_____ АКУСТИКА СТРУКТУРНО НЕОДНОРОДНЫХ ТВЕРДЫХ СРЕД. ____ ГЕОЛОГИЧЕСКАЯ АКУСТИКА

УДК 550.34:621.039.9

ВАРИАЦИИ ВРЕМЕН ПРОБЕГА ПРОДОЛЬНЫХ ВОЛН ПО МАССИВУ ЦИФРОВЫХ СЕЙСМОГРАММ

© 2020 г. К. С. Непеина^{*a*, *}, В. А. Ан^{*b*, **}

^аНаучная станция РАН, Бишкек, 720049 Кыргызстан ^bИнститут динамики геосфер РАН имени академика М.А. Садовского, Ленинский проспект 38, корп. 1, Москва, 119334 Россия *e-mail: nepeina.k@mail.ru **e-mail: vadiman33@gmail.com

Поступила в редакцию 21.05.2020 г. После доработки 08.06.2020 г. Принята к публикации 07.07.2020 г.

Приводятся параметры цифровых сейсмограмм сейсмических событий искусственного происхождения, наблюдавшихся в период с 1967 по 1990 гг. Данные предоставлены авторам из архива Института динамики геосфер (ИДГ РАН). Они были получены после переформатирования цифровых записей, проведенного при поддержке гранта РФФИ 97-07-90225. Апостериорная информация о времени пробега сейсмической продольной волны (*P*), определенного по моменту первого вступления на записи вертикальной составляющей (*Z*) короткопериодного канала, собрана посредством анализа архивных данных. Практика показала, что совокупность этих данных достаточна для построения карты времен прихода сигналов от сейсмических источников. Приведены региональный годограф для трех испытательных площадок и линейные тренды времени пробега продольной волны в календарной дате, а также карта изохрон для одной из площадок.

Ключевые слова: источник, сейсмические волны, продольная волна, пространственно-временная структура, вариации времени, годограф

DOI: 10.31857/S0320791920060064

1. ВВЕДЕНИЕ

Изучение геодинамических, сейсмических и геофизических процессов как основы прогноза землетрясений основывается на ретроспективном анализе известных событий. Знание достоверных величин критично для прогнозирования землетрясений и других сейсмических событий, опасных для жизнедеятельности человека. Регистрация сейсмических сигналов обычно ведется оптическими, сейсмическими и инфразвуковыми детекторами [1].

Объектом исследования, проведенного в данной работе, является массив данных о временах пробега сейсмических волн. В качестве основы используются архивные материалы Института динамики геосфер РАН (ИДГ РАН), полученные благодаря гранту РФФИ 97-07-90225.

Приемная сейсмическая станция была создана в точке с высокой чувствительностью к колебаниям грунта. Сейсмограммы записывались цифровой аппаратурой КОД в пятиканальном варианте. Позже запись велась с помощью станции цифровой регистрации (СЦР). Два вида станций, СЦР- СС (сейсмическая станция) и СЦР-ТСГ (типовая сейсмическая группа), различались количеством измерительных каналов, их коммутацией и периодичностью опросов. Измерительный прибор объединял два сейсмометра: СКМ-3М с короткопериодным сейсмоизмерительным каналом и СКД с длиннопериодным каналом. Подробнее технические характеристики аппаратуры систем КОД и СЦР приведены в работе [2].

В связи с технологическим несоответствием измерительной аппаратуры, разработанной в разные годы и применяемой одновременно системой цифровой регистрации сейсмической станции, информация о параметрах сейсмических волн была весьма разнородной. Архив содержал данные высокой степени неопределенности, затруднявшей проведение ретроспективного анализа, и требовал существенной корректировки. Благодаря внимательному подбору материалов были обобщены и сведены воедино основные параметры сигналов сейсмических событий искусственного происхождения.

Рис. 1. Обобщенный региональный годограф для трех площадок испытательного полигона.

Ранее уже предпринимались попытки корректировки времен пробега сейсмических волн за счет учета поправок. Поправки времени δT для блоков службы времени (БСВ) цифровых станций определялись в процессе регистрации сигнала при каждой смене магнитных лент, т.е. не менее 2-х раз в сутки, а также при обнаружении сбоев БСВ [3]. Некоторые параметры сейсмограмм из архива ИДГ РАН представлены в работах [4, 5].

Однако при пересмотре архивов возникла необходимость в уточнении времен пробега продольных волн. Несмотря на то, что сигналы точного времени передавались с частотой повторения 1 Гц (секундные сигналы) [6], возникали систематические ошибки. Причина их появления заключалась в том, что, во-первых, регистрация велась не одной, а различными системами. Во-вторых, при плохом прохождении радиосигналов поправка времени иногда превышала ±0.5 с, хотя в инструкции отмечено, что поправка времени цифровой станции ограничена в пределах ±0.5 с. Поэтому в процессе переформатирования магнитных цифровых записей станции был подготовлен отчёт, в который были выбраны ближайшие ко времени регистрации сейсмических событий поправки БСВ соответствующих цифровых станций.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

В основу настоящего исследования положены архивные материалы, приведенные в работах [4, 5]. Информация о 212 сейсмических событиях искусственного происхождения, произошедших в период с 1967 по 1990 гг., получена после переформатирования уникального архива цифровых сейсмограмм, которые сохранились в Институте динамики геосфер (ИДГ РАН).

Генерация сейсмических волн от искусственных источников проводилась на трех площадках. Испытательные площадки были расположены от приемной станции на расстояниях в угловых градусах: $\mathbb{N} \ 1 - \Delta = 6.1^{\circ} - 6.3^{\circ}; \mathbb{N} \ 2 - \Delta = 5.80^{\circ} - 5.95^{\circ}; \mathbb{N} \ 3 - \Delta = 5.50^{\circ} - 5.65^{\circ}$. Основным изучаемым параметром являлось время t_{p0} пробега продольной волны *P*, определенное по моменту первого вступления на записи вертикальной составляющей *Z* короткопериодного канала. Задача состояла в оценке зависимости времен пробега сейсмической *P*-волны от расстояния между источником и приемником и от других существенных параметров (времени года, пространственных координат и др.).

В исследовании временных трендов на трассах приемная станция-испытательная площадка для оценки вклада каждой генерации сейсмических волн в принимаемый сигнал на удалениях Δ° (расстояние от источника до приёмника) был использован способ снятия отметок времени первого вступления Р-волны с исходной сейсмограммы. Для отображения информации эти значения сведены в таблицу 1, для удобства последующего анализа. Для лаконичности представления данных в таком виде географические координаты сейсмических источников не указаны, но используются при построении графиков в относительных единицах. Параметры регистрации с введенными поправками БСВ приведены в таблице, где указан номер, дата проведения испытаний, расстояние от источника до приёмника в градусах (Δ°) и время t_{p0} пробега сейсмической *P*-волны в секундах. В таблице поправки времени цифровой станции, превышающие ±0.5 с, отмечены полужирным шрифтом.

3. РЕЗУЛЬТАТЫ

В описанном исследовании при получении результатов применялась стандартная процедура построения регионального годографа для нахождения зависимости $t_{p1} = F(\Delta^{\circ})$ [7, 8]. Для этого использовались параметры времени пробега продольной волны для всех трех площадок и эпицентральные расстояния Δ° . Значения величин взяты из таблицы. Уравнение регионального годографа для испытательной площадки: $t_{p0} = 20.2360 +$ + (11.7001 ± 0.0645) Δ° , где Δ° – расстояние. Общий вид линейного годографа для трассы приемная станция—генератор сигнала представлен на рис. 1. Таким образом, результаты, полученные по всем трем площадкам, аппроксимируются линейной функцией. Обобщенная интегральная скорость

Таблица 1. Параметры цифровых сейсмограмм [4]

Номер	Дата	٨٥	t c	Номер	Дата	٨٥	t c
испытания	ДД.ММ.ГГГГ	Δ	l_{p0}, c	испытания	ДД.ММ.ГГГГ	Δ	ι_{p0}, υ
1053	19.06.1968	6.2444	93.492	1220	14.09.1980	6.1666	92.195
1054	30.11.1969	6.259	93.618	1087	12.10.1980	6.2708	93.709
1056	30.06.1971	6.2604	93.72	1086	14.12.1980	6.2475	93.294
1007	10.02.1972	6.1623	92.404	1303	27.12.1980	6.192	92.582
1061	02.11.1972	6.1829	92.469	1234	29.03.1981	6.2184	92.954
1204	10.12.1972	6.2246	93.045	1232	22.04.1981	6.1927	92.652
1066	23.07.1973	6.1599	92.111	1203	27.05.1981	6.2319	93.343
1058	27.12.1974	6.262	93.681	1233	13.09.1981	6.232	93.141
1206	29.10.1975	6.1982	92.745	1236	18.10.1981	6.1967	92.645
1201	21.04.1976	6.2038	92.745	1237	29.11.1981	6.2133	92.885
1075	09.06.1976	6.2577	93.514	1312	27.12.1981	6.1592	92.115
1062	04.07.1976	6.2393	93.272	1219	25.04.1982	6.2255	93.181
1202	28.08.1976	6.2168	93.021	1321	04.07.1982	6.1604	92.134
1207 бис	23.11.1976	6.2033	92.765	1317	31.08.1982	6.1601	92.219
1209	07.12.1976	6.1813	92.507	1314	05.12.1982	6.1757	92.354
1400	29.05.1977	6.1474	91.968	1415	26.12.1982	6.2016	92.711
1080	29.06.1977	6.1688	92.346	1320	12.06.1983	6.2276	93.09
1079	05.09.1977	6.1621	92.3	1325	06.10.1983	6.1516	92.086
Глубокая	30.11.1977	6.1907	92.683	1307	26.10.1983	6.1942	92.617
1010	11.06.1978	6.182	92.51	1235	20.11.1983	6.2105	92.832
1077	05.07.1978	6.223	92.952	1331	19.02.1984	6.1588	92.114
1211	15.09.1978	6.2061	92.794	1308	07.03.1984	6.1876	92.535
1302	04.11.1978	6.1877	92.6	1335	29.03.1984	6.2511	93.391
1222	29.11.1978	6.1557	92.181	1316	25.04.1984	6.1955	92.613
1006	01.02.1979	6.1152	91.828	1414	26.05.1984	6.2557	93.498
1223	23.06.1979	6.2042	92.763	1344	14.07.1984	6.2254	93.059
1225	07.07.1979	6.215	92.888	1323	27.10.1984	6.1503	92.051
1085	04.08.1979	6.2329	93.126	1411	02.12.1984	6.2414	93.238
1226	18.08.1979	6.2257	93.127	1313	16.12.1984	6.167	92.227
1224	28.10.1979	6.2408	93.269	1353	28.12.1984	6.1485	92.002
1309	02.12.1979	6.1752	92.398	1340	10.02.1985	6.1787	92.487
Глубокая-1	23.12.1979	6.1436	91.947	1319	25.04.1985	6.2179	92.991
1071	25.04.1980	6.1241	91.665	1061бис	15.06.1985	6.1882	92.819
1083	12.06.1980	6.2428	93.388	1354	30.06.1985	6.1387	91.766
1227	29.06.1980	6.1707	92.29	1322	20.07.1985	6.1529	92.145
1315	12.03.1987	6.1823	92.48	705	28.06.1970	5.8648	88.869
1318	03.04.1987	6.1676	92.485	120	24.07.1970	5.8858	89.121
1384	17.04.1987	6.1294	91.747	502	06.09.1970	5.8388	88.798
1326	20.06.1987	6.1388	91.947	193	17.12.1970	5.9091	89.495
1348	02.08.1987	6.2395	93.276	114	29.01.1971	5.9068	89.348
1332	15.11.1987	6.1662	92.279	510п	22.03.1971	5.8824	89.034
1355	13.12.1987	6.1509	91.569	706	25.04.1971	5.8615	88.881
1388	27.12.1987	6.1601	92.253	119	25.05.1971	5.896	89.251
1361	13.02.1988	6.2073	92.789	105	29.11.1971	5.8997	89.356
1336	03.04.1988	6.2423	93.297	157	15.12.1971	5.8077	88.196
1359	04.05.1988	6.1317	91.806	809	30.12.1971	5.8537	88.764
1421	14.06.1988	6.2071	92.897	201	10.03.1972	5.9199	89.6
1350	14.09.1988	6.2135	92.891	191	28.03.1972	5.9038	89.416
1412	12.11.1988	6.1998	92.732	601	U7.06.1972	5.8344	88.456
1346	17.12.1988	6.2659	93.593	/08	16.08.1972	5.8762	89.276
1328	22.01.1989	6.1756	92.343	140	10.12.1972	5.8435	88.522
1366	12.02.1989	6.1328	91.777	25ПП 112	28.12.1972	5.9166	89.646
1352	08.07.1989	6.1955	92.664	115	16.02.1973	5.8758	88.892
1410	02.09.1989	6.2274	93.149	806	10.07.1973	5.865	88.801
1303	19.10.1989	0.2351	95.187	205	26.10.19/3	5.9299	89./38

650

Таблица 1. Окончание

Номер	Лата			Номер	Лата		
испытания	лл мм гггг	Δ°	t_{p0}, c	испытания	лл мм гггг	Δ°	t_{p0}, c
	26.02.1067	5 0002	00.207	700	16.10.1074	5 0000	00.220
21	26.02.1967	5.9003	89.387	/09П 140/5	16.12.1974	5.8882	89.338
25n	20.04.1967	5.914/	89.5/1	148/5	16.12.19/4	5.8233	88.424
ПП 702	28.05.1967	5.8602	88.952	604 115	13.12.19/5	5.8805	89.151
703	29.06.1967	5.8403	88.344	115	15.01.1976	5.8997	89.304
506	15.07.1967	5.8649	88.796	101п 162	21.04.1976	5.9116	89.548
18	04.08.1967	5.8775	89.289	163П 105	19.05.1976	5.8429	88.678
I3п Г	02.09.196/	5.8699	89.252	185	23.07.1976	5.888	89.27
b 501	1/.10.196/	5.8385	88.557	143	30.10.19/6	5.8357	88.562
501	30.10.1967	5.8324	88.387	706п	30.12.1976	5.8592	88.854
507	08.12.1967	5.8998	89.492	707	29.03.1977	5.8505	88.522
810	07.01.1968	5.8685	89.001	604п	25.04.1977	5.878	89.043
505	24.04.1968	5.8516	88.6	175	30.07.1977	5.8753	89.115
605	11.06.1968	5.9045	89.581		17.08.1977	5.8706	88.956
606	09.11.1968	5.8969	89.295	803	26.12.1977	5.8436	88.61
508	18.12.1968	5.9052	89.483	701	26.03.1978	5.8468	88.677
Ж-2п	07.03.1969	5.8446	88.586	204	22.04.1978	5.9225	89.504
709	16.05.1969	5.8887	89.25	133п	29.05.1978	5.8788	89.048
710	04.07.1969	5.9151	89.586	104	28.07.1978	5.9023	89.428
801	23.07.1969	5.8829	89.066	107	29.08.1978	5.8772	89.087
503	11.09.1969	5.8376	88.515	200асм	15.10.1978	5.9231	89.6
607	01.10.1969	5.8864	89.202	194	31.10.1978	5.8835	89.138
Ш-1	29.12.1969	5.9179	89.58	113п	14.12.1978	5.8745	88.969
802	29.01.1970	5.8919	89.209	803п	20.12.1978	5.8429	88.608
610	27.03.1970	5.8561	88.855	701п	06.05.1979	5.844	88.85
Ш-3	27.05.1970	5.9175	89.671	141	31.05.1979	5.8501	88.633
175п	27.09.1979	5.8775	89.153	132	09.09.1984	5.8735	88.972
128	18.10.1979	5.865	88.862	200м-бис	18.10.1984	5.9167	89.581
192п	30.11.1979	5.8856	89.251	803 бис	23.11.1984	5.8448	88.555
802п	21.12.1979	5.8906	89.218	152	25.07.1985	5.8216	88.342
181	10.04.1980	5.8633	88.931	130	26.02.1987	5.8512	88.639
173	22.05.1980	5.8567	88.742	164	06.05.1987	5.8398	88.17
902	31.07.1980	5.8753	89.013	138	06.06.1987	5.8431	88.509
K-1	25.09.1980	5.8754	88.476	168	17.07.1987	5.8556	88.874
187	30.06.1981	5.8842	89.195	132п	18.09.1987	5.8713	89.58
106	17.07.1981	5.8914	89.155	K-85	16.10.1987	5.9133	89.925
184	14.08.1981	5.8801	89.151	164п	20.12.1987	5.8434	88.666
103	20.11.1981	5.9124	89.471	168п	06.02.1988	5.8566	88.921
135	22.12.1981	5.8484	88.617	704	22.04.1988	5.8826	89.123
150	19.02.1982	5.8342	88.531	34	18.10.1988	5.8425	88.605
196	25.06.1982	5.8934	89.094	169/1	23.11.1988	5.8598	88.861
14п	23.08.1982	5.8758	89.072	901п	28.12.1988	5.8548	89.208
203	21.09.1982	5.9047	89.401	139	17.02.1989	5.8417	88.664
172	25.12.1982	5.8546	88.864	169/2	04.10.1989	5.862	88.886
177	30.03.1983	5.8585	88.841	101	18.12.1966	5.6192	85.508
186	12.04.1983	5.8738	89.067	102	16.09.1967	5.6018	85.339
215	30.05.1983	5.9163	89.625	105	22.09.1967	5.5692	84.914
176п	24.06.1983	5.8765	89.182	106	22.11.1967	5.5776	85.08
K-2(K-2/2)	11.09.1983	5.8755	89.08	108	31.05.1969	5.5764	85.005
180	29.11.1983	5.8743	89.142	107	28.12.1969	5.5946	85.19
129	26.12.1983	5.8808	89.11	104	21.07.1970	5.5641	84.88
190	15.04.1984	5.897	89.347	125	04.11.1970	5.5887	85.21

Примечание. Δ° – расстояние источник–приемник в градусах, t_{p0} – время пробега продольной *P*-волны по времени вступления на записи вертикальной составляющей *Z* короткопериодного канала.

Т, календарная дата

Рис. 2. Линейный тренд времени пробега продольных волн от сейсмических событий искусственного происхождения для трех площадок испытательного полигона.

принимаемой сейсмической P-волны в пределах полигона постоянна и равна ≈ 7 км/с, исходя из графического решения.

Было выдвинуто предположение, что вариации времен пробега могут иметь пространственно-временное или сезонное распределение. Для проверки гипотезы были построены следующие графические зависимости: зависимость времени пробега от календарной даты, от сезона года и от географических координат сейсмических источников (рис. 2–4). Для оценки линейного тренда времени пробега продольной волны от календарной даты на трассе приемная станция-генератор сигнала использовался алгоритм линейной регрессии. При расчете тренда δt в миллисекундах за год вместо эпицентрального расстояния приведено время генерации сейсмических волн в календарных датах. Вид линейного тренда величины времени пробега *Р*-волны за период с 1967 по 1990 гг. приведен на рис. 2. Получены следующие зависимости времени пробега от календарной даты (T) для трех площадок:

$$t_{p0} = 94.7305 + (-6.90 \times 10^{-5} \pm 3.08 \times 10^{-5})T,$$

площадка № *1*;
 $t_{p0} = 89.5798 + (-1.90 \times 10^{-5} \pm 1.46 \times 10^{-5})T,$
площадка № *2*;
 $t_{p0} = 89.2753 + (-0.00016 \pm 0.00014)T,$
площадка № *3*.

Рис. 3. Вариации времени пробега продольных волн от сейсмических событий искусственного происхождения на площадке № *1* испытательного полигона.

Прямые линии трендов практически не имеют наклона. Это означает, что в данном случае времена пробега Р-волн на площадках регистрировались точно и с годами мало менялись. Однако вопрос об изменчивости значений в пределах одних и тех же трасс остается нерешенным. Анализ полученных значений времен пробега Р-волн свидетельствует о наличии небольших вариаций. При этом замечено, что вариации времени группируются по обе стороны от срединных линий. Похожие явления наблюдались другими исследователями при изучении акустических волн [9] в геосредах и поперечных сейсмических волн [10]. Это косвенно свидетельствует о предполагаемом пространственном характере распределения величин времен пробега сейсмических волн.

На значения пространственно-временных вариаций времен могут влиять не только сбои службы времени, но и сезонные, а также планетарные процессы. Для подтверждения этой гипотезы решено усреднять сезонные значения времен t_{p0} для анализа поведения вариаций по кварталам года. Деление на кварталы связано с временем года следующим образом: декабрь-январь-февраль отнесены к зимнему периоду, март-апрель-май - к весеннему и т.д. Однако в результате анализа не обнаружено повторяющихся зависимостей (рис. 3). Среднегодовые значения времен пробега также не отражают повторяющихся периодичностей. Поэтому было принято решение о построении карты изохрон, что позволит оценить связь вариаций величины времени Δt_{p0} с пространственным расположением источников генерации сейсмических волн. Для построения использовались значения относительного пространственного расположения изучаемых событий и времена пробега Р-волн. Результат рассмотрения для трассы приемная станция-площадка № 1 представлен на рис. 4. Анализ карты изохрон продоль-

Рис. 4. Карта изохрон продольных волн сейсмических событий искусственного происхождения для площадки \mathbb{N} *1* испытательного полигона в относительных координатах, где вертикальная ось направлена на север.

ных волн в относительных координатах генерируемых источников сейсмических волн показал, что минимальные значения *t*_{p0} локализованы в левом верхнем углу. Очевидно, это связано с тем, что приемная станция находится к северо-западу от площадки № *I*. В целом форма линий изохрон отвечает модели распространения сейсмической волны с плоским фронтом. Однако с удалением от источника сейсмических волн и приближением к области расположения приемной станции у линий изохрон проявляются загибы. Вероятно, этот эффект связан с существующей в этой области неоднородностью плотности геологической среды.

В продолжении этого исследования планируется сравнить относительные отметки времен пробега сейсмических волн. Это позволит исключить влияние, вызванное пространственным характером локализации источников на изучаемой территории.

ЗАКЛЮЧЕНИЕ

В результате уточнения времен пробега по данным цифровых сейсмограмм для 212 сейсмических событий искусственного происхождения получено уравнение регионального годографа и выявлены линейные тренды времен пробега продольных сейсмических волн для трех площадок.

Вероятно, необходимо рассматривать не абсолютные значения исследуемых величин для отдельных площадок геологической среды, а относительные нормированные показатели. Такой подход позволит исключить влияние неравнозначности дистанций рассматриваемых трасс для различных площадок исследуемой территории. Из-за распределенного в пространстве характера локализации источников на данном этапе исследования относительные отметки времен пробега сейсмических волн не сравнивались.

Построение карт изохрон может стать основой для дальнейшего картирования территории с целью выявления ослабленных по плотности или, наоборот, более плотных областей геологической среды. Изучение карт изохрон позволит обнаружить существование временного распределения структуры трасс распространения сейсмического сигнала. Замечено, что при больших расстояниях от источника проявляются локальные неоднородности геологической среды в области приемника. Для получения дополнительной информации можно оценить искривления изохрон, наблюдаемые на удаленных дистанциях.

Авторы благодарят сотрудников ИДГ РАН Л.Д. Годунову и Т.В. Челюбееву за неоценимую помощь в подборе материала для статьи. Систематизированные данные о параметрах источников генерации сейсмических волн получены благодаря архиву Института динамики геосфер РАН при поддержке гранта РФФИ № 97-07-90225. Работа выполнена по Государственному заданию Научной станции РАН в г. Бишкеке АААА-А19-119020190064-9.

СПИСОК ЛИТЕРАТУРЫ

- 1. Краснов В.М., Дробжева Я.В., Салихов Н.М., Жумабаев Б.Т., Лазуркина В.Б. Оценка мощности взрыва челябинского метеороида на основе данных оптических, сейсмических и инфразвуковых наблюдений // Акуст. журн. 2014. Т. 60. № 2. С. 152–159.
- Ан В.А., Башилов И.П., Каазик П.Б., Коновалов В.А. О нормалях магнитной цифровой записи архива геофизической обсерватории "Боровое" // Вестник НЯЦ РК. 2010. Вып. 3. С. 62–69.
- Ан В.А., Каазик П.Б., Челюбеева Т.В. Поправки времени цифровых сейсмограмм геофизической обсерватории "Боровое", 1966–1995 гг. // Вестник НЯЦ РК. 2016. Вып. 3. С. 30–35.
- 4. An V.A., Ovtchinnikov V.M., Kaazik P.B., Adushkin V.V., Sokolova I.N., Aleschenko I.B., Mikhailova N.N., Kim W.-Y., Richards P.G., Patton H.J., Phillips W.S., Randall G., Baker D. A digital seismogram archive of nuclear explosion signals, recorded at the Borovoye Geophysical Observatory, Kazakhstan, from 1966 to 1996 // GeoResJ. 2015. № 6. P. 141–163. https://doi.org/10.1016/j.grj.2015.02.014
- 5. Бочаров В.С., Зеленцов С.А., Михайлов В.Н. Характеристики 96 подземных ядерных взрывов на Семипалатинском испытательном полигоне // Атомная энергия. 1989. Т. 67. № 3. С. 210–214.

http://elib.biblioatom.ru/text/atomnaya-energiya_ t67-3_1989/go,54/. Дата обращения 13.04.2020.

- 6. Эталонные сигналы частоты и времени // Бюллетень В 06. 1984. М., 1983. 31 с.
- Nepeina K., An V. The refined USSR peaceful nuclear explosions database for Borovoye Geophysical Observatory // Data. 2019. V. 4. № 2. P. 56. https://doi.org/10.3390/data4020056
- 8. Park J., Kotun K. Spectral coherence and hyperbolic solutions applied to time difference of arrival localiza-

tion // Appl. Acoust. 2018. 136. P. 149–157. https://doi.org/10.1016/j.apacoust.2017.08.026

- 9. Рутенко А.Н. Влияние внутренних волн на распространение звука в шельфовой зоне Японского моря в разные сезоны года // Акуст. журн. 2005. Т. 51. № 4. С. 527–535.
- 10. *Kopnichev Yu.F., Sokolova I.N.* Space-time variations in the attenuation field structure of *S* waves at the Semi-palatinsk Test Site // Izvestiya. Physics of the Solid Earth. 2001. V. 37. № 11. P. 928–941.