релаксационного типа // Акуст. журн. 2014. Т. 60. № 4. С. 368–375.
- 16. Лобанова Е.Г., Лобанов С.В., Хохлова В.А. Распространение встречных волн с разрывами в нелинейной среде типа биологической ткани // Акуст. журн. 2014. Т. 60. № 4. С. 356–367.
- 17. Sarvazyan A.P., Rudenko O.V., Svanson S.D., Fowlkes J.B., Emelianov S.Y. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics // Ultrasound Med. & Biol. 1998. V. 24. № 9. P. 1419–1435.
- Кащеева С.С., Сапожников О.А., Хохлова В.А., Аверкью М.А., Крам Л.А. Нелинейное искажение и поглощение мощных акустических волн в среде со степенной зависимостью коэффициента поглощения от частоты // Акуст. журн. 2000. Т. 46. № 2. С. 211–219.

- 19. Васильева О.А., Лапшин Е.А., Руденко О.В. Интенсивные импульсы в релаксирующих средах с ограниченным "временем памяти", степенными и неаналитическими нелинейностями // Акуст. журн. 2019. Т. 65. № 1. С. 3–9.
- 20. Полякова А.Л., Солуян С.И., Хохлов Р.В. К вопросу о распространении конечных возмущений в релаксирующей среде // Акуст. журн. 1962. Т. 8. № 1. С. 107–112.
- Солуян С.И., Хохлов Р.В. Акустические волны конечной амплитуды в среде с релаксацией // Акуст. журн. 1962. Т. 8. № 2. С. 220–227.
- Руденко О.В., Солуян С.И. К вопросу о рассеянии звука на звуке // Акуст. журн. 1972. № 3. С. 421– 425.
- Кобелев Ю.А., Островский Л.А. Модели газожидкостной смеси, как диспергирующей среды // Нелинейная акустика. Теоретические и экспериментальные исследования. Горький, 1980. С. 143–160.
- Гинзбург В.Л. Об общей связи между поглощением и дисперсией звуковых волн // Акуст. журн. 1955. Т. 1. № 1. С. 31–39.
- O'Donnel M., Jaynes E.T., Miller J.G. General relationships between ultrasonic attenuation and dispersion // J. Acoust. Soc. Am. 1978. V. 63. № 6. P. 1935–1937.
- O'Donnel M., Jaynes E.T., Miller J.G. Kramers-Kronig relationships between ultrasonic attenuation and phase velocity // J. Acoust. Soc. Am. 1981. V. 69. № 3. P. 696–701.
- Карабутов А.А., Подымова Н.Б., Соколовская Ю.Г. Локальные соотношения Крамерса-Кронига для коэффициента затухания и фазовой скорости продольных ультразвуковых волн в полимерных композитах // Акуст. журн. 2019. Т. 65. № 2. С. 182–189.
- Андреев В.Г., Руденко О.В., Сапожников О.А., Хохлова В.А. Подавление нелинейного затухания звуковой волны в среде, содержащей резонансный поглотитель с конечной шириной линии // Вестник Моск. Ун-та. Сер. 3: Физика. Астрономия. 1985. № 3. С. 58–62.
- Габов С.А. Об уравнении Уизема // Доклады АН СССР. Сер. Математика. 1978. Т. 242. № 5. С. 993– 996.
- Томилина Н.О. О заострении волн, описываемых уравнением Уизема // Вестн. Моск. Ун-та. Сер. 3: Физика. Астрономия. 1991. Т. 32. № 2. С. 14–19.
- Елеонский В.М., Королев В.Г., Кулагин Н.Е. О динамической системе, порожденной уравнением Уи-

зема с осциллирующим ядром // Изв. Вузов "ПНД". 1993. Т. 1. № 3. С. 72-85.

- Moldabayev D., Kalisch H., Dutykh D. The Whitham equation as a model for surface water waves // Physica D: Nonlinear Phenomena. 2015. V. 309. P. 99–107. arXiv:1410.8299v1
- 33. *Naumkin P.I., Shishmarev I.A.* Nonlinear nonlocal equations in the theory of waves // Amer. Math. Soc. 1994. 304 p.
- 34. *Климонтович Ю.Л.* Статистическая теория неравновесных процессов в плазме. М.: Наука, 1964. 282 с.
- Hur V.M., Johnson M.A. Modulational instability in the Whitham equation for water waves // Studies in Applied Mathematics. 2015. V. 134. P. 120–143. arXiv:1312.1579v2
- Johnson M.A., Wright J.D. Generalized solitary waves in the gravity-capillary Whitham equation // Stud Appl Math. 2020. V. 144. P. 102–130. arXiv:1807.11469
- Stefanov A., Wright J.D. Small amplitude traveling waves in the full-dispersion Whitham equation // J. Dynamics and Differential Equations. 2020. V. 32. P. 85–99. arXiv:1802.10040v1
- Hur V.M., Pandey A.K. Modulational instability in the full-dispersion Camassa-Holm equation // Proc. R. Soc. A. 2017. V. 473. 20170153. arXiv:1702.08708v1
- 39. *Remonato F, Kalisch H*. Numerical bifurcation for the capillary Whitham equation // Physica D: Nonlinear Phenomena. 2017. V. 343. № 15. P. 51–62. arX-iv:1604.08324v1
- 40. *Ehrnström M., Wahlen E.* On Whitham's conjecture of a highest cusped wave for a nonlocal dispersive equation // Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 2019. V. 36. № 6. P. 1603-1637. arX-iv:1602.05384v1
- 41. *Arnesen M.N.* Non-uniform dependence on initial data for equations of Whitham type // arXiv:1602.00250v3
- 42. Полянин А.Д., Зайцев В.Ф. Нелинейные уравнения математической физики. М.: Физматлит, 2002. 432 с.
- 43. Полянин А.Д., Зайцев В.Ф., Журов А.И. Методы решения нелинейных уравнений математической физики и механики. М.: Физматлит, 2005. 256 с.
- 44. *Ильичев А.Т.* Уединенные волны в моделях гидромеханики. М.: ФИЗМАТЛИТ, 2003. 256 с.
- 45. Кудряшов Н.А. Методы нелинейной математической физики. М.: МИФИ, 2008. 352 с.
- 46. Памятных Е.А., Урсулов А.В. Нелинейные уединенные волны в нелокально упругих твердых телах // Акуст. журн. 2012. Т. 58. № 2. С. 193–199.