———— ОРИГИНАЛЬНЫЕ СТАТЬИ ——

УДК 543.426

ОБ ОСОБЕННОСТЯХ ЛИНИИ Fe*L*α_{1,2}, ИСПОЛЬЗУЕМОЙ В РЕНТГЕНОФЛУОРЕСЦЕНТНОМ АНАЛИЗЕ ДЛЯ ОЦЕНКИ СТЕПЕНИ ОКИСЛЕНИЯ ЖЕЛЕЗА

© 2019 г. Т. Г. Кузьмина^{1, *}, М. А. Тронева¹, Т. В. Ромашова¹

¹Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук 119991 Россия, Москва, ул. Косыгина, 19 *E-mail: kuzminatg@inbox.ru Поступила в редакцию 17.01.2017 г. После доработки 05.09.2018 г. Принята к публикации 05.09.2018 г.

Исследованы некоторые особенности валентной линии FeL $\alpha_{1,2}$: показана связь между интенсивностью линии и степенью окисления железа, установлена зависимость интенсивности линии FeL $\alpha_{1,2}$ от присутствия в пробе других элементов.

Ключевые слова: рентгенофлуоресцентный анализ, определение степени окисления железа. **DOI:** 10.1134/S0044450219030083

Попытки применить рентгенофлуоресцентный анализ (**РФА**) для определения не только валового содержания элемента в пробе, но и его валентной формы предпринимались с самого начала использования рентгеноспектральных приборов в аналитической химии и продолжаются до сих пор. Однако задача определения элементов с той или иной степенью окисления так до конца и не решена.

В работе [1] подробно рассмотрены различные подходы к решению этой проблемы с использованием современного рентгеновского оборудования. Показано, что стандартные спектрометры с волновой дисперсией, предназначенные для проведения массовых анализов, имеющие большую светосилу и достаточно низкие пределы обнаружения, обладают сравнительно невысоким разрешением. В связи с этим определение степени окисления элемента по величине смещения его эмиссионной линии или изменению ее формы не представляется возможным. Наиболее перспективным, по мнению авторов работы [1], является использование в качестве аналитического сигнала отношения интенсивностей "последней" эмиссионной линии элемента к нормирующей линии, не являющейся валентной, но близкой по своей длине волны к валентной. Это позволяет исключить зависимость этой величины от валового содержания элемента, пренебречь различием в массовых коэффициентах ослабления эмиссионной линии и другими матричными эффектами. Так, для определения степени окисления железа предложено [1] использовать отношение

интегральных интенсивностей линий $FeK\beta_2$ и $FeK\beta_1$ (рис. 1) во втором порядке отражения. Приведены экспериментально полученные значения этого отношения для Fe, FeO и Fe₂O₃, которые составили 0.051, 0.023 и 0.036 соответственно. Однако о методике определения валентных форм железа речь не идет.

В работах [2, 3] для определения валентного состояния железа в образцах горных пород и железных руд используют отношение интенсивностей, измеренных на максимумах линий $FeK\beta_5$ и $FeK\beta_{1,3}$ в первом порядке отражения. Получены регрессионные уравнения, связывающие это отношение с отношением содержаний FeO и $Fe_2O_{3oбщ}$ или с величиной *N*, характеризующей зарядовое состояние железа и рассчитанное по формуле:

$$N = \frac{2c(\mathrm{Fe}^{2+}) + 3c(\mathrm{Fe}^{3+})}{c(\mathrm{Fe}^{2+}) + c(\mathrm{Fe}^{3+})}$$

Для горных пород удовлетворительная погрешность градуировки достигается путем разделения их на 10 групп, близких по минеральному и химическому составам. Авторы отмечают, что существуют трудности в определении положения максимума пика валентной линии $FeK\beta_5$ и точек замера фона из-за ее малой интенсивности и наложения на линию $FeK\beta_{1,3}$. Это особенно критично для проб с низким содержанием железа.

Рис. 1. Схема *К*-, *L*-, *M*-, *N*-уровней атома и основных линии *К*- и *L*-серий железа.

Кроме того, показано [3], что в качестве аналитического сигнала в РФА возможно использование отношения интенсивностей линий *L*-серии: валентной линии Fe $L\beta_1$, соответствующей переходу с уровня M_{IV} на уровень L_{II} , к линии Fe $L\alpha_{1,2}$, соответствующей переходу с уровней $M_{IV,V}$ на уровень L_{III} . Но из приведенного авторами графика зависимости этого отношения от величины N для образцов оксидных и силикатных соединений железа видно, что погрешность градуировки значительна.

В более ранних исследованиях [4-6] на электронно-зондовых рентгеноспектральных микроанализаторах (РСМА), где характеристические линии переходов на уровни $L_{\rm II}$ и $L_{\rm III}$ хорошо разрешаются, для определения степени окисления железа также использовали линии $L\alpha_{1,2}$ и $L\beta_1$. Так, в работе [5] исследованы L_{II.III}-эмиссионные спектры и отношения интенсивностей линий $L\alpha_{1,2}$ и $L\beta_1$ металлического железа и оксидов Fe₂O₃ и Fe₃O₄. Показано, что величина этого отношения существенно выше для Fe₂O₂ и Fe₃O₄, чем для металла. Авторы работы [4] установили, что обратное отношение $IL\beta_1/IL\alpha_{1,2}$ систематически увеличивается с ростом отношения Fe²⁺/Fe³⁺. Вместе с тем сделан вывод, что трудно полностью отделить эффект, связанный со степенью окисления элемента, от других эффектов, таких как поглощение и дополнительное возбуждение флуоресцентного излучения внутри образца. В работе [6] также отмечена зависимость отношения интенсивностей линий *L*-спектра от присутствия в пробе других элементов, но не проведены специальные исследования и не установлены какиелибо закономерности.

Эксперименты, выполненные на рентгенофлуоресцентном спектрометре [3], показали, что интенсивность линии FeL β_1 уменьшается при переходе от двухвалентного железа (FeTiO₃) к трехвалентному (Fe₂O₃, FeOOH, Fe₂O₃ · *n*H₂O). Так как авторы рассматривали спектры, нормированные на интенсивность линии FeL $\alpha_{1,2}$, то это соответствует уменьшению отношения $IL\beta_1/IL\alpha_{1,2}$, что, в свою очередь, согласуется с выводами, полученными в работах [4, 5].

Следует отметить, что, в отличие от РСМА, серийные рентгенофлуоресцентные спектрометры имеют недостаточное разрешение для разделения линий FeL β_1 и FeL $\alpha_{1,2}$ (рис. 2), что создает проблему корректного измерения интенсивности линии FeL β_1 . Кроме того, ни одна из этих линий не является нормирующей, так как обе они связаны с переходами с валентных уровней M_{IV} и M_{V} .

Нами рассмотрена возможность альтернативного подхода к использованию валентной линии Fe $L\alpha_{1,2}$ для оценки степени окисления железа в геологических пробах. Из всех валентных линий железа *K*- и *L*-серий именно линия Fe $L\alpha_{1,2}$ (17.59 Å) выражена наиболее четко, хотя имеют место наложения линий Fe $L\beta_1$ (17.26 Å) и Mn $L\beta_{3,4}$ (17.19 Å). В работе экспериментально исследованы особенности этой линии: зависимость ее интенсивности

Рис. 2. Рентгеновский спектр линий *L*-серии железа, полученный для Fe₂O₃.

от степени окисления железа и от влияния матричных эффектов — ослабления и возбуждения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Использовали рентгеновский спектрометр "Axios Advanced" (PANalytical, Holland B.V.), оснащенный рентгеновской трубкой с Rh-анодом и рентгенооптической системой по Соллеру (кристалл PX-1, коллиматор 150 μ m). Режим работы рентгеновской трубки 50 кВ/60 мА. Излучение регистрировали газопропорциональным счетчиком. Учитывая наложения линий, интенсивности линии FeLa_{1,2} и фона измеряли с использованием "тонкого" коллиматора; при этом фон определяли с длинноволновой стороны.

В работе использовали стандартные образцы состава (**COC**) горных пород и бинарные смеси FeO или Fe₂O₃ с оксидами: MgO, Al₂O₃, SiO₂, TiO₂, MnO₂, CuO.

Излучатели готовили путем прессования в таблетки диаметром 20 мм растертого до 200 меш исходного материала весом 300 мг с добавлением в качестве связующего вещества полистирола (C_8H_8) в соотношении 5 : 1.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для изучения особенностей линии FeL $\alpha_{1,2}$ в присутствии атомов железа (II, III) на данном этапе исследований готовили бинарные пробы, содержащие Fe²⁺ (FeO) или Fe³⁺ (Fe₂O₃), которые разбавляли оксидами Al₂O₃ и SiO₂. Содержание железа в пробах менялось от 0 до ~25 мас. %. Полученные усредненные графики зависимости интенсивности линии FeL $\alpha_{1,2}$ от содержания железа представлены на рис. 3. Графики линейны с достаточно высокой степенью корреляции, однако

углы наклона для железа с разной степенью окисления различны.

Суммарную интенсивность линии $FeL\alpha_{1,2}$ в пробе, содержащей как FeO, так и Fe_2O_3 можно представить также в виде линейного уравнения:

$$I_{L\alpha 1,2} = A + Bc(\text{FeO}) + Dc(\text{Fe}_2\text{O}_3).$$
(1)

Здесь c(FeO) и $c(Fe_2O_3)$ — содержания оксидов железа, мас. %; A, B, D — константы уравнения, которые могут быть определены методом наименьших квадратов с помощью стандартных образцов состава.

Мы использовали 30 СОС ультраосновных, основных, средних и кислых горных пород (табл. 1). Получено уравнение регрессии:

$$IL\alpha_{1,2} = 0.00554c(\text{FeO}) + 0.00713c(\text{Fe}_2\text{O}_3).$$
 (2)

На рис. 4 показана корреляция между значениями интенсивностей линии Fe $L\alpha_{1,2}$, измерен-

Рис. 3. Зависимость интенсивности линии Fe $L\alpha_{1,2}$ от содержания железа, входящего в состав FeO или Fe₂O₃ (в качестве наполнителей использованы SiO₂ и Al₂O₃).

ОБ ОСОБЕННОСТЯХ ЛИНИИ

Оксид	Диапазон содержания, мас. %	Оксид	Диапазон содержания, мас. %	
SiO ₂	25-72	CaO	0.51-17	
Al_2O_3	0.74-22	Na ₂ O	0.03-4.4	
Fe ₂ O ₃	0.75-10.2	K ₂ O	0.005-8.75	
FeO	0.2-14	TiO ₂	0.05-6.75	
Fe ₂ O _{3общ}	0.5-21	MnO	0.04-0.5	
MgO	0.21-43	Потери при прокаливании	0.3-25.0	

Таблица 1. Диапазоны содержания оксидов в стандартах, используемых при градуировке

ными на стандартных образцах и рассчитанными по уравнению (2).

Из уравнения (1) можно получить уравнение регрессии для расчета содержания оксида железа(II):

$$c(\text{FeO}) = K + MIL\alpha_{1,2} + Nc(\text{Fe}_2\text{O}_3), \qquad (3)$$

где K, M и N – константы.

Учитывая, что $c(Fe_2O_3) = c(Fe_2O_3)_{obut} - 1.1c(FeO)$, уравнение (3) можно представить в виде:

$$c(\text{FeO}) = K + M IL\alpha_{1,2} + N c (\text{Fe}_2\text{O}_3)_{\text{общ}}.$$
 (4)

Значение $c(Fe_2O_3)_{obii}$ можно получить из РФА валового состава пробы. На рис. 5 показано соотношение между полученными и паспортными значениями c(FeO) в СОС, используемых для градуировки. Также наблюдается заметная корреляция. Однако погрешность градуировки, представленная в виде относительтного стандартного отклонения, значительна и составляет порядка 20%. Полагая, что это может быть обусловлено влиянием матричного эффекта, связанного с ослаблением флуоресцентного излучения линии Fe $L\alpha_{1,2}$ (17.59 Å), мы рассчитали массовые

Рис. 4. Соотношение между зарегистрированными и предсказанными значениями интенсивности линии $FeL\alpha_{1,2}$ в стандартных образцах состава, используемых для градуировки.

коэффициенты ослабления этой линии ($\mu_{L\alpha}$) макроэлементами пробы с Z < 26. Использовали формулу:

$$\mu_m = C\lambda^{\alpha} z^{\beta}.$$
 (5)

Коэффициенты *C*, α, β взяты из работы [7] (табл. 2).

Внесение поправки на ослабление флуоресцентного излучения в уравнение (1) приводит его к виду (поправкой на поглощение первичного излучения пренебрегаем):

$$IL\alpha_{1,2}\mu_{L\alpha} = A' + B'c(FeO) + D'c(Fe_2O_3).$$
 (6)

Однако введение этой поправки не привело к улучшению результатов. Более того, вопреки ожиданию при одном и том же содержании железа интенсивность флуоресцентной линии $FeL\alpha_{1,2}$ оказалась выше в тех пробах, в которых коэффициент поглощения имел более высокие значения.

Для более детального исследования полученного эффекта использовали серии бинарных смесей, содержащих FeO или Fe₂O₃ (6.25, 12.5, 25, 50, 100%) с добавлением одного из оксидов: MgO, Al₂O₃, SiO₂, TiO₂, MnO₂, CuO. Из рис. 6 видно, что как для FeO, так и для Fe₂O₃ интенсивности ли-

Рис. 5. Соотношение между паспортными и полученными значениями содержания FeO в стандартных образцах состава, используемых для градуировки.

нии FeLα_{1,2} тем больше, чем тяжелее наполнитель бинарной смеси. Это подтверждает результаты предыдущего эксперимента.

Для того чтобы исключить зависимость аналитического сигнала от влияния матричного эффекта, представлялось логичным использовать отношение интенсивностей линий FeL $\alpha_{1,2}$ и FeL1. Линия FeL1 четко выражена на спектрограмме (рис. 2), соответствует переходу с более глубокого уровня M_1 на уровень L_{III} и имеет точно такие же условия возбуждения, как и линия FeL α_1 . Это подтверждается и полученными значениями интенсивностей линии FeL1, зарегистрированными для бинарных смесей Fe₂O₃ с MgO, Al₂O₃, TiO₂ и MnO₂ в соотношении 1 : 1:

Оксиды	MgO +	$Al_2O_3 +$	$TiO_2 +$	$MnO_2 +$	FeO,	Fe_2O_3 ,
	$+ \text{Fe}_2\text{O}_3$	$+ \text{Fe}_2\text{O}_3$	$+ \text{Fe}_2\text{O}_3$	$+ \text{Fe}_2\text{O}_3$	100%	100%
Интенсив-	56.2	76.1	96.6	107.7	116	158
ностьлинии						
<i>L</i> ı, имп/с						

Интенсивность линии L_1 , так же как и линии $L\alpha_{1,2}$, увеличивается с увеличением среднего атомного номера наполнителя. Однако, как показал эксперимент, эта линия не удовлетворяет критерию нормирующей линии. Ее интенсивность не пропорциональна содержанию Fe₂O_{3общ}, а меняется в зависимости от степени окисления элемента так же, как и в случае внешних валентных линий (см. выше).

Мы попробовали в достаточно грубом приближении учесть особенности возбуждения линии $FeL\alpha_{1,2}$ элементами, определяющими макросостав пробы. С этой целью параболы, полученные для бинарных смесей FeO и Fe₂O₃ с оксидами MgO, Al₂O₃, SiO₂, TiO₂, MnO₂, CuO (рис. 6), ап-

Таблица 2. Коэффициенты *С*, α и β для вычисления массовых коэффициентов ослабления излучения с длиной волны $\lambda_{L\alpha} = 17.59$ Å макрокомпонентами пробы

Ζ	Длины волн	С	α	β
$3 \le Z \le 9$	$\lambda_K > \lambda_{L\alpha}$	5.40×10^{-3}	2.92	3.07
$10 \le Z \le 18$	$\lambda_K < \lambda_{L\alpha} < \lambda_{L_I}$	5.33×10^{-4}	2.74	3.03
$19 \le Z \le 23$	$\lambda_K < \lambda_{L\alpha} < \lambda_{L_I}$	$9.59 imes 10^{-4}$	2.7	2.9
Z = 25	$\lambda_{LI} < \lambda_{L\alpha} < \lambda_{L_{II}}$	3.56	2.69	0
Z = 26	$\lambda_{L\alpha} > \lambda_{L_{\mathrm{III}}}$	2.73×10^{-5}	2.44	3.47

Примечание: $\lambda_{L\alpha}$ — длина волны линии Fe $L\alpha_{1,2}$, а λ_{K} , λ_{L_1} , $\lambda_{L_{111}}$ — длины волн *K*- и *L*-краев поглощения элементов матрицы.

проксимировали отрезками прямых линий, проходящими через начало координат, в диапазоне содержания оксидов железа от 0 до 30%. В качестве условного параметра использовали значения тангенсов угла наклона (tg $\theta = \xi$) графиков зависимости интенсивности линии от содержания FeO (ξ_{2i}) и Fe₂O₃ (ξ_{3i}) в присутствии того или иного наполнителя (i). Для оксидов-наполнителей тех макрокомпонентов, данные по которым отсутствовали, значение ξ как для двух-, так и для трехвалентного железа получали путем интерполяции из эмпирических зависимостей $\xi = f(Z)$ (здесь Z – атомный номер элемента, оксид которого использован в бинарной смеси). представленных на рис. 7. Неясным остался вопрос о том, как возбуждается двухвалентное железо в присутствии трехвалентного и наоборот. Весьма приблизительные оценки этих параметров также получили из зависимостей $\xi = f(Z)$. Рассчитали средние значения тангенсов угла наклона как для двух-, так и для трехвалентного железа (ξ_2 , ξ_3) для

Рис. 6. Зависимость интенсивности линии FeLα_{1,2} от содержания оксида железа в присутствии разных наполнителей.

Рис. 7. Зависимость значения ξ от порядкового номера элемента, оксид которого добавлен к FeO или Fe₂O₃.

Рис. 8. Расчетные и паспортные значения содержаний FeO в стандартных образцах состава ультраосновных пород: (а) – без поправки по уравнению (4), (б) – с использованием поправки по уравнению (9).

всех СОС, используемых в градуировке, с учетом состава их матриц по формулам:

$$\xi_{2} = \frac{\sum_{i=1}^{n} \xi_{2i} c_{i}}{\sum_{i=1}^{n} c_{i}}, \quad \xi_{3} = \frac{\sum_{i=1}^{n} \xi_{3i} c_{i}}{\sum_{i=1}^{n} c_{i}}, \quad (7)$$

где ξ_{2i} и ξ_{3i} — тангенсы углов наклона прямых для двух- и трехвалентного железа в присутствии разных оксидов (i), c_i — содержание оксида i в матрице.

Далее рассчитали средние значения ξ_{cp} для каждой пробы по формуле:

$$\xi_{\rm cp} = \frac{\xi_2 c \,({\rm FeO}) + \xi_3 c \,({\rm Fe_2O_3})}{c \,({\rm FeO}) + c \,({\rm Fe_2O_3})}.$$
(8)

Поправку в уравнение (4) вносили следующим образом:

Таблица 3. Относительные погрешности градуировки $(s_r, \%)$ при использовании уравнений (4) и (9)

Породы	Уравнение (4)	Уравнение (9)
Основные и средние	16	10
Кислые	12	11
Ультраосновные	30	15

$$c(\text{FeO}) = G + \frac{RIL\alpha 1, 2}{\xi_{cp}} + Qc(\text{Fe}_2\text{O}_3)_{obin}, \qquad (9)$$

где G, R, Q – константы.

Кроме того, СОС разделили на группы по их валовому химическому составу: кислые, ультраосновные, основные и средние и получили регрессионные уравнения (9) для каждой группы. Из табл. 3 видно, что при введении поправки по сравнению с первоначальным уравнением относительное стандартное отклонение, характеризующее погрешность градуировки, уменьшается для основных, средних и ультраосновных пород в 1.5–2 раза. Для кислых пород уравнения без поправок и с поправками имеют равнозначные результаты. В качестве примера на рис. 8 приведены графики зависимости полученных содержаний FeO от паспортных значений для СОС ультраосновных пород, используемых в градуировке.

Таким образом, интенсивность валентной линии Fe $L\alpha_{1,2}$ рентгеновского спектра увеличивается при переходе от Fe²⁺ к Fe³⁺, т.е. концентрационная чувствительность различна для железа с разной степенью окисления. По-видимому, это является характерной особенностью валентных линий железа. Более того, даже, казалось бы, невалентная линия *L*1 имеет такую же особенность, что является артефактом и требует теоретического обоснования. Для линии $L\beta_1$ (нами не измерена из-за ее низкой интенсивности), используе-

мой в работах [2-5], также должна иметь место подобная зависимость. Однако коэффициенты, характеризующие чувствительность определения содержаний Fe²⁺ или Fe³⁺ по разным валентным линиям *K*- и *L*-спектров ($K\beta_2$, $K\beta_5$, $L\alpha_{1,2}$, $L\beta_1$, $L\iota$), вероятнее всего, будут различаться. Поэтому авторам работ [2-5] не удалось получить удовлетворительные результаты при оценке степени окисления железа в пробах различного состава, используя зависимость отношения $IL\beta_1/IL\alpha_{1,2}$ от $c(\text{FeO})/c(\text{Fe}_2\text{O}_3)$. Замена $c(\text{Fe}_2\text{O}_3)$ на $c(\text{Fe}_2\text{O}_3)_{\text{общ}}$ также некорректна, так как в этом случае необходимо использовать нормирующую линию, интенсивность которой была бы пропорциональна содержанию Fe₂O_{3общ}. С валентными линиями это условие не выполняется. Более того, по-видимому, в *L*-спектре отсутствует линия, которую можно было бы использовать в качестве нормируюшей.

Другой отличительной чертой линии $FeL\alpha_{1,2}$ является особенность зависимости ее интенсивности от присутствия в пробе других элементов. Интенсивность увеличивается с увеличением коэффициента ослабления (т.е. среднего атомного номера наполнителя). Этот эффект объясняется так же, как и возбуждение флуоресценции элементов с малыми атомными номерами (*Z*), так как край поглощения линии $FeL\alpha - L_{III}$ (17.52 Å) располагается в длинноволновой области спектра.

Показано [8], что при ионизации *К*-оболочек элементов с малыми *Z* роль первичных фотонов (из-за поглощения длинноволнового излучения в окне рентгеновской трубки) не является определяющей. Значимыми оказываются такие процессы ионизации, как избирательное возбуждение атомов за счет *L*-излучения элементов матрицы, возникающего в результате внутриатомных каскадных переходов, а также возбуждение фото- и Оже-электронами элементов со средними и высокими атомными номерами. Для линии $FeL\alpha_{1,2}$ влияние матрицы определяется также эффектами возбуждения, которые оказываются тем значительней, чем больше средний атомный номер наполнителя.

Очевидно, что даже приближенный учет влияния матричного состава пробы на возбуждение линии $FeL\alpha_{1,2}$ позволяет существенно улучшить качество градуировки. Однако необходимы более точные поправки или поиск вариантов косвенного учета особенностей возбуждения уровня L_{III} . * * *

Таким образом, удалось разделить два эффекта, влияющих на интенсивность валентной линии $FeL\alpha_{1,2}$: эффект валентности и матричный эффект. Показано, что из-за различия в значениях концентрационной чувствительности для атомов железа с разной степенью окисления в качестве функции отклика можно использовать не только отношение интенсивностей линий (валентной к нормирующей), но и интенсивность одной линии $FeL\alpha_{1,2}$. Учет особенностей возбуждения линии $L\alpha$ приводит к снижению погрешности градуировки и повышению точности анализа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Филиппов М.Н., Куприянова Т.А., Лямина О.И. Одновременное определение содержания и формы нахождения элемента в твердом теле рентгенофлуоресцентным методом // Журн. аналит. химии. 2001. Т. 56. № 8. С. 817. (*Filippov M.P., Kupriyanova T.A., Lyamina O.I.* Simultaneous determination of the concentration of elements and their speciation in solid samples using X-ray fluorescence spectrometry // J. Analyt. Chem. 2001. V. 56. № 8. Р. 729.)
- Чубаров В.М., Финкельштейн А.Л. Рентгенофлуоресцентное определение отношения FeO/Fe₂O_{3общ} в горных породах // Журн. аналит. химии. 2010. Т. 65. № 6. С. 634. (*Chubarov V.M., Finkel'shtein A.L.* X-ray fluorescence determination of the FeO/Fe₂O_{3tot} ratio in rocks// J. Analyt. Chem. 2010. V. 65. № 6. P. 620.)
- 3. *Чубаров В.М., Финкельштейн А.Л., Суворова Л.Ф., Костровицкий С.И.* Определение валентного состояния железа в пикроильмените методами рентгеновского электронно-зондового микроанализа и рентгенофлуоресцентного анализа // Записки рос. минерал. общества. 2012. Ч. СХLI. № 2. С. 83.
- Albee A.L., Chodos A.A. Semiquantitative electron microprobe determination of Fe²⁺/Fe³⁺ and Mn²⁺/Mn³⁺ in oxides and silicates and its application to petrologic problems // Am. Mineralogist. 1970. V. 55. № 3–4. P. 491.
- 5. *Fischer D.W.* Changes in the soft X-ray *L*-emission spectra with oxidation of the first series transition metals // J. Appl. Phys. 1965. V. 36. № 6. P. 2048.
- O'Nions R.K., Smith D.G. Investigations of the L_{II,III} X-ray emission spectra of Fe by electron microprobe. Part 2. The Fe L_{II,III} spectra of Fe and Fe–Ti oxides // Am. Mineralogist. 1971. V. 56. P. 1452.
- Верховодов П.А. Рентгеноспектральный анализ. Вопросы теории и способы унификации. Киев: Наукова Думка, 1984. 160 с.
- 8. *Павлинский Г.В.* Основы физики рентгеновского излучения. М.: ФИЗМАТЛИТ, 2007. 240 с.