УДК 543.257.2

ЛИГАНДНАЯ ФУНКЦИЯ ИОНСЕЛЕКТИВНЫХ ЭЛЕКТРОДОВ, ОБРАТИМЫХ К ТИОЦИАНАТНЫМ КОМПЛЕКСАМ ЦИНКА И КОБАЛЬТА: ПРИЧИНЫ ВОЗНИКНОВЕНИЯ, МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ И АНАЛИТИЧЕСКОЕ ПРИМЕНЕНИЕ

© 2019 г. Ю. В. Матвейчук^{1, *}, Е. М. Рахманько¹

¹Белорусский государственный университет, химический факультет 220030 Беларусь, Минск, ул. Ленинградская, 14 *E-mail: Yu_Matveychuk@mail.ru Поступила в редакцию 07.11.2017 г. После доработки 15.12.2017 г. Принята к публикации 02.11.2018 г.

Проявление лигандной функции $Zn (NCS)_4^{2^-}$ - и $Co (NCS)_4^{2^-}$ - селективных электродов на основе высших четвертичных аммониевых солей объяснено обменным вытеснением SCN^- -ионами тиоцианатов цинка и кобальта из мембраны в приэлектродный слой раствора. Ее действие ограничено диссоциацией четвертичной аммониевой соли в форме ассоциата с ионами $Zn (NCS)_4^{2^-}$ или $Co (NCS)_4^{2^-}$. Изучено влияние фоновой концентрации $CoCl_2$ или $ZnCl_2$ на селективность $Zn (NCS)_4^{2^-}$ - и $Co (NCS)_4^{2^-}$ - селективных электродов на основе высших четвертичных аммониевых солей к SCN^- -ионам. Введение в раствор $CoCl_2$ или $ZnCl_2$ фиксирует ионы кобальта или цинка, вышедшие из мембраны, в виде тиоцианатных комплексов. Высокая селективность $Zn (NCS)_4^{2^-}$ - и $Co (NCS)_4^{2^-}$ - селективных электродов к ионам SCN^- обусловлена более высокой экстракционной способностью комплексов кобальта и цинка с ионами SCN^- по сравнению с ацидокомплексами с конкурирующими анионами. Показана возможность применения $Zn (NCS)_4^{2^-}$ - и $Co (NCS)_4^{2^-}$ - селективных электродов в технологических растворах производства полиакрилонитрильных волокон.

Ключевые слова: лигандная функция, прямая потенциометрия, ионоселективные электроды. **DOI:** 10.1134/S0044450219050062

Ионселективные электроды (ИСЭ), обратимые к анионным комплексам металлов $Co(NCS)_4^{2-}$, $Zn(NCS)_4^{2-}$, $Ag(CN)_2^{-}$, $HgBr_3^{-}$, BiI_4^{-} , $PdBr_3^{-}$, CdI_4^{2-} и др., способны проявлять лигандные функции в растворах, не содержащих ионов соответствующего металла или содержащих их в фиксированной концентрации. Благодаря проявлению фактора комплексообразования, селективность этих электродов выше, чем селективность электродов на основе четвертичных аммониевых солей (ЧАС), находящихся в мембране в форме лиганда [1–5].

Проявление лигандной функции электродами, обратимыми к анионным комплексам металлов, открывает дополнительные возможности их применения. Основными источниками ионов SCN⁻ в окружающей среде являются производства полиакрилонитрильных волокон, тиомочевины, инсектицидов, фунгицидов и др. Тиоцианат-ионы, хотя и не столь токсичны по сравнению с цианидами, губительно влияют на обитателей водной среды. Тиоцианат-ионы входят в состав человеческой мочи, сыворотки крови, слюны.

В настоящее время разработано достаточно большое количество тиоцианат-селективных электродов на основе комплексных соединений Ni(II), Rh(III), Zn(II), Co(II) с фталоцианином, Cu(II) с 1.8-диметил-1.3.6.8.10.13-азациклотетрадеканом, Fe(III) с (2.2'.2"-салицилидин-имино)триэтиламином и др. [6–8]. Эти электроды неселективны к ионам SCN⁻ в присутствии I⁻, ClO₄⁻, Br⁻. Предел обнаружения тиоцианат-ионов составляет 3.0×10^{-6} – 7.9×10^{-7} М. Электродные функции имеют близкий к нернстовскому на-

клон 56.3—59.0 мВ/рс_{SCN⁻} [6—8]. Электрод на основе комплекса марганца с N,N'-бис(4-фенилазосалицилиден)-*о*-фенилендиамином имеет невысокую селективность в присутствии перхлорат-ионов $K_{\text{SCN}^-,\text{CIO}_4}^{\text{Pot}} = -0.65$ [9]. В работе [10] в качестве мешающих не рассматривали высокогидрофобные перхлорат-ионы.

Перхлорат-ион занимает первое место в ряду селективности Гофмейстера: $ClO_4^- > SCN^- > I^- > > NO_3^- > Br^- > NO_2^- > Cl^- > SO_4^{2-}$ [11, 12], поэтому определение на фоне ClO_4^- других ионов – непростая задача.

Ранее на кафедре аналитической химии Белорусского госуниверситета (Минск) разработан $Zn (NCS)_4^{2-}$ -СЭ на основе соли трибутилоктадециламмония [1, 13]. Электродная функция имеет наклон 68 мВ/pc_{SCN}, что несколько выше теоретического значения, предел обнаружения тиоцианат-ионов 1 × 10⁻⁵ М. Коэффициенты потенциометрической селективности по отношению к ионам SCN⁻ в присутствии мешающих анионов составляют: ClO₄⁻ 0.18; I⁻ 0.003; Br⁻ < 0.001; Cl⁻ < 0.001 [1, 13]. Экспериментальные данные по тиоциа-

натной функции $Co(NCS)_4^{2-}$ -СЭ отсутствуют.

Настоящая работа посвящена изучению тиоцианатной функции $Zn(NCS)_4^{2-}$ и $Co(NCS)_4^{2-}$ -СЭ на основе нового высоколипофильного ионообменника бромида 3,4,5-трисдодецилоксибензилтриметиламмония (**TM**). Основное внимание уделено изучению наклона и селективности лигандной функции, главным образом на фоне постоянной концентрации CoCl₂ или ZnCl₂, и влиянию на предел обнаружения тиоцианат-ионов природы ЧАС и пластификатора с целью оптимизации состава мембраны.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты. KCl x. ч., $ZnCl_2 \cdot H_2O$ ч. д. а., NaNO₃ x. ч., KNCS x. ч., CoCl₂ \cdot 6H₂O ч. д. а., NaOH x. ч., HClO₄ x. ч.

Для изготовления мембран ИСЭ применяли поливинилхлорид (**ПВХ**) марки Fluka, тетрагидрофуран (**ТГФ**) ч. д. а., иодид 3,4,5-трисдодецилоксибензилтриоктадециламмония (**ТОД**), иодид тринонилоктадециламмония (**ТНОДА**) и ТМ. В качестве пластификатора мембран использовали 1-бромнафталин (**1-БН**) ч. д. а., дибутилфталат (**ДБФ**) марки Sigma-Aldrich. Измерения проводили на иономере И-160. Электрод сравнения хлоридсеребряный ЭВЛ-1МЗ.

Методика изготовления ионселективного электрода изложена в работе [14]: в промытом 0.1 М

раствором HCl бюксе при постоянном перемешивании растворяли ЧАС (5 мас. %) в ТГФ, затем добавляли ПВХ (33 мас. %). Содержимое бюкса перемешивали магнитной мешалкой до полного растворения ПВХ, а затем приливали по каплям пластификатор (62 мас. %) и снова перемешивали около 2 ч для гомогенизации раствора. Раствор выливали на гладкую стеклянную пластинку, на которую для предотвращения растекания ставили тефлоновые круглые цилиндры. Пластинку, прикрытую фильтровальной бумагой, оставляли в вытяжном шкафу на сутки для полного испарения ТГФ. Затем из эластичной пленки вырезали диски требуемого размера и наклеивали на торцы ПВХ-трубок клеем (раствор ПВХ в ТГФ). Толщина мембран составляла примерно 0.5 мм. Внутрь электродов заливали 1×10^{-3} M раствор ZnCl₂ или CoCl₂ на фоне соответственно 0.1 М раствора KNCS или 1.0 М раствора KNCS.

Ионообменник (ЧАС) переводили в $Zn (NCS)_4^{2-}$ -форму вымачиванием в 0.1 M растворе $ZnCl_2$ на фоне 1.0 M KNCS в течение 2 сут, а затем в течение суток в 1×10^{-3} M растворе $ZnCl_2$ на фоне 0.1 M KNCS. Ионообменник переводили в $Co (NCS)_4^{2-}$ -форму вымачиванием в 0.1 M растворе $CoCl_2$ на фоне 3.0 M KNCS в течение 2 сут и затем в 1×10^{-3} M растворе $CoCl_2$ на фоне 1.0 M KNCS в Tevenue 2 сут и затем в 1×10^{-3} M растворе $CoCl_2$ на фоне 1.0 M KNCS в Tevenue 2 сут и Tevenue 3 (Tevenue 3) M Tevenue 3.

Наклон электродной функции $Zn(NCS)_4^{2-}$ -СЭ составляет 28.5–29.5 мВ/(–lg $c_{Zn^{2+}}$), Co $(NCS)_4^{2-}$ -СЭ – 26–30 мВ/(–lg $c_{Co^{2+}}$), из чего следует, что электрохимически активными являются двухзарядные $Zn(NCS)_4^{2-}$ -или Co $(NCS)_4^{2-}$ -ионы. Время отклика электродов составляло 20–30 с, рабочий диапазон рН электродов 2–9.

Фоновые растворы $ZnCl_2$ с концентрациями 5.0, 1.0, 0.1, 0.01, 0.001 М готовили, растворяя точную навеску металла (±0.0005 г) в минимальном объеме HCl. Фоновые растворы $ZnCl_2$ с концентрацией 1 × 10⁻⁴, 1 × 10⁻⁵ М готовили разбавлением более концентрированных и хранили не более 3 сут. Исходный раствор, содержащий 1.0 М SCN⁻ на фоне различных концентраций $ZnCl_2$, последовательно разбавляли соответствующим фоновым раствором и получали серию растворов с концентрацией SCN⁻ от 1.0 до 1 × 10⁻⁷ М.

Исходные растворы, содержащие 1.0 М ClO_4^- на фоне различных концентраций $ZnCl_2$ и KNCS, последовательно разбавляли соответствующими фоновыми растворами и получали растворы с

концентрациями ClO_4^- от 1.0 до 1 × 10⁻⁷ М.

Готовили фоновые 0.1, 0.01, 1.0, 3.5 М растворы CoCl₂. В приготовленные растворы CoCl₂ вноси-

Рис. 1. Лигандная функция $Zn(NCS)_4^{2-}$ -СЭ на основе ТМ: *1* – в отсутствие $ZnCl_2$ в фоновом растворе, *2* – 1.0 M $ZnCl_2$, *3* – 5.0 M $ZnCl_2$.

ли навески KNCS, соответствующие концентрациям 0.5, 0.1, 0.01, 0.001, 1×10^{-4} , 1×10^{-5} М. Фоновые растворы CoCl₂ с концентрацией 1×10^{-4} , 1×10^{-5} М готовили разбавлением более концентрированных и хранили не более 3 сут. Исходные растворы, содержащие 1.0 М ClO₄ на фоне различных концентраций CoCl₂ и KNCS, последовательно разбавляли фоновыми растворами и получали серию растворов с концентрацией ClO₄ от 1.0 до 1×10^{-7} М.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Причины возникновения и математическое описание тиоцианатной (лигандной) функции Zn $(NCS)_4^{2-}$ -СЭ и Co $(NCS)_4^{2-}$ -СЭ. Наклон лигандной функции. Механизм проявления лигандной (тиоцианатной) функции (рис. 1 и 2) электродами можно представить следующим образом: при концентрации электродноактивного вещества (ЭАВ) в мембране выше 0.001 М реакция [1, 3, 17]:

а также ступенчатая диссоциация комплексов Zn(NCS)₄²⁻ или Co(NCS)₄²⁻ мало влияют на концентрацию тиоцианатных комплексов в мембране, но очень сильно воздействуют на их концентрацию в приэлектродном слое, что является основной причиной изменения потенциала с изменением концентрации лигандов. Увеличение концентрации тиоцианат-ионов приводит к противополож-

Рис. 2. Лигандная функция $Co(NCS)_4^{2-}$ -СЭ на основе ТМ: *1* – в отсутствие CoCl₂ в фоновом растворе, *2* – 1.0 M CoCl₂, *3* – 3.5 M CoCl₂.

ному эффекту: подавлению диссоциации комплексов $Co(NCS)_4^{2-}$ или $Zn(NCS)_4^{2-}$, вымыванию их из мембраны и тем самым к снижению потенциала, т.е. к проявлению анионной функции электродов [3, 13].

Тиоцианатная функция $Zn(NCS)_4^{2-}$ -СЭ, так же как и Co(NCS)_4^{2-}-СЭ, описывается уравнени-ем [3, 18]:

$$E = E^{0} - \frac{\Theta}{6} \lg \frac{\frac{1}{4} c K_{Me(NCS)_{4}^{2}}^{2SCN^{-}} f_{Me(NCS)_{4}^{2}}^{3} [SCN^{-}]^{2}}{\alpha^{2}}, \quad (2)$$

где E^0 – стандартный потенциал электрода, мВ; $\Theta = \frac{2.3RT}{F}$; c – концентрация ЧАС в Co(NCS)₄^{2–}или Zn(NCS)₄^{2–}-формах, M; $K_{Me(NCS)_4}^{2SCN^-}$ – концентрационная константа обмена; $f_{Me(NCS)_4}^{2-}$ – коэффициент активности; [SCN[–]] – равновесная концентрация тиоцианат-ионов в растворе, M; α – коэффициент побочной реакции.

Линейный диапазон для $Zn(NCS)_4^{2-}$ -СЭ (рис. 1) в присутствии в растворе ионов цинка составляет от 6 × 10⁻² до 5 × 10⁻⁵ M SCN⁻, в отсутствие – от 0.4 до 1.3 × 10⁻⁴ M SCN⁻. Линейный диапазон для Co(NCS)_4^{2-}-СЭ (рис. 2) в присутствии в растворе ионов кобальта составляет от 0.1 до 3 × 10⁻⁵ M SCN⁻, в отсутствие – от 1 до 5 × 10⁻⁵ M SCN⁻.

Наклон тиоцианатной функции, рассчитанный по уравнению (2), составляет 96—97 мВ/($-\lg c_{SCN^{-}}$). Уравнение (2) выведено, исходя из следующих допущений: близость объемов фаз мембраны и

МАТВЕЙЧУК, РАХМАНЬКО

c_{Zn}^{2+}, M	Наклон, м $B/(-\lg c_{SCN^-})$, в диапазоне $c(SCN^-)$, М					ПО* М
	1.0-0.1	0.1-0.01	0.01-0.001	$0.001 - 1 \times 10^{-4}$	$1 \times 10^{-4} - 1 \times 10^{-5}$	110 , 141
0	67 ± 2	94 ± 1	94 ± 2	94 ± 2	76 ± 2	6.2×10^{-6}
1×10^{-5}	64 ± 1	91 ± 3	90 ± 2	92 ± 2	74 ± 1	6.5×10^{-6}
1×10^{-4}	54 ± 2	91 ± 2	92 ± 2	74 ± 1	76 ± 2	6.1×10^{-6}
0.001	32 ± 2	93 ± 2	93 ± 2	81 ± 2	79 ± 2	5.3×10^{-6}
0.01	31 ± 2	93 ± 3	92 ± 3	88 ± 2	83 ± 1	4.6×10^{-6}
0.1	28 ± 2	95 ± 2	96 ± 2	97 ± 2	87 ± 1	4.1×10^{-6}
1.0	30 ± 1	98 ± 2	117 ± 3	121 ± 3	94 ± 2	3.4×10^{-6}
5.0	35 ± 3	97 ± 2	125 ± 3	130 ± 2	100 ± 2	2.8×10^{-6}

Таблица 1. Наклоны тиоцианатной функции и пределы обнаружения SCN^{-} -ионов для $Zn(NCS)_{4}^{2^{-}}$ -CЭ (n=7, P=0.95)

*Предел обнаружения.

Таблица 2. Наклоны лигандной функции и пределы обнаружения SCN⁻-ионов для Co(NCS)₄²⁻-C \ni (*n* = 7, *P* = 0.95)

$c_{\rm Co}^{2+},{\rm M}$	Наклон, мB/(-1g c _{SCN} -), в диапазоне c(SCN-), М					
	1.0-0.1	0.1-0.01	0.01-0.001	$0.001 - 1 \times 10^{-4}$	$1 \times 10^{-4} - 1 \times 10^{-5}$	
0	78 ± 1	90 ± 1	88 ± 2	91 ± 2	72 ± 2	7.2×10^{-6}
0.01	49 ± 2	90 ± 3	91 ± 2	92 ± 2	74 ± 1	5.8×10^{-6}
0.1	55 ± 2	97 ± 2	97 ± 2	99 ± 2	78 ± 1	4.9×10^{-6}
1.0	62 ± 2	103 ± 3	117 ± 2	111 ± 3	80 ± 2	4.0×10^{-6}
3.5	67 ± 3	95 ± 2	121 ± 3	126 ± 2	84 ± 2	3.2×10^{-6}

раствора, в которых устанавливается равновесие; доля ЭАВ в лигандной форме незначительна до контакта электрода с раствором [3]. Экспериментально полученные наклоны лигандной функции для $Zn(NCS)_4^{2-}$ - и Co(NCS)_4^{2-}-СЭ представлены в табл. 1 и 2. Экспериментальные наклоны лигандной функции и пределы обнаружения тиоцианатионов для $Zn(NCS)_4^{2-}$ -СЭ представлены в табл. 1. Наклон лигандной функции в отсутствие в растворе ионов цинка в области концентраций SCN⁻-ионов $0.1-1 \times 10^{-4}$ М близок к рассчитанному по уравнению (2). При высоких концентрациях SCN-ионов наклон снижается до $65-69 \text{ мB}/(-\lg c_{SCN^{-}})$. Наклон лигандной функции Co(NCS)₄²⁻-СЭ в диапазоне концентраций $0.1-1 \times 10^{-4} \,\mathrm{M}\,\mathrm{SCN}^-$ и в отсутствие в растворе ионов кобальта составляет 87—90 мВ/($-\lg c_{SCN^{-}}$), а при концентрации SCN⁻ионов от 0.1 до 1.0 М - 77-79 мВ/(-lg c_{SCN}) (табл. 2).

При создании в растворе фоновой концентрации CoCl₂ или ZnCl₂ уменьшается потенциал $Co(NCS)_4^{2-}$ - и $Zn(NCS)_4^{2-}$ -СЭ (рис. 1, 2), что приводит не только к уменьшению предела обнаружения, но и к улучшению селективности к SCN-ионам. Создание высокой фоновой концентрации CoCl₂ или ZnCl₂ приводит к уменьшению предела обнаружения тиоцианат-ионов.

Экспериментально найденные наклоны лигандной функции в интервале $0.1-1 \times 10^{-4}$ M SCN⁻ близки к теоретически рассчитанным по уравнению (2). При высоких концентрациях SCN⁻ наклон снижается, а при низких концентрациях (до 0.01 M) большинство вышедших из мембраны комплексов диссоциируют практически полностью. С повышением концентрации SCN⁻ увеличивается выход комплексов Co(NCS)₄²⁻ или Zn(NCS)₄²⁻ из мембраны и снижается потенциал, т.е. проявляется анионная функция.

Математическое описание лигандной функции на фоне постоянной концентрации катионов металла в растворе. Наклон лигандной функции и пределы обнаружения. Представляет интерес лигандная функция на фоне постоянной концентрации CoCl₂ или ZnCl₂ (рис. 1 и 2), так как согласно данным [1]

даемой при определении цинка или кобальта в виде ионов $Zn(NCS)_4^{2-}$ или $Co(NCS)_4^{2-}$ соответственно, когда ЧАС, содержащие длинноцепочечные гидрофобные заместители, способствуют увеличению сродства фазы ионообменника к гидрофобным и большим по размеру комплексным ионам. Мембраны, пластифицированные ДБФ, способны экстрагировать в 2.5–3 раза больше ионов SCN- по сравнению с мембранами, пластифицированными 1-БН, поэтому целесообразно для определения SCN⁻ применять электрод

мощью $Zn(NCS)_4^{2-}$ - или $Co(NCS)_4^{2-}$ -СЭ зависит не только от концентрации $ZnCl_2$ или $CoCl_2$ в фоновом растворе, но и от состава мембраны: ЧАС и

(мешающими) анионами.

фобных ионов ClO₄, нарушая тем самым ряд селективности Гофмейстера. На рис. 3 приведены зависимости потенциала тиоцианатного электрода на основе триметильной ЧАС от концентрации перхлорат-ионов. Видно, что на любом из изучен-

мешающее влияние ионов СІО₄. В справочной литературе [20-23] отсутствует информация о перхлоратных комплексах цинка и кобальта.

ных фонов тиоцианат-ионов заметно проявляется

Из табл. 4 видно, что для практических целей достаточно поддержание фоновой концентрации ZnCl₂ или CoCl₂ 0.1–1.0 М. Это согласуется с данными [1], где сообщается, что при фоновой концентрации ZnCl₂ 0.1 М возможно селективное определение тиоцианат-ионов на фоне не только гидрофобных перхлорат-ионов, но и пикрат-

ионов, а также $Au(CN)_2^-$ и $Ag(CN)_2^-$.

Прямое потенциометрическое определение тиоцианат-ионов в осадительной ванне производства волокна Нитрон I. На заводе "Полимир" (Республика Беларусь, Новополоцк) для контроля содер-

ысокими **Таблица 3.** Пределы обнаружения (М) тиоцианат-
ионов для
$$Zn(NCS)_4^{2-}$$
 и $Co(NCS)_4^{2-}$ -селективных
электродов ЧАС

Пластификатор	lite					
пластификатор	ТМ	ТМ ТНОДА				
Zn(NCS) ₄ ²⁻ -селективные электроды						
ДБФ	7.7×10^{-6}	1.0×10^{-5}	2.2×10^{-5}			
1-БН	6.2×10^{-6}	9.4×10^{-6}	1.0×10^{-5}			
$Co(NCS)_4^{2-}$ -селективные электроды						
ДДФ	7.2×10^{-6}	1.0×10^{-5}	1.0×10^{-5}			
1-БН	3.2×10^{-6}	8.8×10^{-6}	1.0×10^{-5}			

Селективность $Zn(NCS)_4^{2-}$ - и $Co(NCS)_4^{2-}$ -селективных электродов к тиоцианат-ионам в присут-

ствии перхлорат-ионов. Ранее сообщалось [3], что

из мембраны ионами SCN- вытесняются в водраствор комплексы $Zn(NCS)_4^{2-}$

 ${\rm Co(NCS)}_4^{2^-},$ которые ступенчато диссоциируют с образованием помимо ионов SCN- ионы Zn²⁺

или Co²⁺. Высокая селективность электродов к

ионам SCN⁻ (табл. 4) объясняется тем, что цинк

или кобальт образуют с тиоцианат-ионами зна-

чительно лучше экстрагирующиеся комплексы

(обладающие высоким анионообменным срод-

ством), чем ацидокомплексы с конкурирующими

CoCl₂ минимизирует мешающее влияние гидро-

Добавление в фоновый раствор ZnCl₂ или

ный

функция такого типа отличается более высокими стабильностью и селективностью к иона повышающимися с ростом концентраци

или ZnCl₂. Лигандная функция $Zn(NCS)_4^{2-}-C\Theta$ $(\Theta = 29 \text{ мB})$ в растворах SCN-ионов на фоне постоянной концентрации ZnCl₂ или CoCl₂ описывается следующими уравнениями [1]:

$$E_1 = E_1^0 + 4\Theta \lg[SCN^-], \qquad (3)$$

$$E_2 = E_2^0 + 3\Theta \lg[SCN^-], \qquad (4)$$

$$E_3 = E_3^0 + 2\Theta \lg[SCN^-], \qquad (5)$$

$$E_4 = E_4^0 + \Theta \lg[SCN^-], \tag{6}$$

$$E_5 = E_5^0 + \Theta \lg \left[M e_{aq}^{2+} \right] = \text{const.}$$
(7)

Наклон тиоцианатной функции, рассчитанный по уравнению (3), должен составлять 118 мВ/ $(-\lg c_{\mathrm{SCN}^{-}}).$

В табл. 1 и 2 приведены значения экспериментально полученных наклонов лигандной функции $Zn(NCS)_4^{2-}$ - и $Co(NCS)_4^{2-}$ -СЭ на фоне посто-янных концентраций $ZnCl_2$ или $CoCl_2$. Несмотря на то, что наклоны еще более высокие, чем в отсутствие ZnCl₂ или CoCl₂ в фоновом растворе, лигандная функция хорошо воспроизводится. Введение в раствор 5.0 и 1.0 М ZnCl₂ или 3.5 и 1.0 М CoCl₂ приводит к существенному уменьшению потенциала электрода и снижению предела обнаружения тиоцианат-ионов.

Предела обнаружения тиоцианат-ионов с по-

пластификатора (табл. 3). При замене электродов

на основе ЧАС с длинноцепочечными заместите-

лями (ТНОДА и ТОД) на стерически доступную триметильную ЧАС сродство ионов SCN- к фазе

ионообменника увеличивается, что приводит к

снижению предела обнаружения тиоцианат-

ионов. Такая тенденция противоположна наблю-

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 74 **№** 7 2019 или

Zn(NCS) ₄ ²⁻ -селективны	й электрод	Co(NCS) ₄ ²⁻ -селективный электрод		
фоновая концентрация ZnCl ₂ , M	$K_{\text{SCN}^-, \text{ClO}_4^-}^{\text{Pot}}$	фоновая концентрация CoCl ₂ , М	$K_{\mathrm{SCN}^{-}, \mathrm{ClO}_{4}^{-}}^{\mathrm{Pot}}$	
_	0.16	_	0.76	
0.01	4.9×10^{-3}	0.01	0.029	
0.1	4.2×10^{-4}	0.1	1.5×10^{-3}	
1.0	1.7×10^{-5}	1.0	2.6×10^{-4}	
5.0	4.3×10^{-6}	3.5	8.8×10^{-5}	

Таблица 4. Коэффициенты селективности K_{SCN^-, CIO_4}^{Pot}

<u>Примечание</u>. Для тиоцианатного электрода $K_{SCN^-,CIO_4^-}^{Pot} = 3.3.$

Таблица 5. Результаты ($\overline{c}_{not} \pm \Delta$, M) определения тиоцианат-ионов потенциометрическим методом^{*} в осадительной ванне производства волокна Нитрон I (n = 10, P = 0.95)

Найдено	<i>s</i> _{г пот} , %			
Zn(NCS) ²⁻ -CЭ				
1.125 ± 0.005	0.6			
1.250 ± 0.004 (фон 0.1 M ZnCl ₂)	0.5			
1.124 \pm 0.003 (фон 1.0 и 5.0 M ZnCl_2)	0.4			
$Co(NCS)_4^{2-}-C\Theta$				
1.123 ± 0.004 (фон 1.0 M CoCl ₂)	0.5			
1.125 ± 0.003 (фон 3.5 M CoCl ₂)	0.4			

* Ионселективный электрод на основе ТМ.

Примечание. Для сравнения иодометрическим титрованием найдено 1.13 \pm 0.01 М тиоцианат-ионов ($s_{r \text{ титр}} = 1.2\%$).

Рис. 3. Влияние ClO_4^- -ионов на потенциал тиоцианатного электрода на фоне различных концентраций KNCS, М: 1 - 1.0, 2 - 0.5, 3 - 0.1, 4 - 0.01.

жания ионов SCN⁻ в осадительной ванне используют заводскую методику 10-3М-1 "Выполнение измерений массовой доли роданида натрия в технологических растворах производства Нитрон I титриметрическим методом с азотнокислым серебром", где в качестве индикатора применяют 2,7-дихлорфлуоресцеин. Недостатком заводской методики является трудность визуального определения точки эквивалентности при использовании флуоресцентного индикатора. Кроме того, титриметрический метод в меньшей степени пригоден для анализа большого числа проб по сравнению потенциометрическим.

Исходный раствор осадительной ванны разбавляли в 200 раз в мерной колбе и в полученном растворе измеряли потенциал электродов на основе ТМ. По градуировочному графику, а также с учетом разбавления рассчитывали содержание ионов SCN⁻ в осадительной ванне (табл. 5). Для сравнения использовали иодометрическое определение ионов SCN⁻ [24] после предварительного разбавления анализируемого раствора в 2000 раз. Из табл. 5, видно, что при определении ионов SCN- методом прямой потенциометрии погрешность ниже, чем при использовании иодометрического титрования из-за очень большого наклона лигандной функции электродов. Предлагаемая методика прямого потенциометрического определения ионов SCN- проста и экспрессна и может успешно использоваться на производстве.

* * *

Приведено краткое математическое описание лигандной функции как в отсутствие ионов Zn^{2+} , Co^{2+} в растворе, так и на фоне их постоянных концентраций. Введение в фоновой раствор $CoCl_2$ или $ZnCl_2$ способствует увеличению наклона тиоцианатной функции с 90–95 до 120–125 мВ/($-\lg c_{SCN^{-}}$), уменьшению предела обнаружения тиоцианатионов. Фоновая концентрация ионов цинка или

кобальта сильно влияет на селективность $Zn(NCS)_4^{2-}$ - и $Co(NCS)_4^{2-}$ -СЭ к ионам SCN^{-} : ее увеличение приводит к значительному уменьшению коэффициентов селективности. Установлено, что тиоцианат-ионы следует определять с помощью электродов на основе TM, мембраны которых пластифицированы 1-бромнафталином.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рахманько Е.М. Физико-химические основы применения экстракции солями высших четвертичных аммониевых оснований в анализе. Дис. ... докт. хим. наук. Минск, 1994. 141 с.
- Старобинец Г.Л., Рахманько Е.М., Ломако В.Л. Ионоселективный электрод для определения цинка и роданид-ионов // Журн. аналит. химии. 1981. Т. 36. № 7. С. 1305.
- 3. Рахманько Е.М., Ломако В.Л., Поклонская Т.Е., Качанович И.В., Сердюкова И.Е. Роданидная функция цинкроданидного электрода // Журн. аналит. химии. 1995. Т. 50. № 2. С. 200.
- 4. *Рахманько Е.М., Ломако С.В., Ломако В.Л.* Хлоридная функция кадмийхлоридного электрода // Журн. аналит. химии. 2001. Т. 56. № 10. С. 1091.
- 5. *Рахманько Е.М., Ломако С.В., Ломако В.Л.* Пленочный хлорид-селективный электрод на основе трихлормеркуриата тринонилоктадециламмония // Журн. аналит. химии. 2000. Т. 55. № 4. С. 406.
- Aslan N., Kenar A., Atakol O., Kilic E. Iodide, thiocyanate- and perchlorate-selective liquid membrane electrodes based on tris(2,2',2"-salicylidene-imino)triethylamine-iron(III) // Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2009. V. 25. № 1–2. P. 237.
- Ganjali M.R., Norouzi P., Faridbod F., Pourjavid M.R. One decade of research on ion-selective electrodes in Iran (1996–2006) // J. Iran. Chem. Soc. 2007. V. 4. № 1. P. 1.
- Wen-Ju Xu, Ya-Qin Chai, Ruo Yuan, Su-Li Liu. A novel thiocyanate-selective electrode based on a zinc-phthalocyanine complex // Anal. Bioanal. Chem. 2006. V. 385. P. 926.
- Won-Sik Han, Tae-Kee Hong, Young-Hoon Lee. Thiocyanate ion selective solid contact electrode based on Mn complex of N,N'-bis(4-phenylazosalicylidene)-Ophenylene diamine ionophore // Am. J. Anal. Chem. 2011. V. 2. P. 731.

- 10. Benvidi A., Ghanbarzadeh M.T., Dehghan M., Mazloum-Ardakani M., Vafazadeh R. Thiocyanate ion selective electrode based on bis(N-3-methylphenyl salicylidenaminato)copper(II) ionophore // Chin. Chem. Lett. 2014. V. 25. № 12. P. 1639.
- 11. Xie W.J., Gao Y.Q. A simple theory for the hofmeister series // J. Phys. Chem. Lett. 2013. V. 4. P. 4247.
- 12. Egorov V.V., Rakhman'ko E.M., Rat'ko A.A. Anion-selective electrodes with liquid membranes / Encyclopedia of Sensors. 2006. V. 1. P. 211.
- Старобинец Г.Л., Рахманько Е.М., Ломако В.Л. Ионоселективный электрод для определения цинка и роданид-ионов // Журн. аналит. химии. 1981. Т. 36. № 7. С. 1305.
- 14. *Корыта И., Штулик К.* Ионоселективные электроды. М.: Мир, 1989. 268 с.
- 15. *Рахманько Е.М., Матвейчук Ю.В., Ясинецкий В.В.* Влияние фона роданида калия на селективность тетрароданоцинкат-селективного электрода // Весці НАН Беларусі. Сер. хім. навук. 2012. № 2. С. 47.
- 16. Матвейчук Ю.В., Рахманько Е.М., Ясинецкий В.В., Станишевский Л.С. Применение пленочного [Co(SCN)₄]²⁻-селективного электрода для определения ионов кобальта и роданида // Методы и объекты хим. анализа. 2012. Т. 7. № 4. С. 164.
- Егоров В.В., Рахманько Е.М., Гулевич А.Л., Ломако С.В., Ратько А.А. Комплексные соединения металлов как перспективные ионофоры для создания анион-селективных электродов // Коорд. химия. 2002. Т. 28. № 10. С. 754.
- Рахманько Е.М., Матвейчук Ю.В., Качанович И.В. Роданидные комплексы металлов в экстракции и ионометрии. Минск: БГУ, 2017. 171 с.
- Рахманько Е.М., Матвейчук Ю.В., Ясинецкий В.В. Влияние природы пластификатора на функционирование [Zn(NCS)₄]²⁻- и [Co(SCN)₄]²⁻-селективных электродов // Весці НАН Беларусі. Сер. хім. навук. 2012. № 3. С. 54.
- 20. *Рабинович В.А., Хавин З.Я.* Краткий химический справочник. СПб: Химия, 1994. 432 с.
- 21. Справочник химика в VI тт. Т. III. Л.: Химия, 1965. 1008 с.
- Краткий справочник по химии / Под общ. ред. Куриленко О.Д., Киев: Наукова думка, 1974. 991 с.
- 23. *Лурье Ю.Ю*. Справочник по аналитической химии. М.: Химия, 1989. 448 с.
- 24. *Уильямс У.Дж*. Определение анионов: справочник. М.: Химия, 1982. 624 с.