АКУСТИЧЕСКИЙ ЖУРНАЛ, 2020, том 66, № 6, с. 675–680

– ОБРАБОТКА АКУСТИЧЕСКИХ СИГНАЛОВ. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

УДК 681.883.022,621.396.9

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ЭФФЕКТИВНОСТИ НЕЛИНЕЙНОЙ ОБРАБОТКИ ПРИ ПОДАВЛЕНИИ ИМПУЛЬСНЫХ ПОМЕХ В СТАНЦИИ ОБНАРУЖЕНИЯ МАЛОРАЗМЕРНЫХ ОБЪЕКТОВ

© 2020 г. В. Н. Драченко^{а,} *, А. Н. Михнюк^b

^аИнститут общей физики им. А.М. Прохорова Российской академии наук, ул. Вавилова 38, Москва, 119991 Россия ^bOOO "Акустические системы калибровки Программирование", ул. 5-я Магистральная 11, Москва, 123007 Россия *e-mail: ncvi@mail.ru Поступила в редакцию 28.10.2019 г.

После доработки 06.04.2020 г. Принята к публикации 28.04.2020 г.

Рассмотрена возможность применения метода нелинейного подавления помех в приемном тракте гидролокационной станции обнаружения малоразмерных объектов. Показана эффективность такой обработки в реальных условиях.

Ключевые слова: гидролокация, негауссовская помеха, нелинейная обработка сигналов **DOI:** 10.31857/S0320791920050032

ВВЕДЕНИЕ

Основной задачей гидролокационных станций (ГЛС) является обнаружение слабых эхо-сигналов на фоне помех различного типа и происхождения [1–3]. Таким образом, одним из ключевых факторов, определяющих эффективность ГЛС, является помехоустойчивость трактов приема и обработки сигналов [4–6].

Специфической особенностью условий работы гидролокационных станций, предназначенных для мониторинга акваторий вблизи объектов береговой и морской инфраструктуры с целью защиты от несанкционированного проникновения, является их расположение в прибрежных акваториях. Опыт эксплуатации таких ГЛС показывает достаточно частое наличие в принимаемых сигналах импульсных помех настолько высокого уровня, что они не могут быть полностью подавлены входными фильтрами. По всей видимости, данные помехи имеют биологическое происхождение. Рассматриваемые акватории характеризуются лном с относительно малой глубиной и плотным заселением морскими беспозвоночными. Наличие вблизи приемной антенны ГЛС этих организмов и издаваемые ими звуки, особенно в период высокой их активности, приводят к существенному ухудшению сигнально-помеховой ситуации и, соответственно, к ухудшению характеристик обнаружения.

Рассмотрим результаты работы реальной ГЛС с 64-канальной незвукопрозрачной приемной антенной в летний период в одной из бухт Амурского залива, представленные на рис. 1 и 2. На рис. 1а приведен график зависимости модуля принимаемого сигнала от номера отсчета в реализации (времени), а на рис. 16 — зависимость от номера отсчета значений самого сигнала по одному из приемных каналов. На рис. 2 представлены в увеличенном масштабе сигналы с рис. 16 на отрезках, содержащих аномальные выбросы. Здесь по оси абсцисс отложены номера отсчетов, а по оси ординат — их значения.

Как видно из приведенных графиков, помеха имеет акустическое происхождение и носит ярко выраженный импульсный характер. Помехи подобного типа характеризуются большими выбросами мгновенных значений и описываются распределениями вероятности с положительным эксцессом. Они могут быть обусловлены не только биошумами, но и другими причинами, как например, подледные шумы на Байкале [7]. Подавлению подобных негауссовских помех посвящено немало работ, в которых, в основном, рассматриваются радиочастотные тракты.

ТЕОРИЯ

При негауссовских помехах оптимальные алгоритмы, следующие из критерия Неймана-

Рис. 1. (а) – Модуль сигнала на антенне, (б) – сигнал в 33 канале.

Пирсона, выражаются громоздкими вычислительными процедурами, малопригодными для технической реализации даже при известном виде этих распределений и их параметрах. Поэтому все известные исследования посвящены локально или асимптотически оптимальным методам. В нашем случае вид распределения неизвестен и оценка его параметров затруднена.

Известно [8–10], что повышение помехозащищенности приемных устройств от негауссовских помех в обнаружителях слабых сигналов может достигаться применением специального нелинейного преобразования сигналов. Вид и эффективность нелинейной обработки зависят как от модели сигнала (когерентный или некогерентный), так и от вероятностных свойств помехи.

Рассмотрим упрощенную блок-схему стандартной обработки принимаемых сигналов в ГЛС до подачи их в тракт пространственной обработки на рис. 3. Здесь сигнал с приемного элемента (ПЭ) в аналоговом тракте усиливается и фильтруется полосовым фильтром (УПФ), подается на аналогово-цифровой преобразователь (АЦП). Затем цифровой сигнал подвергается дополнительной цифровой фильтрации и децимации (ЦФД) перед подачей в тракт пространственной обработки.

Известные результаты [8–12] позволяют утверждать, что общая схема обработки в случае присутствия негауссовских помех должна содержать нелинейный безинерционный элемент (НБЭ). Алгоритм нелинейной безынерционной обработки сигнала, предназначенный для подавления помех в тракте обработки, обоснован в [8] и имеет вид

$$f_{0p}(x) = \int_{0}^{x} \frac{d(Ag_{0}(A))}{\sqrt{x^{2} - A^{2}}}, \quad x \ge 0$$
$$g_{0}(A) = -\frac{d}{dA} \ln \frac{W_{A}(A)}{A},$$
$$f_{0p}(-x) = -f_{0p}(x),$$

где $W_A(A)$ — плотность вероятности огибающей помеховой составляющей в принимаемом сигнале. Данная характеристика является основной при описании помехового колебания.

Априорная неопределенность статистических и энергетических характеристик негауссовских помех обуславливает актуальность задачи поиска квазиоптимальных методов и реализующих их устройств нелинейной обработки.

Рассмотрим по существу влияние НБЭ. Механизм ослабления помех за счет нелинейного преобразования имеет следующее объяснение [9]. Ослабление помех осуществляется вследствие неравномерной передачи разных участков амплитудного диапазона. Участки, на которые выпадают значения смеси сигнала с помехой преимущественно из-за действия помех, передаются с малым коэффициентом передачи, участки, где наличие сигнала проявляются наиболее заметно, имеют высокий коэффициент передачи.

Рассмотрим мгновенные значения принимаемой реализации на выходе одного из приемников антенной решетки в фиксированный момент времени в зависимости от номера цикла локации. Под циклом локации подразумевается один цикл

Рис. 2. Сигналы в моменты *1*-*4* с рис. 16.

работы ГЛС, включающий в себя режим излучения зондирующего сигнала, режим приема и обработки эхосигналов и, в некоторых случаях, ждущий режим. На рис. 4 изображена данная зависимость для моментов времени, соответствующих дистанциям 200 м (рис. 4а) и 300 м (рис. 4б). Из рис. 4 видно, что интенсивность помехи в моменты времени, соответствующие дистанции 200 м, больше. Это обусловлено спаданием реверберации с увеличением дистанции. На рис. 4а присутствуют также два аномальных выброса, обусловленых импульсной помехой.

На рис. 5 и 6 приведены гистограммы, полученные для реализаций, изображенных на рис. 4. Для наглядности приведены плотности соответствующих нормальных распределений и отмечены стрелками аномальные выбросы. Из приведенных графиков следует, что в отсутствие импульсных помех смесь шумов моря с реверберацией распределена, как и следовало ожидать, по нор-

статочно эффективным в случае помех рассматриваемого типа может оказаться НБЭ простейшего типа в виде идеального ограничителя, ам-

квадратичным отклонением (СКО).

плитудная характеристика которого приведена на рис. 7. Здесь пороговое значение $U_{\Pi} = \alpha \sigma_t$ выбирается пропорциональным текущей для данного момента времени оценке СКО σ_t реализации (оценивается адаптивно), а значение коэффициента

мальному закону с нулевым математическим ожиданием и зависящим от дистанции средне-

В условиях отсутствия априорной информа-

ции о параметрах импульсной помехи, исходя из

выше сказанного, можно предположить, что до-

Рис. 3. Блок-схема стандартного тракта обработки.

Рис. 4. Зависимость от номера цикла локации мгновенных значений, соответствующих фиксированным дистанциям в принимаемых сигналах.

пропорциональности α лежит в пределах от 2 до 3 и определяет относительное количество ограничиваемых значений в принятой реализации в отсутствие импульсной помехи:

$$N_{\rm lim}/N = 2(1 - \Phi(\alpha)),$$

где $N_{\rm lim}$ — количество ограничиваемых значений; N — количество отсчетов принятой реализации; $\Phi(\alpha)$ — функция распределения стандартного нормального распределения. Конкретная величина коэффициента пропорциональности уточняется при настройке после установки ГЛС в акватории.

В случае реально существующей ГЛС, НБЭ удобнее включать в тракт цифровой обработки как на рис. 8 (выделен жирным). Это можно реализовать программным образом, без изменений аппаратной части ГЛС.

ЭКСПЕРИМЕНТ

Ниже рассмотрены результаты экспериментальной проверки эффективности использования НБЭ предлагаемого типа для реальной ГЛС обнаружения малоразмерных объектов.

Эффективность включения в тракт обработки НБЭ проверялась на окончательных результатах обработки в реальном эксперименте при буксировке в зоне обзора станции полой сферы – имитатора подводной цели. В ходе эксперимента производилась регистрация цифрового потока сигналов (на выходе ЦФД), принимаемых многоэлементной приемной антенной ГЛС.

Камеральная обработка проводилась в двух режимах:

1) цифровой поток обрабатывался в штатном режиме (по схеме на рис. 3).

Рис. 5. Гистограмма мгновенных значений, соответствующих дистанции 200 м.

Рис. 6. Гистограмма мгновенных значений, соответствующих дистанции 300 м.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 №6 2020

Рис. 7. Амплитудная характеристика НБЭ.

Рис. 8. Блок-схема тракта обработки с НБЭ.

2) цифровой поток перед поступлением на пространственную обработку проходил через НБЭ в виде идеального порогового ограничителя (рис. 8) при значении $\alpha = 3$.

Все остальные параметры обработки в обоих режимах были идентичны.

Результаты обработки представлены на рис. 9. На рис. 9а — траектория движения обнаруженной цели, полученная в штатном режиме, а на рис. 96 — та же траектория при применении нелинейной обработки. Две окружности на рис. 9 представляют собой мертвую зону ГЛС и границу зоны обзора. Жирными линиями нарисованы траектории обнаруженных целей. Серым цветом обозначена обнаруживаемая в данный момент трасса, а черным — обнаруженные, но снятые с сопровождения (потерянные) трассы.

Шкала дистанций по оси *OX* обозначена в метрах. В нижней части рисунка приведены результаты текущей оценки параметров обнаруживаемой на данном этапе цели: Текущий номер цели; Дистанция, м; Пеленг, град; Курс, град; Текущая скорость, м/с; Средняя по трассе скорость, м/с; Время сопровождения трассы, с; Среднее по трассе отношение сигнал-помеха.

Как видно из приведенных графиков, применение нелинейной обработки существенно улучшило конечный результат. Если в первом случае траектория цели три раза сбрасывалась с сопровождения, то во втором цель удерживается на всем протяжении галса до границы зоны обзора. Траектория, полученная с применением НБЭ, более гладкая, без "рысканий", обусловленных захватом ложных отражений. Последнее наглядно иллюстрируют значения текущих курса и скорости цели на момент окончания наблюдений. Значение среднего по трассе отношения сигнал-помеха значительно больше при применении НБЭ.

ЗАКЛЮЧЕНИЕ

Таким образом, экспериментальная проверка возможности включения в тракт обработки нелинейного элемента, не требующего для реализации существенных затрат, подтвердила его высокую

Рис. 9. Зона обзора ГЛС с результатами траекторного анализа: (а) – без НБЭ, (б) – с НБЭ.

АКУСТИЧЕСКИЙ ЖУРНАЛ том 66 № 6 2020

эффективность в реальных условиях эксплуатации ГЛС.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Рутенко А.Н., Гриценко В.А.* Мониторинг антропогенных акустических шумов на шельфе о. Сахалин // Акуст. журн. 2010. Т. 56. № 1. С. 77–81.
- Салин М.Б., Потапов О.А., Стуленков А.В., Разумов Д.Д. Исследование распределения реверберационной помехи по частотам Доплера в бистатическом эксперименте в глубоком море // Акуст. журн. 2019. Т. 65. № 1. С. 34–41.
- 3. Завольский Н.А., Раевский М.А. Горизонтальная анизотропия динамических шумов в глубоком и мелком море // Акуст. журн. 2019. Т. 65. № 2. С. 197–202.
- Калёнов Е.Н. Помехоустойчивость системы обнаружения при оптимальной пространственной фильтрации и при использовании компенсатора помех // Акуст. журн. 2018. Т. 64. № 3. С. 379–388.
- 5. *Малышкин* Г.С. Сравнительная эффективность классических и быстрых проекционных алгоритмов при разрешении слабых гидроакустических сигналов // Акуст. журн. 2017. Т. 63. № 2. С. 196–208.
- Малышкин Г.С. Анализ влияния физических и технических факторов на эффективность адаптивных

алгоритмов обработки гидроакустических сигналов // Акуст. журн. 2014. Т. 60. № 3. С. 284–299.

- Айнутдинов В.М., Балканов В.А., Белолаптиков И.А. и др. Высокочастотные акустические шумы озера Байкал // Акуст. журн. 2006. Т. 52. № 5. С. 581–591.
- 8. Валеев В.Г., Гонопольский В.Б. Метод амплитудного подавления негауссовских помех // Радиотехника и электроника. 1981. Т. 26. № 11. С. 2301–2307.
- Валеев В.Г. Обнаружение сигналов в негауссовских помехах // В кн.: Теория обнаружения сигналов / под ред. Бакута П.А. М.: Радио и связь. 1984. С. 266–325.
- Валеев В.Г., Корнилов И.Н. Нелинейная обработка сигналов для подавления помех в приемном тракте радиоэлектронных систем // Радиотехника. 2010. № 6. С. 37–42.
- Валеев В.Г., Данилов В.А. Оптимальное обнаружение сигналов на фоне коррелированных радиопомех // Известия ВУЗов. Радиоэлектроника. 1991. № 7. С. 30–34.
- Данилов В.А., Данилова Л.В. Амплитудные характеристики нелинейных преобразователей для подавления негауссовских узкополосных помех // Труды Северо-Кавказского филиала Московского технического университета связи и информатики. 2015. № 1. С. 119–122.