— ОРИГИНАЛЬНЫЕ СТАТЬИ —

УДК 543.257.2

ИОНСЕЛЕКТИВНЫЕ ЭЛЕКТРОДЫ НА ОСНОВЕ ПОЛИВИНИЛХЛОРИДА, МОДИФИЦИРОВАННОГО *п*-ТРИФТОРАЦЕТИЛБЕНЗОАТНЫМИ ГРУППАМИ

© 2019 г. Ю. В. Матвейчук^{1,} *, Е. М. Рахманько¹

¹Белорусский государственный университет, химический факультет 220030 Беларусь, Минск, ул. Ленинградская, 14 *E-mail: Yu_Matveychuk@mail.ru Поступила в редакцию 31.10.2017 г. После доработки 11.04.2018 г. Принята к публикации 11.04.2018 г.

Разработаны ионоселективные электроды (ИСЭ), обратимые к гидрофильным сульфат-, гидрофосфат- и сульфид-ионам, на основе модифицированного поливинилхлорида (МПВХ), сочетающего в себе функцию полимерной матрицы и нейтрального переносчика. Описана методика синтеза МПВХ, заключающаяся в прививке к ПВХ *n*-трифторацетилбензоатных групп. Ранее ИСЭ такого типа содержали в качестве основы ПВХ и гептиловый эфир *n*-трифторацетилбензойной кислоты (ГЭ *n*-ТФАБК). Использование МПВХ позволило значительно увеличить время жизни указанных ИСЭ за счет

предотвращения изменений, связанных как с растворением ГЭ *n*-ТФАБК (для HPO_4^{2-} -СЭ, S^{2-} -СЭ, работающих в щелочных средах), так и с кристаллизацией гидратной формы ГЭ *n*-ТФАБК на поверхности мембран SO_4^{2-} -СЭ, работающих в кислой среде.

Ключевые слова: модифицированный поливинилхлорид, п-трифторацетилбензоатные группы, ионселективные электроды.

DOI: 10.1134/S0044450219040066

Использование нейтральных переносчиков для разработки ионселективных электродов остается актуальным направлением в ионометрии [1–4]. Гептиловый эфир *n*-трифторацетилбензойной кислоты широко известен как карбонатный ионофор I [5–7], который также нашел применение в качестве нейтрального переносчика в мембранах ИСЭ, обратимых не только к CO_3^{2-} , но и к SO_4^{2-} , MoO_4^{2-} , WO_4^{2-} , $C_2O_4^{2-}$ и др. [8–10].

Отмечено [11, 12], что пленочные ИСЭ на основе высших четвертичных аммониевых солей (ЧАС), содержащие в составе мембран нейтральный переносчик ГЭ *n*-ТФАБК, имеют малое время жизни (обратимые к ионам SO_4^{2-} , $SeO_4^{2-} - 2-3$ недели, к ионам HPO_4^{2-} , $MoO_4^{2-} - 10$ дней, к ионам $S^{2-} - 3-4$ дня). Малые сроки эксплуатации можно объяснить следующим образом: в случае ИСЭ, работающих в кислой среде (SO_4^{2-} , SeO_4^{2-} -СЭ, рН 3–3.5), происходит постепенная гидратация ГЭ *n*-ТФАБК и выход на поверхность мембраны гемдиольной формы ГЭ *n*-ТФАБК с последующей ее кристаллизацией (рис. 1); в случае ИСЭ, работаю-

щих в щелочной среде (HPO_4^{2-} -СЭ, pH 10; S^{2–}-СЭ, pH 12.8–13.0), происходит ионизация сольватирующей добавки и ее постепенное растворение.

Как первый, так и второй процессы приводят к уменьшению концентрации карбонильной формы ГЭ *n*-ТФАБК с течением времени до значений, сопоставимых с концентрацией ЧАС и, как следствие, к заметному ухудшению аналитических характеристик. Для проявления высокой селективности к потенциалопределяющим ионам содержание сольватирующей добавки в мембране должно быть больше содержания (ЧАС⁺)₂An²⁻, чтобы в системе могло образоваться достаточное количество комплексов An²⁻ с ГЭ *n*-ТФАБК. Кроме того, при хранении мембран, содержащих ГЭ *n*-ТФАБК, наблюдается экссудация ("выпотевание") сольватирующей добавки.

Одна из важных тенденций, связанных с новыми мембранными материалами, — замена традиционных компонентов мембран (пластификатора, полимера, ионофора) модифицированными материалами. Иммобилизация ионофоров на полимерной матрице — один из путей увеличения времени жизни ИСЭ, а также повышения устой-

МАТВЕЙЧУК, РАХМАНЬКО

Рис. 1. Изображения, полученные с помощью сканирующего электронного микроскопа LEO-1420 кристаллов ГЭ n-ТФАБК (а), мембраны SO₄²⁻-CЭ на основе ГЭ n-ТФАБК после 3 нед. эксплуатации (б); мембраны SO₄²⁻-CЭ без ГЭ n-ТФАБК после 3 нед. эксплуатации (в).

чивости по отношению к анализируемому раствору [4].

В данной работе апробирован новый электродный материал — трифторацетилбензоатный поливинилхлорид (**ТФАБ-ПВХ**) — для изготовления ИСЭ на основе высших ЧАС, обратимых к ионам S^{2–}, SO₄^{2–} и HPO₄^{2–}. Это позволило предотвратить негативные изменения, связанные с поведением ГЭ*п*-ТФАБК в мембранах и существенно увеличить время жизни ИСЭ. Предложенные ИСЭ функционируют при различных pH (S^{2–}-СЭ при рН 12.9; SO₄^{2–}-СЭ при рН 3.2; HPO₄^{2–}-СЭ при рН 10), что дает возможность изучить химическую стабильность ТФАБ-ПВХ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез трифторацетилбензоатного поливинилхлорида. Реагенты: хлорид 1-бутил-3-метилимидазолия (БМИМ⁺Cl⁻) ч. (BASF), *n*-трифторацетилбензойная кислота (синтезирована по методике [13]), диметилсульфоксид (ДМСО) х. ч., тетрагидрофуран (ТГ Φ) (Fluka AG), поливинилхлорид (Fluka AG).

Хлорид 1-бутил-3-метилимидазолия (0.60 г) смешивают с *n*-трифторацетилбензойной кислотой (0.40 г) и нагревают при 90°С в вакууме водоструйного насоса до образования гомогенной системы и прекращения выделения газа. Полученную ионную жидкость растворяют в 7 мл диметилсульфоксида. Отдельно в 10.0 мл ТГФ растворяют при нагревании 1.00 г ПВХ. Растворы смешивают и нагревают с обратным холодильником при перемешивании магнитной мешалкой в течение 3 ч, поддерживая равномерное кипение $T\Gamma \Phi$, после чего реакционную смесь охлаждают до комнатной температуры и по каплям при интенсивном перемешивании прибавляют к 200 мл дистиллированной воды. Выпавший осадок отфильтровывают, промывают несколько раз дистиллированной водой и сушат на воздухе при комнатной температуре. Схема синтеза представлена на схеме 1.

Схема 1. Схема синтеза трифторацетилбензоатного поливинилхлорида (ТФАБ-ПВХ).

Содержание *n*-трифторацетилбензоатных фрагментов в ТФАБ-ПВХ оценивали методом ИК-спектроскопии с использованием метода градуировочного графика в координатах интенсивность поглощения карбонильной группы—содержание *n*-трифторацетилбензоатных фрагментов. В качестве стандартных образцов использовали пленки ПВХ с различным содержанием *n*-ТФАБК. Содержание трифторацетилбензоатных фрагментов в ТФАБ-ПВХ составляло 16%.

ИК-спектры регистрировали на спектрометре Bruker ALPHA с приставкой нарушенного полного внутреннего отражения ATR Di в диапазоне волновых чисел от 4000 до 400 см⁻¹. Запись спектров проводили через 4 см⁻¹.

Мембраны ионселективных электродов на основе поливинилхлорида изготавливали по стандартной методике [14]. Они содержали следующие компоненты: ПВХ (Fluka AG) – 33 мас. %, ионообменник – 5 мас. %, сольватирующая добавка (ГЭ *n*-ТФАБК) – от 0 до 20 мас. %, пластификатор – остальное. Растворитель мембранной композиции – ТГФ (Fluka AG).

Мембраны ИСЭ на основе ТФАБ-ПВХ содержали следующие компоненты: ТФАБ-ПВХ – 50 мас. %, ионообменник – 5 или 2 мас. %, пластификатор – остальное. В качестве ионообменника использовали хлорид 3,4,5-трисдодецилоксибензил(оксиэтил)₃триметиламмония ((оксиэтил)₃TM, схема 2), синтез которого описан в работе [15]; в качестве пластификаторов мембран – 1-бромнафталин ч. д. а. (1-БН), *о*-нитрофенилдециловый эфир (*о*-НФДЭ). Состав мембран ИСЭ по ионообменнику и пластификатору был оптимизирован в работах [11, 12].

Схема 2. Структурная формула хлорида 3,4,5-трисдодецилоксибензил(оксиэтил)₃триметиламмония.

Для приготовления растворов использовали K_2SO_4 ч., KClч. д. а., NaBrч., KNO_3 ч. д. а., H_3PO_4 ч., Ba(OH)₂ · 8H₂Oч. д. а., Na₂HPO₄ · 2H₂Oч., аммиак водный х. ч., Na₂S · 9H₂Oч. д. а.

После изготовления мембраны всех ИСЭ вымачивали в течение 2 сут в 0.1 М растворах соответствующих солей. В качестве внутреннего раствора для всех ИСЭ использовали смесь 1×10^{-2} М соответствующей соли и 1×10^{-3} М КСІ.

В растворе сульфида натрия pH поддерживали на уровне 12.9 ± 0.1 с помощью раствора Ba(OH)₂, который связывает CO₂ из воздуха, тем самым устраняя мешающее влияние карбонат-ионов и

подкисление раствора; в растворе сульфата калия на уровне 3.2 ± 0.1 с помощью ортофосфорной кислоты; в растворе гидрофосфата натрия на уровне 10 ± 0.2 с помощью разбавителя, представляющего собой дистиллированную воду, подщелоченную раствором аммиака. Соответствующие значения pH поддерживали и в растворах мешающих ионов при изучении селективности разработанных ИСЭ.

Ионселективные электроды калибровали как методом последовательного, так и двукратного разбавления. Коэффициенты потенциометрической селективности ($\lg K^{Pot}(i, j)$) определяли методом отдельных растворов в варианте равных потенциалов основного и мешающего ионов (SSM) [15]; все остальные характеристики — в соответствии с рекомендациями [14].

Активности ионов в градуировочных растворах рассчитывали согласно теории Дебая—Хюккеля [16].

Потенциал исследуемой электрохимической ячейки измеряли иономером И-160.1МП при 22 ± 1°С. В качестве электрода сравнения использовали хлоридсеребряный электрод ЭВЛ-1МЗ.1, для определения рН — стеклянный электрод ЭСЛ-43-07СР.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2 представлен ИК-спектр используемого ТФАБ-ПВХ. Высокоинтенсивная полоса при 1689 см⁻¹ относится к валентным колебаниям карбонильной группы v(CO) сложноэфирного фрагмента. Карбонильная группа трифторацетильной группировки в спектре ТФАБ-ПВХ не проявляется, так как она находится в гидратной форме (валентные колебания OH-групп в виде уширенных полос поглощения при >3100 см⁻¹) [17].

На рис. 3 представлен ИК-спектр мембраны на основе ТФАБ-ПВХ. Видно, что в спектре присутствует только полоса 1720 см⁻¹, относящаяся к v(C=O) как карбонильной группы трифторацетилбензоатных фрагментов, так и карбонильной группы [17]. Дегидратация исходного ТФАБ-ПВХ протекает в процессе испарения тетрагидрофурана при изготовлении мембран ИСЭ.

Изменение аналитических характеристик SO_4^{2-} -СЭ, HPO_4^{2-} -СЭ, S^{2-} -СЭ в зависимости от времени эксплуатации. На рис. 4 представлены электродные функции SO_4^{2-} -СЭ, HPO_4^{2-} -СЭ, S^{2-} -СЭ на основе ПВХ и ГЭ *n*-ТФАБК. В табл. 1–3 приведены данные по изменению аналитических характеристик SO_4^{2-} -СЭ, HPO_4^{2-} -СЭ, S^{2-} -СЭ в зависимости от времени эксплуатации. Видно, что все три ИСЭ обладают достаточно хорошими исходными

Рис. 2. ИК-спектр трифторацетилбензоатного поливинилхлорида (ТФАБ-ПВХ).

Рис. 3. ИК-спектр мембраны на основе трифторацетилбензоатного поливинилхлорида (пластификатор – 1-бромнафталин).

аналитическими характеристиками, которые сохраняются непродолжительное время.

На рис. 5а представлен ИК-спектр мембраны после 2 нед. эксплуатации, на рис. 56 — после 4 нед. эксплуатации. Видно, что после 4 нед. эксплуатации в спектре появляется высокоинтенсивная полоса 1689 см⁻¹, относящаяся к сложноэфирной группе (пластификатор 1-бромнафталин не имеет полос поглощения в области 1650— 1750 см⁻¹). При этом полоса 1721 см⁻¹ полностью не исчезает, т.е. гидратная и карбонильная формы ГЭ *n*-ТФАБК находятся в равновесии. Появляются также полосы 3324, 3386 см⁻¹, относящиеся к ν (OH). По мере накопления гидратной формы ГЭ *n*-ТФАБК электродные характеристики SO_4^{2-} -СЭ значительно ухудшаются.

На рис. 6 показаны ИК-спектры мембраны S^{2-} -СЭ на первые (а) и на шестые сутки от начала эксплуатации (б). В спектре мембраны (рис. 6а) наблюдается интенсивная полоса при 1719 см⁻¹, относящаяся к v(C=O) карбонильной группы как трифторацетильной группировки, так и карбоксильной группы. На шестые сутки эксплуатации происходят заметные изменения в спектре: практически исчезают полосы 1719, 3389, 3325 см⁻¹, что указывает на растворение нейтрального переносчика.

Ионселективные электроды на основе трифторацетилбензоатного поливинилхлорида (ТФАБ-ПВХ). На рис. 7 представлены электродные функции $SO_4^{2^-}$ -СЭ, $HPO_4^{2^-}$ -СЭ, S^{2^-} -СЭ на основе ТФАБ-ПВХ. В табл. 4 приведены выборочные аналитические характеристики $SO_4^{2^-}$ -СЭ, в табл. 5 – $HPO_4^{2^-}$ -СЭ, в табл. 6 – S^{2^-} -СЭ в сравнении с результатами, полученными для ИСЭ, изготовленных на основе ПВХ с добавлением и в отсутствие сольватирующей добавки (20 мас. %). Видно, что при сопоставимых концентрациях ГЭ *n*-ТФАБК в мембранах из обычного ПВХ и *n*-трифторацетильных групп в ТФАБ-ПВХ электродные харак-

Рис. 4. Электродные функции ионселективных электродов на основе ПВХ, (оксиэтил)₃TM (5 мас. %.): 1 –

 HPO_4^{2-} -СЭ (пластификатор –*o*-нитрофенилдециловый эфир), $2 - SO_4^{2-}$ -СЭ (пластификатор – 1-бромнафталин), $3 - S^{2-}$ -СЭ (пластификатор – 1-бромнафталин).

теристики SO_4^{2-} -СЭ, HPO_4^{2-} -СЭ и S^{2-} -СЭ имеют достаточно близкие значения, особенно при содержании ЧАС в мембранах 2 мас. %. Уменьшением

Характеристика	Время, сут					
	1	5	10	15	20	25
ПО*, М	6.3×10^{-7}	6.5×10^{-7}	6.5×10^{-7}	7.0×10^{-7}	1.0×10^{-6}	2.0×10^{-6}
Наклон, мВ/декада	27.5 ± 0.3	27.5 ± 0.3	27.5 ± 0.3	27.0 ± 0.3	26.5 ± 0.5	26.0 ± 0.6
$\lg K^{\text{Pot}}(\mathrm{SO}_4^{2-}/\mathrm{Cl}^-)$	-2.2 ± 0.2	-2.2 ± 0.2	-2.2 ± 0.2	-2.1 ± 0.2	-1.8 ± 0.2	-1.3 ± 0.2
Дрейф, м $B/ч$; $c(SO_4^{2-}) = 1 \times 10^{-3} M$	0.3	0.4	0.4	0.8	2.9	7.0
Время отклика, c; $c(SO_4^{2-}) = 1 \times 10^{-3} - 1 \times 10^{-4} \text{ M}$	30	30	35	65	240	380
Воспроизводимость, мВ; $c(SO_4^{2-}) = 1 \times 10^{-3} \text{ M}$	0.3	0.3	0.4	0.8	3.5	7.2

Таблица 1. Изменение аналитических характеристик SO_4^{2-} -СЭ (на основе (оксиэтил)₃TM, 1-БН, ГЭ *n*-ТФАБК)

* Предел обнаружения.

Характеристика	Время, сут					
	1	5	7	10	13	15
ПО, М	7.1×10^{-7}	7.5×10^{-7}	7.7×10^{-7}	9.5×10^{-7}	2.0×10^{-6}	3.5×10^{-6}
Наклон, мВ/декада	27.3	27.3	26.9	26.0	26.0	26.0
$\lg K^{\rm Pot}({\rm HPO}_4^{2-}/{\rm Cl}^-)$	-2.4 ± 0.1	-2.4 ± 0.1	-2.4 ± 0.1	-2.1 ± 0.1	-1.8 ± 0.1	-1.5 ± 0.1
Дрейф, мВ/ч; c(HPO ₄ ²⁻) = 1 × 10 ⁻³ M	1.3	1.3	1.5	1.9	3.0	4.8
Время отклика, c; $c(\text{HPO}_4^{2^-}) = 1 \times 10^{-3} - 1 \times 10^{-4} \text{ M}$	35	35	35	80	120	160
Воспроизводимость, мВ; $c(HPO_4^{2^-}) = 1 \times 10^{-3} M$	0.7	0.8	0.8	1.2	2.4	4.8

Таблица 2. Изменение аналитических характеристик HPO₄²⁻-СЭ (на основе (оксиэтил)₃TM, *о*-НФДЭ, ГЭ *n*-ТФАБК)

Таблица 3. Динамика изменения аналитических характеристик S^{2–}-CЭ (на основе (оксиэтил)₃TM, 1-БН, ГЭ *n*-ТФАБК)

Характеристика	Время, сут					
	1	2	3	4	5	6
ПО, М	5.0×10^{-7}	5.0×10^{-7}	6.0×10^{-7}	7.3×10^{-7}	1.0×10^{-6}	3.0×10^{-6}
Наклон, мВ/декада	27.1	27.1	26.8	26.5	26.0	26.0
$\lg K^{Pot}(S^{2-}/Cl^{-})$	-1.3 ± 0.1	-1.3 ± 0.1	-1.1 ± 0.1	-1.0 ± 0.1	-0.8 ± 0.1	-0.6 ± 0.1
Дрейф, м $B/ч$; $c(S^{2-}) = 1 \times 10^{-3} M$	1.8	1.8	2.3	2.8	3.5	6.7
Время отклика, c; $c(S^{2-}) = 1 \times 10^{-3} - 1 \times 10^{-4} \text{ M}$	40	40	60	75	100	220
Воспроизводимость, мВ; $c(S^{2-}) = 1 \times 10^{-3} M$	0.8	0.8	1.0	1.4	5.5	9.7

Рис. 5. Фрагменты ИК-спектров мембраны на основе ГЭ *n*-ТФАБК: (а) – 2 нед. эксплуатации, (б) – 4 нед. эксплуатации.

содержания ЧАС достигается увеличение мольного соотношения $n(\Gamma \ni n-T \Phi A \in K)$: n(ЧАС).

Главный результат проведенного исследования — существенное увеличение времени жизни ИСЭ, так как за счет ковалентного связывания *n*-ТФАБК удается, во-первых, предотвратить быстрое растворение нейтрального переносчика и увеличить время жизни даже S^{2-} -СЭ, работаю-

Рис. 6. Фрагменты ИК-спектров мембраны на основе гептилового эфира *n*-трифторацетилбензойной кислоты: (a) – 1-е сут эксплуатации, (б) – 6-е сут эксплуатации.

щего при рН ~ 13, с 3–4 до 10 дней, во-вторых, предотвратить выход на поверхность гидратной формы ГЭ *n*-ТФАБК для SO_4^{2-} -СЭ, работающего при рН ~ 3, и тем самым увеличить его время жизни с 20 до 70 дней. Таким образом, ТФАБ-ПВХ – это материал, проявляющий повышенную по сравнению с традиционными композициями химическую устойчивость даже в сильнощелочной среде.

* * *

Таким образом, синтезирован и исследован электродный материал — поливинилхлорид, содержащий *n*-трифторацетилбензоатные группы, сочетающий функции полимерной матрицы и нейтрального переносчика. Использование этого материала позволяет существенно увеличить время жизни ИСЭ, обратимых к гидрофильным сульфат-, гидрофосфат- и сульфид-ионам, которые работают как в кислых, так и в щелочных сре-

Рис. 7. Электродные функции ионселективных электродов на основе трифторацетилбензоатного поливинилхлорида (50 мас. %), (оксиэтил)₃TM (5 мас. %): $1 - \text{HPO}_4^{2-}$ -CЭ (пластификатор – *o*-нитрофенилдециловый эфир), $2 - \text{SO}_4^{2-}$ -CЭ (пластификатор – 1-бромнафталин), $3 - \text{S}^{2-}$ -CЭ (пластификатор – 1-бромнафталин).

		Состав ИСЭ		
Характеристика	Серия ИСЭ	(оксиэтил) ₃ ТМ 5 мас. %, 1-БН	(оксиэтил) ₃ ТМ 2 мас. %, 1-БН	
ПО, М	А	1.0×10^{-6}	7.9×10^{-7}	
	Б	7.0×10^{-7}	6.3×10^{-7}	
	В	1.3×10^{-6}	_	
$\log K^{\text{Pot}}(SO_{1}^{2-}C_{1}^{-})$	А	-1.4	-1.7	
$IgK (30_4, CI)$	Б	-2.1	-2.25	
	В	0.2	—	
$\lg K^{\text{Pot}}(\mathrm{SO}_4^{2-}, \mathrm{Br}^{-})$	А	-0.95	-1.25	
	Б	-1.8	-1.9	
	В	1.0	_	
$\lg K^{\rm Pot}({\rm SO}_4^{2-}, {\rm NO}_3^-)$	А	0.3	0.2	
	Б	-0.3	-0.45	
	В	1.2	_	
Наклон, мВ/декада	А	25.7	26.5	
	Б	26.5	27.2	
	В	28.1	_	
Время жизни, сут	А	70		
	Б	20		
	В	80		

Таблица 4. Сравнение аналитических характеристик SO_4^{2-} -СЭ

Примечание: А – ИСЭ на основе ТФАБ-ПВХ, Б – ИСЭ на основе ПВХ с содержанием 20 мас. % ГЭ *n*-ТФАБК; В – ИСЭ на основе ПВХ.

Таблица 5. Сравнение аналитических характеристик HPO₄²⁻-СЭ

		Состав ИСЭ		
Характеристика	Серия ИСЭ	(оксиэтил) ₃ ТМ	(оксиэтил) ₃ ТМ	
		5 мас. %, <i>о</i> -НФДЭ	2 мас. %, <i>о</i> -НФДЭ	
ПО, М	A	7×10^{-7}	5.0×10^{-7}	
	Б	5.0×10^{-7}	4.5×10^{-7}	
	В	1.0×10^{-6}	1.0×10^{-6}	
$\lg K^{Pot}(HPO_4^{2-}, SO_4^{2-})$	A	-0.8	-1.0	
	Б	-1.1	-1.3	
	В	-0.05	-0.1	
$\lg K^{\text{Pot}}(\text{HPO}_4^{2^-}, \text{Cl}^-)$	A	-1.6	-2.0	
	Б	-2.2	-2.65	
	В	0.4	0.4	
$\lg K^{\operatorname{Pot}}(\operatorname{HPO}_4^{2-}, \operatorname{NO}_3^{-})$	A	0.9	0.5	
	Б	0.3	0.0	
	В	3.0	2.9	
Наклон, мВ/декада	A	27.5	28.4	
	Б	28.7	28.5	
	В	27.3	26.8	
Время жизни, сут	A	50		
	Б		10	
	В	70		

Примечание: А, Б, В – см. в примечании к табл. 4.

Характеристика	Серия ИСЭ	Состав ИСЭ: (оксиэтил) ₃ ТМ 5 мас. %, 1-БН
ПО, М	А	6.0×10^{-7}
	Б	3.8×10^{-7}
	В	7.6×10^{-7}
$\lg K^{Pot}(S^{2-}, Br^{-})$	А	-0.9
	Б	-1.35
	В	-0.35
$\lg K^{Pot}(S^{2-}, Cl^{-})$	А	-1.3
	Б	-1.55
	В	-0.9
$\lg K^{\text{Pot}}(S^{2-}, NO_3^-)$	А	-0.4
	Б	-0.75
	В	0.35
Наклон,	А	27.1
мВ/декада	Б	27.1
	В	27.4
Время жизни,	А	10
сут	Б	3-4
	В	20

Таблица 6. Сравнительный анализ S²⁻-CЭ

Примечание: А, Б, В – см. в примечании к табл. 4.

дах. Электродные характеристики ИСЭ на основе МПВХ и ИСЭ на основе обычного ПВХ с добав-кой ГЭ *n*-ТФАБК близки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Umezawa Yo., Umezawa K., Bühlmann Ph., Hamada N., Aoki H., Nakanishi J., Sato M., Xiao K.P., Nishimura Yu. Potentiometric selectivity coefficients of ion-selective electrodes Part II. Inorganic anions (Technical report) // Pure Appl. Chem. 2002. V. 74. № 6. P. 923.
- Bühlmann Ph., Chen L.D. Ion-selective electrodes with ionophore-doped sensing membranes / Supramolecular chemistry from molecules to nanomaterials / Eds. Gale P.A., Steed J.W. N.Y.: John Wiley & Sons, Ltd, 2012. V. 5. P. 2539.
- Bühlmann Ph., Pretsch E., Bakker E. Carrier-based ionselective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors // Chem. Rev. 1998. V. 98. P. 1593.
- Михельсон К.Н., Печенкина И.А. Материалы мембран ионоселективных электродов на основе ионофоров: проблемы и достижения (обзор) // Электрохимия. 2015. Т. 51. № 2. С. 115.

- Beer D., Bissett A., Wit R., Jonkers H., Köhler-Rink S., Nam H., Kim B.H., Eickert G., Grinstain M. A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments // Limnol. Oceanogr.: Methods 6. 2008. P. 532.
- Abramova N., Levichev S., Bratov A. The influence of CO₂ on ISFETs with polymer membranes and characterization of a carbonate ion sensor // Talanta. 2010. V. 81. P. 1750.
- Behringer Ch., Lehmann B., Haug J.-P., Seiler K., Morf W.E., Hartman K., Simon W. Anion selectivities of trifluoroacetophenone derivatives as neutral ionophores in solvent-polymeric membranes // Anal. Chim. Acta. 1990. V. 233. P. 41.
- Lomako S.V., Astapovich R.I., Nozdrin-Plotnitskaya O.V., Pavlova T.E., Shi Lei, Nazarov V.A., Okaev E.B., Rakhman'ko E.M., Egorov V.V. Sulfate-selective electrode and its application for sulfate determination in aqueous solutions // Anal. Chim. Acta. 2006. V. 562. P. 216.
- 9. Матвейчук Ю.В., Рахманько Е.М., Жилко В.В. Новые пленочные молибдат- и вольфрамат-селективные электроды на основе высших ЧАС с различной стерической доступностью обменного центра // Методы и объекты хим. анализа. 2017. Т. 12. № 1. С. 240.
- Рахманько Е.М., Матвейчук Ю.В., Станишевский Л.С., Ясинецкий В.В. Оксалатселективный электрод и его применение в анализе // Журн. аналит. химии. 2015. Т. 70. № 7. С. 758. (Rakhman'ko E.M., Matveichuk Yu.V., Stanishevskii L.S., Yasinetskii V.V. An oxalate-selective electrode and its application to analysis // J. Analyt. Chem. 2015. V. 70. № 7. Р. 873.)
- Матвейчук Ю.В. Влияние гептилового эфира птрифторацетилбензойной кислоты на аналитические характеристики сульфат-селективных электродов / "Аналитика РБ–2017" Тез. докл. Пятой респ. конф. по аналит. химии с межд. участием, Минск, 19–20 мая 2017 г. Минск: Изд. центр БГУ, 2017. С. 16.
- Матвейчук Ю.В., Рахманько Е.М., Окаев Е.Б., Рассадина Д.С. Гидрофосфат-селективные электроды на основе высших четвертичных аммониевых солей со стерически доступным обменным центром / "Аналитика РБ–2017" Тез. докл. Пятой респ. конф. по аналит. химии с межд. участием, Минск, 19–20 мая 2017 г. Минск: Изд. центр БГУ, 2017. С. 18.
- Синтезы фторорганических соединений (мономеры и промежуточные продукты) / Под ред. Кнунянца И.Л., Якобсона Г.Г. М.: Химия, 1977. С. 252.
- Камман К. Работа с ионоселективными электродами. М.: Мир, 1980. 288 с.
- Bakker E., Pretsch E., Bühlmann Ph. Selectivity of potentiometric ion sensors // Anal. Chem. 2000. V. 72. P. 1127.
- 16. *Dean J.A.* Lange's handbook of chemistry. McGRAW-HILL, INC., 1999. 1291 p.
- 17. *Stuart B.H.* Infrared spectroscopy: Fundamentals and applications. N.Y.: Wiley, 2004.