ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ, 2019, том 74, № 7 ПРИЛОЖЕНИЕ, с. S24—S33

———— ОРИГИНАЛЬНЫЕ СТАТЬИ ——

УДК 543.423.1+549.24

# ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ МЫШЬЯКА И СУРЬМЫ В ФЕРРОВОЛЬФРАМЕ МЕТОДОМ АТОМНО-ЭМИССИОННОЙ СПЕКТРОМЕТРИИ С ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМОЙ

© 2019 г. А. В. Майорова<sup>1, 2, \*</sup>, А. А. Белозерова<sup>1, 2</sup>, С. Ю. Мельчаков<sup>1</sup>, М. А. Машковцев<sup>2</sup>, А. С. Суворкина<sup>2</sup>, К. Ю. Шуняев<sup>1, 2</sup>

<sup>1</sup>Институт металлургии Уральского отделения Российской академии наук 620016 Россия, Екатеринбург, ул. Амундсена, 101 <sup>2</sup>Уральский федеральный университет имени первого Президента России Б.Н. Ельцина 620002 Россия, Екатеринбург, ул. Мира, 19 \*E-mail: imeturoran@mail.ru Поступила в редакцию 21.02.2018 г. После доработки 09.01.2019 г. Принята к публикации 09.01.2019 г.

Найдены условия ингибирования соосаждения мышьяка и сурьмы с макроколичествами вольфрама и железа в виде PbWO<sub>4</sub> и Na<sub>3</sub>FeF<sub>6</sub>. Установлено, что введение фтороводородной кислоты в процессе осаждения макрокомпонентов приводит к получению осадков с наименьшими удельной поверхностью и пористостью, что способствует ингибированию соосаждения аналитов (As, Sb). По разработанной процедуре подготовили государственные стандартные образцы состава ферровольфрама для определения содержания мышьяка и сурьмы методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (**АЭС-ИСП**). Разница между найденным и аттестованным содержаниями аналитов не превышает нормативов, приведенных в ГОСТах. Методика одновременного АЭС-ИСП-определения содержания мышьяка и сурьмы с предварительным отделением основных компонентов применима для анализа материалов и сплавов с высоким содержанием железа и вольфрама.

Ключевые слова: мышьяк, сурьма, соосаждение, изотермы адсорбции, атомно-эмиссионная спектрометрия с индуктивно связанной плазмой, седиментационное отделение вольфрама и железа. **DOI:** 10.1134/S004445021907017X

Ферровольфрам является одним из важнейших легирующих компонентов при производстве специальных марок инструментальных, конструкционных и быстрорежущих сталей. Введение ферровольфрама в сталь в сочетании с другими металлами (например, хромом, ванадием, молибденом) повышает ее прокаливаемость, устойчивость против отпуска, обеспечивает нечувствительность к образованию горячих трещин [1]. Присутствие малых количеств сурьмы и мышьяка в сталях приводит к их охрупчиванию и быстрому старению [2], поэтому содержание этих элементов как в стали, так и в ферровольфраме строго регламентируется действующими государственными стандартами [3, 4]. В ГОСТах [5, 6] для определения мышьяка и сурьмы в ферровольфраме рекомендован спектрофотометрический метод. Рекомендуемые ГОСТами методики анализа длительны и трудоемки; требуют предварительного отделения сурьмы и мышьяка от основных компонентов проб с использованием тиоацетамида и не позволяют определять аналиты одновременно. Целесообразна разразработка более простой методики одновременного определения содержания мышьяка и сурьмы в ферровольфраме с использованием современного аналитического оборудования.

Метод АЭС-ИСП характеризуется экспрессностью измерений, простотой градуировки, широким линейным диапазоном определяемых концентраций и возможностью одновременного многоэлементного анализа. Эти достоинства обусловили внедрение метода АЭС-ИСП в практику работы многих аналитических лабораторий, в том числе для анализа материалов и продуктов черной металлургии [7].

Ранее нами предложена методика прямого АЭС-ИСП-определения содержания вольфрама в ферровольфраме [8]. Разработка методики определения малых количеств мышьяка и сурьмы — достаточно сложная задача, в частности, потому, что потенциалы возбуждения спектральных линий этих элементов имеют высокие значения [9, 10].

В работе [11] показано, что точное АЭС-ИСПопределение содержания мышьяка и сурьмы в вольфрамсодержащих материалах затруднено изза спектральных помех от вольфрама и невозможности осуществления стандартной процедуры "внепиковой коррекции фона". При использовании математического метода коррекции спектральных помех MSF [12] погрешность АЭС-ИСП-определения содержания As и Sb в вольфрамсодержащем стандартном образце составила соответственно 27.9 и 5.16% от исходного содержания. Вероятно, именно по причине спектральных помех от вольфрама и железа сведения о методиках прямого АЭС-ИСП-определения содержания As и Sb в подобных объектах практически отсутствуют. В лабораторной практике либо предварительно выделяют аналиты генерацией их гидридов [13, 14], либо отделяют от матрицы с помощью трибутилфосфата [15]. Однако в работах [16, 17] показано, что присутствие в анализируемых материалах макроколичеств Fe и W негативно влияет на образование гидридов аналитов; для получения точных результатов требуется ингибировать интерференции от матрицы. Отметим, что предложенная в работе [15] процедура отделения железосодержащей основы от мышьяка трибутилфосфатом трудоемка. Таким образом, разработка простого, экспрессного и экономичного способа предварительного отделения As и Sb от основных компонентов Fe, W остается актуальной задачей. Ее решение позволит проводить одновременное АЭС-ИСП-определение малых количеств аналитов с высокой точностью.

Ранее нами установлено [18, 19], что железо в макроколичествах осаждается из кислотных растворов с помощью NaF с образованием кристаллического осадка Na<sub>3</sub>FeF<sub>6</sub>. Соосаждение мышьяка и сурьмы удалось ингибировать с помощью введения комплесообразующего агента – фтороводородной кислоты — в мольном отношении NaF : HF ≈ 1 : 1. В этих условиях образуется крупнокристаллический осадок с меньшими удельной поверхностью и пористостью, чем без HF. Применение этой процедуры с целью отделения макроколичеств вольфрама приводит только к частичному его осаждению в виде  $Na_2WF_8$ . В результате, вольфрам в анализируемом растворе остается в большом количестве, а из-за спектральных помех точное определение содержания аналитов становится невозможным.

В работе [20] имеются сведения о возможности полного осаждения макроколичеств вольфрама с помощью Pb(CH<sub>3</sub>COO)<sub>2</sub> в виде осадка PbWO<sub>4</sub>, однако при этом соосаждается мышьяк [21]. Аналогично ведет себя сурьма. Мы полагаем, что введение определенного количества фтороводородной кислоты при одновременном отделении железа и вольфрама в виде осадка Na<sub>3</sub>FeF<sub>6</sub>—PbWO<sub>4</sub> будет способствовать устранению соосаждения аналитов:

$$Pb^{2+} + WO_4^{2-} = PbWO_4 \downarrow, \qquad (1)$$

$$Fe^{3+} + 6F^{-} + 3Na^{+} = Na_3FeF_6\downarrow$$
. (2)

Следует отметить, что введение в раствор избытка HF может приводить к растворению осадка PbWO<sub>4</sub> и переходу вольфрама в фильтрат в виде устойчивого комплексного соединения (3):

$$PbWO_4 \downarrow + 10HF = H_2[WF_8] + 4H_2O + PbF_2 \downarrow.$$
 (3)

Необходимо предварительно изучить процесс соосаждения мышьяка и сурьмы на осадке состава Na<sub>3</sub>FeF<sub>6</sub>—PbWO<sub>4</sub>. Понимание механизма процесса позволит достичь желаемого эффекта — уменьшить или полностью ингибировать соосаждение аналитов.

Цель настоящей работы — изучить механизм процесса соосаждения мышьяка и сурьмы на осадке состава Na<sub>3</sub>FeF<sub>6</sub>—PbWO<sub>4</sub> и возможность его ингибирования при введении комплексообразующего агента — фтороводородной кислоты; оценить эффективность предложенного способа при подготовке государственных стандартных образцов состава ферровольфрама к АЭС-ИСП-определению содержания мышьяка и сурьмы.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление растворов. В термостойкие фторопластовые стаканы помещали определенное количество раствора ионов W(VI), Fe(III), As(III), Sb(III) (соответствующие составу материала, мас. %: W – 70.0, Fe – 30.0, As – 0.002 и Sb – 0.002). Добавляли 20 мл "царской водки" и определенный объем фтороводородной кислоты (40 мас. %, от 5 до 15 мл). Нагревали на электроплитке до начала кипения раствора (75°C), затем порциями при постоянном перемешивании добавляли 40 мл CH<sub>3</sub>COOH (95 мас. %) и 10 мл раствора Pb(CH<sub>3</sub>COO)<sub>2</sub> с концентрацией 50 г/л для создания мольного избытка осадителя. По индикаторной бумаге (pH 4.0-7.0) доводили pH до 4.3, приливая порциями при постоянном перемешивании 2 М раствор NaOH. Образовавшийся осадок выдерживали в течение 10 мин при температуре кипения раствора, отфильтровывали через фильтр "белая лента" и промывали концентрированной уксусной кислотой, дистиллированной водой. Полученные таким образом осадки отбрасывали или сохраняли для дальнейшего изучения. Фильтрат переносили в мерную колбу из полипропилена, разбавляли дистиллированной водой до метки и перемешивали. При необходимости использовали процедуру разбавления. Полученные растворы анализировали на содержание As, Sb, Fe и W методом АЭС-ИСП.

Одновременно с пробами готовили холостой раствор, содержащий все компоненты, кроме ионов W(VI), Fe(III), As(III) и Sb(III), с концентрациями, аналогичными используемым при приготовлении растворов.

Получение осадков. Осадки основных компонентов Fe и W, полученные в присутствии разных объемов фтороводородной кислоты (40 мас. %, 5—15 мл) (см. приготовление растворов), сушили на воздухе в течение 24 ч. Затем их использовали для определения параметров удельной поверхности, пористости и исследования морфологии с помощью сканирующего электронного микроскопа.

Условия измерения атомной эмиссии W, Fe, As и Sb. Использовали АЭС-ИСП-спектрометр Optima 2100 DV (Perkin Elmer) с кварцевой горелкой. Операционные параметры спектрометра: высокочастотная мощность - 1500 Вт, пробоподающий поток аргона – 0.8 дм<sup>3</sup>/мин, вспомогательный поток аргона — 0.2 дм<sup>3</sup>/мин, плазмообразующий поток аргона – 15.0 дм<sup>3</sup>/мин, способ наблюдения плазмы – радиальный, скорость подачи раствора – 0.9 мл/мин, время распыления образца — 40 с, число измерений прибором одной пробы – 2. Применяли распылительную систему, устойчивую к агрессивному воздействию фтороводородной кислоты. Аналитические спектральные линии: As I 189.042, Sb I 206.836, Fe II 358.119 и W II 207.912 нм.

Градуировка спектрометра. Растворы для градуировки спектрометра готовили разбавлением государственных стандартных образцов состава растворов ионов As, Sb, W, Fe. При этом в них добавляли аликвоты холостого раствора так, чтобы концентрации кислот, ацетата свинца и ионов натрия, которые содержатся в холостом растворе, соответствовали их концентрациям в анализируемых растворах. Концентрации определяемых элементов в растворах для градуировки представлены в табл. 1.

Рентгенофазовый анализ. Рентгенофазовый анализ (качественный и количественный) выполняли с помощью рентгеновского дифрактометра XRD-7000. Режимы съемки: графитовый монохроматор; излучение CuK $\alpha$ ; напряжение на трубке: U = 40.0 kB; ток I = 30.0 мA; угловой диапазон  $15^{\circ}-80^{\circ}$ , шаг  $0.02^{\circ}$ , время в точке 1.5 с; внешний стандарт – порошок кремния. Первичную обработку экспериментальных данных (вычитание фона, разделение и вычитание  $K\alpha_2$ -линии) выполняли с помощью программного комплекса Shimadzu; для определения интегральных интенсивностей и позиций пиков применяли программу ORIGIN. Фазы идентифицировали с исполь-

Таблица 1. Концентрации (мг/л) ионов As, Sb, W и Fe в градуировочных растворах

| Элемент         | № раствора для градуирования<br>спектрометра |       |       |  |  |  |
|-----------------|----------------------------------------------|-------|-------|--|--|--|
|                 | 1                                            | 2     | 3     |  |  |  |
| Микрокомпоненты |                                              |       |       |  |  |  |
| As              | 1.00                                         | 0.50  | 0.10  |  |  |  |
| Sb              | 0.50                                         |       | 1.00  |  |  |  |
| Макрокомпоненты |                                              |       |       |  |  |  |
| W               | 10.0                                         | 50.0  | 100.0 |  |  |  |
| Fe              | 50.0                                         | 100.0 | 10.0  |  |  |  |

зованием базы данных PDF-2 международного центра дифракционных данных ICDD (The International Centre for Diffraction Data). Количественное определение кристаллических фаз выполняли путем сравнительной оценки интенсивностей дифракционных максимумов на порошковой дифрактограмме.

Микроскопические исследования и электронно-зондовый рентгеноспектральный микроанализ (РСМА) осадков проводили на сканирующем электронном микроскопе EVO 40 (Carl Zeiss), оснащенном SDD спектрометром INCA X-Act Oxford Instruments и системой для энергодисперсионного микроанализа INCA Energy SEM. Предварительно высушенные порошки осадков наносили тонким слоем на токопроводящий двусторонний скотч и тщательно обдували сжатым воздухом для удаления частиц, не зафиксировавшихся на поверхности подложки. Приготовленные препараты порошков помещали в камеру микроскопа, вакуумировали до остаточного давления ~1.5 × 10<sup>-3</sup> Па и проводили съемку при ускоряющей разности потенциалов 20 кВ и токе зонда 710 пА. При различных увеличениях регистрировали внешний вид частиц порошков с помощью детектора обратно рассеянных электронов. Затем проводили РСМА репрезентативных частиц порошка для установления их химического состава.

Определение параметров поверхности и пористости. Определение значений удельной поверхности и пористости осадков выполняли методом низкотемпературной адсорбции—десорбции азота на приборе Nova1200е компании Qantochrome. Порошки осадков предварительно прокаливали на воздухе при 500°С в течение 5 ч для удаления остаточной влаги.

## РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Применение моделей изотерм адсорбции в описании соосаждения мышьяка и сурьмы на осадках Na<sub>3</sub>FeF<sub>6</sub>, PbWO<sub>4</sub>. Ранее установлено [18, 21], что

| Модель               | Параметр модели                                 | Sb     | As     |
|----------------------|-------------------------------------------------|--------|--------|
| Ленгмюра             | <i>К</i> <sub>L</sub> , л/ммоль                 | 0.254  | 0.708  |
|                      | <i>а<sub>m</sub></i> , ммоль/г                  | 6.94   | 6.000  |
|                      | $R^2$                                           | 0.7651 | 0.0912 |
| Фрейндлиха           | $K_{\rm F}$ , (ммоль/г)(л/ммоль) <sup>1/n</sup> | 0.110  | 2.44   |
|                      | 1/ <i>n</i>                                     | 0.858  | 1.18   |
|                      | $R^2$                                           | 0.9835 | 0.9651 |
| Дубинина–Радушкевича | k, моль <sup>2</sup> /кДж <sup>2</sup>          | 0.0066 | 0.0077 |
|                      | Е, кДж/моль                                     | 8.7    | 8.1    |
|                      | $R^2$                                           | 0.9829 | 0.9874 |
| БЭТ                  | <i>К</i> <sub>БЭТ</sub> , г/ммоль               | 830.5  | 2972.1 |
|                      | <i>а<sub>m</sub></i> , ммоль/г                  | 0.042  | 0.030  |
|                      | $R^2$                                           | 0.7444 | 0.338  |

Таблица 2. Рассчитанные значения адсорбционных параметров моделей Ленгмюра, Фрейндлиха, Дубинина– Радушкевича и БЭТ

при осаждении макроколичеств железа и вольфрама с помощью фторида натрия и ацетата свинца образуются осадки состава Na<sub>3</sub>FeF<sub>6</sub>-PbWO<sub>4</sub> и удается vспешно отделить основу материала, однако при этом имеют место потери аналитов из анализируемого раствора. Для установления механизма соосаждения As и Sb использовали различные модели равновесных изотерм адсорбции (рис. 1а–1г). Подробное описание используемых моделей дано в работе [14]. Рассчитанные значения адсорбционных параметров приведены в табл. 2. Видно, что для описания процесса соосаждения мышьяка и сурьмы на осадке состава Na<sub>3</sub>FeF<sub>6</sub>-PbWO<sub>4</sub> лучше всего подходит модель Дубинина-Радушкевича (наибольшее значение  $R^2$ ). Менее точно процесс описывает модель Фрейндлиха. У моделей Ленгмюра для обоих аналитов (As, Sb) значение  $R^2$  наименьшее, поэтому согласно теории на поверхности осадка находится мало активных адсорбционных центров с одинаковой энергией. Полученные результаты косвенно доказывают, что поверхность образцов Na<sub>3</sub>FeF<sub>6</sub>-PbWO<sub>4</sub> является гетерогенной – активные центры обладают разной энергией. Таким образом, соосаждение мышьяка и сурьмы можно рассматривать как процесс заполнения объема микропор осадка, содержащего макроколичества вольфрама и железа.

Модель Дубинина—Радушкевича можно использовать для расчета средней свободной энергии адсорбции (4) [22]:

$$E = (-2k)^{-0.5}.$$
 (4)

По численному значению величины E в уравнении изотермы Дубинина—Радушкевича можно судить о природе сил взаимодействия между мышьяком, сурьмой и активными центрами на поверхности осадка и определить, является ли закрепление ионов физическим процессом, или же оно имеет химический характер. Рассчитанные нами значения E для сурьмы и мышьяка составляют 8.7 и 8.1 кДж/моль соответственно, и для обоих аналитов находятся в диапазоне 8— 16 кДж/моль. В этом случае, согласно теории [23], закрепление мышьяка и сурьмы в микропорах осадка происходит в результате химической (ионообменной) реакции.

Изучение влияния фтороводородной кислоты на соосаждение мышьяка и сурьмы при отделении макроколичеств железа и вольфрама. Поскольку закрепление As и Sb на осадках макроколичеств Fe, W обусловлено хемосорбцией по ионообменному механизму, процедуры разбавления, перемешивания, увеличения температуры раствора (что эффективно при физической адсорбции) не приведут к ингибированию процесса соосаждения. Для предотвращения хемосорбционного закрепления мышьяка и сурьмы в микропорах необходимо в процессе кристаллизации уменьшить перенасыщение раствора, т.е. увеличить растворимость осадка (в нашем случае  $Na_3FeF_6$ —PbWO<sub>4</sub>) и одновременно снизить концентрации осаждаемых ионов (Fe, W) в растворе [24]. Очень эффективным способом понижения концентрации осаждаемых ионов является связывание их в комплексные соединения средней прочности.

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 74 № 7 ПРИЛОЖЕНИЕ 2019



**Рис. 1.** Изотермы адсорбции мышьяка и сурьмы на осадке  $Na_3FeF_6$ –PbWO<sub>4</sub> в координатах линейного уравнения изотерм Ленгмюра (а), Фрейндлиха (б), Дубинина–Радушкевича (в), БЭТ (г). Условия осаждения:  $V_{HF} = 5 \text{ мл} (40 \text{ мас. }\%)$ , концентрация осадителя  $Pb^{2+}$  2.41 мМ, 40 мл CH<sub>3</sub>COOH (95 мас. %), pH 4.3, 75°C, t = 10 мин.

#### ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ МЫШЬЯКА И СУРЬМЫ

| V(мл)/с (М) | Фаза, мас. %      |      |                                  |                                                 |                                  |  |  |
|-------------|-------------------|------|----------------------------------|-------------------------------------------------|----------------------------------|--|--|
| HF          | PbWO <sub>4</sub> | NaF  | Na <sub>3</sub> FeF <sub>6</sub> | Na <sub>5</sub> Fe <sub>3</sub> F <sub>14</sub> | Na <sub>4</sub> FeO <sub>3</sub> |  |  |
| 5.0/0.112   | 83.3              | 11.5 | 1.3                              | 3.5                                             | 0.5                              |  |  |
| 7.5/0.168   | 74.0              | 19.0 | 1.6                              | 4.8                                             | 0.8                              |  |  |
| 10/0.224    | 74.7              | 21.9 | 1.7                              | 2.8                                             | 0.7                              |  |  |
| 15/0.336    | 58.0              | 37.9 | 1.3                              | 2.8                                             | 0.6                              |  |  |

Таблица 3. Результаты определения фазового состава осадков методом рентгенофазового анализа

| Таблица 4. | Результаты | определения  | параметрон  | в поверхно | ости и  | пористости | осадков | макрокомі | понентов, | полу- |
|------------|------------|--------------|-------------|------------|---------|------------|---------|-----------|-----------|-------|
| ченных мет | одом низко | температурно | ой адсорбци | и-десорбі  | ции азо | ота        |         |           |           |       |

|                                                                    | V (мл)/с (М) HF         |                         |                         |                         |  |
|--------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
| параметры поверхности                                              | 5/0.112                 | 7.5/0.168               | 10/0.224                | 15/0.336                |  |
| Удельная поверхность по методу БЭТ, м <sup>2</sup> /г              | 3.78                    | 3.34                    | 2.73                    | 2.56                    |  |
| Удельная поверхность микропор ( <i>t</i> -метод), $M^2/\Gamma$     | 0                       | 0                       | 0                       | 0                       |  |
| Удельная поверхность мезопор ( <i>t</i> -метод), м <sup>2</sup> /г | 3.78                    | 3.34                    | 2.73                    | 2.56                    |  |
| Суммарный объем пор (в диапазоне от 0 до 154 нм), мл/г             | 0.020                   | 0.015                   | 0.013                   | 0.012                   |  |
| Средний диаметр пор, нм                                            | 21.2                    | 18.0                    | 18.8                    | 13.4                    |  |
| Диаметр доминирующего количества пор, нм                           | 3.95                    | 3.95                    | 3.71                    | 3.71                    |  |
| Структура пор (на основании анализа петли гистерезиса)             | Открытые,<br>щелевидные | Открытые,<br>щелевидные | Открытые,<br>щелевидные | Открытые,<br>щелевидные |  |

В нашем случае комплексообразующим агентом является фтороводородная кислота.

Исследовали влияние введенного количества фтороводородной кислоты в процессе осаждения железа, вольфрама на соосаждение мышьяка и сурьмы. Остальные условия осаждения (рН, температура, время) (см. "Экспериментальную часть") мы определили в ходе предварительных исследований. В табл. 3 показаны результаты рентгенофазового анализа осадков макрокомпонентов в зависимости от введенного объема фтороводородной кислоты в процессе их осаждения. Установлено, что вольфрам в составе осадков находится в виде фазы PbWO<sub>4</sub>, а железо представлено тремя соединениями – Na<sub>3</sub>FeF<sub>6</sub>, Na<sub>5</sub>Fe<sub>3</sub>F<sub>14</sub>, Na<sub>4</sub>FeO<sub>3</sub>. Увеличение в условиях эксперимента вводимого объема фтороводородной кислоты приводит к увеличению содержания фазы NaF и уменьшению PbWO<sub>4</sub>. Наибольшие изменения наблюдаются при увеличении объема HF с 10 до 15 мл (соответствует концентрации HF от 0.224 до 0.336 М), что, по-видимому, связано с растворением части осадка PbWO<sub>4</sub> и переходом вольфрама в фильтрат согласно уравнению (3). Содержание Na<sub>3</sub>FeF<sub>6</sub>, Na<sub>5</sub>Fe<sub>3</sub>F<sub>14</sub>, Na<sub>4</sub>FeO<sub>3</sub> при варьировании вводимого объема HF изменяется незначительно. На рис. 2а–2в показаны микрофотографии образующихся вольфрам- и железосодержащих осадков и результаты определения их состава методом РСМА. Видно, что увеличение вводимого объема фтороводородной кислоты в процессе осаждения макрокомпонентов приводит к уменьшению размера образующихся остроконечных вольфрамсодержащих и сферических железосодержащих кристаллов. При этом фиксируется увеличение содержания и размера частиц фазы NaF. Наибольшие изменения состава осадков наблюдаются при увеличении вводимого объема HF от 10 до 15 мл (от 0.224 до 0.336 М). При этом в составе осадков соединений мышьяка и сурьмы не обнаружено.

На рис. 3 и в табл. 4 показаны изменения значений параметров удельной поверхности и пористости железо- и вольфрамсодержащих осадков. Для всех образцов характерен относительно низкий уровень удельной поверхности и пористости. По характеру петель гистерезиса на изотермах адсорбции и десорбции установлено, что осадки макрокомпонентов обладают открытой пористостью; поры имеют щелевидную форму [25]. Во всех образцах присутствуют два вида пор — размером 4 и 35 нм. С увеличением вводимого объема фтороводородной кислоты от 5 до 15 мл (соответ-



**Рис. 2.** Микрофотографии железо- и вольфрамсодержащих осадков, полученных в присутствии разных объемов HF (40 мас. %), мл: (a) – 5.0, (б) – 7.5, (в) – 10.0, (г) – 15.0. Методом рентгеноспектрального микроанализа в позициях I, 2, 3 проведено определение химического состава репрезентативных частиц осадков. Остальные условия осаждения см. в подписи к рис. 1.



**Рис. 3.** Результаты определения пористости осадков макрокомпонентов в зависимости от введенного объема конц. НF (40 мас. %), мл: *1* – 5.0, *2* – 7.5, *3* – 10.0, *4* – 15.0. Остальные условия осаждения см. в подписи к рис. 1.

ствует концентрации от 0.112 до 0.336 М) значение удельной поверхности осадков уменьшается в 1.4 раза, а средний диаметр пор снижается в 1.6 раз. Наблюдается одновременное снижение объема пор как первого, так и второго вида в 1.7 раза. Наибольшие изменения наблюдаются при увеличении вводимого объема HF от 7.5 до 10.0 мл (от 0.168 до 0.224 М). Дальнейшее увеличение объема HF до 15 мл не приводит к существенному изменению размера и объема пор.

Таким образом, показано, что осаждение макроколичеств Fe и W в присутствии 10 и 15 мл фтороводородной кислоты (40 мас. %) приводит к получению осадков с наименьшей удельной поверхностью и пористостью и, по-видимому, в этих условиях соосаждение аналитов будет минимальным.

Результаты АЭС-ИСП-анализа фильтратов, полученных после процедуры отделения макрокомпонентов в присутствии различного объема фтороводородной кислоты, представлены на рис. 4. Видно, что увеличение вводимого объема HF с 5 до 10 мл в условиях эксперимента (10 мл соответствует мольному избытку HF : W(VI) > 100 : 1) позволяет существенно ингибировать соосаждение аналитов и отделить их от макроколичеств Fe и W (относительное содержание аналитов в фильтрате более 90%). Как и предполагалось, последующее увеличение объема HF с 10 до 15 мл (соответствует мольному избытку HF : W(VI) > 150 : 1)приводит к частичному растворению осадка и переходу вольфрама в анализируемый раствор. Присутствие в фильтрате небольшого количества вольфрама (до 150 мг/мл) вызывает спектральные помехи, что снижает точность АЭС-ИСП-опре-



**Рис. 4.** Содержание в фильтрате ионов Fe, W, As и Sb (мас. % от исходного) после процедуры осаждения макрокомпонентов в зависимости от введенного объема HF (40 мас. %). Остальные условия осаждения см. в подписи к рис. 1.

деления содержания мышьяка и сурьмы (найденное содержание мышьяка и сурьмы превышает введенное, рис. 4, значения при V(HF) = 15 мл).

Таким образом, показано, что соосаждение мышьяка и сурьмы зависит от параметров поверхности и пористости получаемых осадков и необходимым условием ингибирования этого процесса является строгое соблюдение мольного соотношения HF :  $W(VI) \approx 100-150$ .

Одновременное АЭС-ИСП-определение содержания мышьяка и сурьмы в ферровольфраме. Для экспериментальной проверки эффективности найденных условий ингибирования процесса соосаждения мышьяка и сурьмы при отделении от железа и вольфрама использовали государственные стандартные образцы состава ферровольфрама.

Пробоподготовка стандартных образцов к АЭС-ИСП-определению содержания мышьяка и сурьмы включала две стадии: 1 – растворение; 2 – осаждение и отделение основы материала (как описано в "Экспериментальной части"). Образцы растворяли в смеси концентрированных кислот – фтороводородной (HF : W(VI) ≈ 100–150) и "царской водки". Аналиты отделяли от железа и вольфрама при следующих условиях: мольный избыток Pb<sup>2+</sup> : W<sup>6+</sup> > 1.1; 40 мл CH<sub>3</sub>COOH (95 мас. %); 2 М раствор NaOH; pH 4.3; 75°С; время выдерживания осадка при указанной температуре 10 мин.

Результаты одновременного АЭС-ИСП-определения содержания мышьяка и сурьмы в стандартных образцах приведены в табл. 5. Погрешность анализа рассчитывали как  $t_{(0.95; 4)}s/\sqrt{n}$ , где t -коэффициент Стьюдента (для двустороннего распределения), равный 2.78 при количестве измерений n = 5 и доверительной вероятности P = 0.95, s -стандартное отклонение.

| Стандартный                        | А               | S             | Sb            |                 |  |
|------------------------------------|-----------------|---------------|---------------|-----------------|--|
| образец                            | аттестовано     | найдено       | аттестовано   | найдено         |  |
| ГСО 765-92П (Ф18б) Ферровольфрам   | $2.8\pm0.1$     | $2.5\pm0.3$   | $0.69\pm0.06$ | $0.59\pm0.07$   |  |
| ГСО 10223-2013 (Ф48) Ферровольфрам | $3.7 \pm 0.1$   | $3.5\pm0.2$   | $1.4 \pm 0.1$ | $1.3 \pm 0.1$   |  |
| ГСО 2853-84 (Ф33а) Ферровольфрам   | $0.20 \pm 0.02$ | $0.18\pm0.01$ | $0.06\pm0.02$ | $0.06 \pm 0.01$ |  |

**Таблица 5.** Результаты ( $c \times 10^2$ , мас. %) определения содержания мышьяка и сурьмы в стандартных образцах методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (n = 5, P = 0.95)

Из табл. 5 видно, что аттестованные и найденные значения массовой доли мышьяка и сурьмы практически во всех случаях сходятся в пределах случайной погрешности. Разница между аттестованными и найденными значениями не превышает нормативов, приведенных ГОСТах [5, 6]. Полученные результаты доказывают эффективность предложенной методики определения мышьяка и сурьмы при отделении от макроколичеств железа и вольфрама.

Благодарим с. н. с к. х. н. Эстемирову С.Х. за проведенный рентгенофазовый анализ образцов и ценные замечания, сделанные при обсуждении работы. Работа выполнена с использованием оборудования центра коллективного пользования "Урал-М" в рамках Государственного задания ИМЕТ УрО РАН при финансовой поддержке согласно постановлению № 211 Правительства Российской Федерации, контракт № 02.A03.21.0006.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Гасик Л.Н., Игнатьев В.С., Гасик М.И. Структура и качество промышленных ферросплавов и лигатур. Киев: Техніка, 1975. 152 с.
- Гудремон Э.А. Специальные стали. Т. 2. М.: Металлургия, 1966. 540 с. (*Houdremont E.* Handbuch der Sonderstahlkunde. Bd. 2. Berlin: Springer-Verlag, 1956. 664 S.)
- ГОСТ 5632-2014. Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки. М.: Стандартинформ, 2015. 49 с.
- ГОСТ 17293-93. Ферровольфрам. Технические требования и условия поставки. М.: Издательство стандартов, 1995. 12 с.
- ГОСТ 14638.15-84. Ферровольфрам. Метод определения мышьяка. М.: Издательство стандартов, 1981. С. 47.
- ГОСТ 14638.12-84. Ферровольфрам. Метод определения сурьмы. М.: Издательство стандартов, 1981. С. 25.
- 7. Пупышев А.А., Данилова Д.А. Использование атомно-эмиссионной спектрометрии с индуктивно-

связанной плазмой для анализа материалов и продуктов черной металлургии // Аналитика и контроль. 2007. Т. 11. № 2–3. С. 131.

- Майорова А.В., Печищева Н.В., Шуняев К.Ю., Бунаков А.В. Разработка методики ИСП-АЭС определения вольфрама в ферровольфраме с использованием термодинамического моделирования // Аналитика и контроль. 2014. Т. 18. № 2. С. 136.
- 9. *Schierle C., Thorne A.P.* Inductively coupled plasma fourier transform spectrometry: A study of element spectra and a table of inductively coupled plasma lines // Spectrochim. Acta B. 1995. V. 50. P. 27.
- Sansonetti J.E., Martin W.C. Handbook of basic atomic spectroscopic data // J. Phys. Chem. Ref. Data. 2005. V. 34. P. 1559.
- 11. Yang X.H., Wei J.F., Liu H.T., Tang B.Y., Zhang Z.X. Direct determination of trace elements in tungsten products using an inductively coupled plasma optical emission charge coupled device detector spectrometer // Spectrochim. Acta B. 1998. V. 53. № 10. P. 1405.
- 12. *Ivaldi J.C., Tracy D.H., Barnard T.W., Slavin W.* Multivariate methods for interpretation of emission spectra from the inductively coupled plasma // Spectrochim. Acta B. 1992. V. 47. № 12. P. 1361.
- 13. Imakita T., Inui M., Hamada K., Taniguchi M., Nakahara T. Determination of trace amounts of arsenic, bismuth and antimony in iron and steel by continuous hydride generation and ICP-AES or ICP-MS // Tetsuto-Hagane. 1999. V. 85. № 10. P. 724.
- Ozaki E.A., Oliveira E. Simultaneous determination of arsenic, bismuth and antimony in steels and nickel alloys by inductively coupled plasma atomic emission spectrometry with hydride generation // J. Anal. At. Spectrom. 1993. V. 8. P. 367.
- 15. Xu Yu., Zhou J., Wang G., Zhou J., Tao G. Determination of trace amounts of lead, arsenic, nickel and cobalt in high-purity iron oxide pigment by inductively coupled plasma atomic emission spectrometry after iron matrix removal with extractant-contained resin // Anal. Chim. Acta. 2007. V. 584. P. 204.
- 16. *Kumar A.R., Riyazuddin P.* Chemical interferences in hydride-generation atomic spectrometry // Trends Anal. Chem. 2010. V. 29. P. 166.
- 17. *Kujirai O., Kohri M., Yamada K., Okochi H.* Simultaneous determination of arsenic, bismuth, antimony, selenium and tellurium in molybdenum by continuous hy-

dride generation and inductively coupled plasmaatomic emission spectrometry // Anal. Sci. 1990. V. 6.  $\mathbb{N}_{2}$  3. P. 379.

- Майорова А.В., Мельчаков С.Ю., Окунева Т.Г., Воронцова К.А., Машковцев М.А. Изучение процесса соосаждения мышьяка и сурьмы при отделении макроколичеств железа, хрома в виде Na<sub>3</sub>FeF<sub>6</sub>, Na<sub>3</sub>CrF<sub>6</sub> // Аналитика и контроль. 2017. Т. 21. № 3. С. 281.
- Maiorova A.V., Pechishcheva N.V., Shunyaev K.Yu. Separation of iron and chromium in the form of insoluble fluorides for ICP-AES determination of trace arsenic in nickel heat-resistant alloys / The Optimization of Composition, Structure and Properties of Metals, Oxides, Composites, Nano- and Amorphous Materials.

15th Israeli-Russian Bi-National Workshop. Yekaterinburg, 2016. P. 92.

- 20. Бусев А.И., Иванов В.М., Соколова Т.А. Аналитическая химия вольфрама. М.: Наука, 1976. 240 с.
- Анализ минерального сырья / Под ред. Книпович Ю.Н., Морачевского Ю.В. Л.: ГХИ, 1959. 1055 с.
- 22. *Hobson J.P.* Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure // J. Phys. Chem. 1969. V. 75. № 8. P. 2720.
- 23. *Helfferich F.G.* Ion exchange. N.Y.: Dover publications inc., 1962. 624 p.
- 24. *Алексеев В.Н.* Количественный анализ. М.: Химия, 1972. 504 с.
- 25. *de Boer J.H.* The structure and properties of porous materials. London: Butterworths, 1958. 68 p.