УДК 543.25:543.8

ВОЛЬТАМПЕРОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ФЛАВОНОИДОВ В ЛЕКАРСТВЕННОМ РАСТИТЕЛЬНОМ СЫРЬЕ НА ЭЛЕКТРОДАХ, МОДИФИЦИРОВАННЫХ НАНОЧАСТИЦАМИ ДИОКСИДА ЦЕРИЯ И ПОВЕРХНОСТНО-АКТИВНЫМИ ВЕЩЕСТВАМИ

© 2019 г. Г. К. Зиятдинова^{*a*, *}, С. П. Захарова^{*a*}, Э. Р. Зиганшина^{*a*}, Г. К. Будников^{*a*}

^аХимический институт им. А.М. Бутлерова, Казанский федеральный университет 420008 Россия, Казань, ул. Кремлевская, 18 *e-mail: Ziyatdinovag@mail.ru Поступила в редакцию 19.03.2018 г. После доработки 23.05.2018 г. Принята к публикации 08.02.2019 г.

Разработаны способы вольтамперометрического определения флавоноидов (рутина и кверцетина) на электродах, модифицированных наночастицами CeO₂ и поверхностно-активными веществами различной природы. Установлено, что наилучшие вольт-амперные характеристики аналитов регистрируются на стеклоуглеродном электроде, модифицированном наночастицами CeO₂, диспергированными в анионном додецилсульфате натрия. Показано, что электроокисление кверцетина и рутина контролируется адсорбцией и протекает с участием двух электронов и двух протонов. В условиях дифференциально-импульсной вольтамперометрии на фоне буферного раствора Бриттона–Робинсона с pH 2.0 диапазоны определяемых содержаний составляют 0.01–1.0 и 1.0–250 мкМ для кверцетина и 0.10–100 мкМ для рутина с пределами обнаружения (S/N = 3) 2.9 и 28 нМ соответственно. Предложенные подходы апробированы при анализе водных и спиртовых извлечений из лекарственного растительного сырья (зверобоя травы, ноготков цветков и толокнянки листьев). Найдены условия экстракции флавоноидов из сырья этанолом. Результаты вольтамперометрического определения кверцетина и рутина в растительном сырье коррелируют с общим содержанием флавоноидов по данным спектрофотометрии (r = 0.929 при $r_{\text{крит}} = 0.521$ для n = 11 в случае кверцетина и r = 0.951 при $r_{\text{крит}} = 0.729$ для n = 6 в случае рутина).

Ключевые слова: вольтамперометрия, химически модифицированные электроды, наночастицы оксидов металлов, поверхностно-активные вещества, флавоноиды, лекарственное растительное сырье. **DOI:** 10.1134/S0044450219080152

Флавоноиды являются наиболее представительной группой природных фенольных антиоксидантов, предотвращающих развитие окислительного стресса и нивелирующих его последствия в биологических системах [1]. Одними из распространенных представителей наиболее флавоноидов являются кверцетин (3,3',4',5,7пентагидроксифлавон) и его гликозиды, в частности, рутин (кверцетин-3-О-рутинозид). Они представляют собой вторичные метаболиты, синтезируемые высшими растениями, и содержатся во фруктах, овощах, семенах и лекарственном растительном сырье [1, 2]. Как и другие флавоноилы. кверцетин и его гликозилы обладают фармакологической активностью: противоокислительной, противоопухолевой, антибактериальной и противовоспалительной [1, 3, 4]. Кверцетин и рутин широко используются в фармации в качестве действующего вещества лекарственных средств для профилактики и лечения различных заболеваний, а также в составе биологически-активных добавок и в фитотерапии (как активные компоненты лекарственного растительного сырья). Содержание кверцетина и рутина в лекарственных объектах необходимо контролировать, что требует разработки чувствительных и селективных способов их определения.

Основываясь на электрохимической активности кверцетина и рутина [1], для решения этой задачи используют вольтамперометрию с химически модифицированными электродами, что обеспечивает высокие аналитические и операционные характеристики определения аналитов. Среди модификаторов можно выделить широкий круг углеродных наноматериалов [5, 6], наночастицы металлов, их оксидов и других соединений [7, 8], полимерные покрытия различных типов [9–12], ионные жидкости [13], а также их комбинации,

ЗИЯТДИНОВА и др.

Электрод	Метод	ПО, мкМ	Диапазон определяемых содержаний, мкМ	Литера- тура
K	верцетин			
МУНТ в 1% ДДС/СУЭ	ЦВА	1.0	2.0-220	[5]
Графен/СУЭ	АдАДИВ	0.0039	0.006-10, 10-100	[6]
Аи НЧ/цистамин/Аи	ЦВА	0.001	10-100	[7]
Со ₃ О ₄ НЧ/СУЭ	BA	0.10	0.5-330	[8]
Поли(5-амино-2-меркапто-1,3,4-тиадиазол)/ ГЭ стержневой	див	2.2	0.33-16.5	[9]
1-метил-3-бутилимидазолий бромид-NiO-УНТ-УПЭ	KBB	0.03	0.08-400	[14]
Меркапто-β-циклодекстрин/Аи НЧ/МУНТ/СУЭ	див	0.0069	0.005-7.0	[15]
β-Циклодекстрин-УПЭ	ДИВ	0.3	6.0-20	[16]
ПМО-оксид графена/СУЭ	ДИВ	0.048	0.6-15	[17]
Рt-полидопамин@SiO ₂ /СУЭ	KBB	0.016	0.05-0.383	[18]
Поли(галловая кислота)/МУНТ/СУЭ	див	0.054	0.075-25, 25-100	[19]
Рутин				
Полиглутаминовая кислота/СУЭ	KBB	0.34	0.7-10	[10]
Поливинилпирролидон/УПЭ	BA	0.15	0.39-13	[11]
Поли(<i>n</i> -аминобензосульфоновая кислота)/СУЭ	ДИВ	0.1	0.25-10	[12]
N-Бутилпиридиний гексафторфосфат/УПЭ	ЦВА	0.35	0.5-100	[13]
Аи НЧ/этилендиамин/МУНТ/СУЭ	АдАИДИВ	0.032	0.048-0.96	[20]
МУНТ в 1% ДДС/СУЭ ЦВА		0.71	1.4-28, 28-210	[5]

Таблица 1. Аналитические характеристики вольтамперометрического определения кверцетина и рутина на химически модифицированных электродах

Обозначения: ПО – предел обнаружения, МУНТ – многостенные углеродные нанотрубки, ЦВА – циклическая вольтамперометрия, АдАДИВ – адсорбционная анодная дифференицально-импульсная вольтамперометрия, НЧ – наночастицы, ВА – вольтамперометрия с линейной разверткой потенциала, ГЭ – графитовый электрод, ДИВ – дифференциально-импульсная вольтамперометрия, УНТ – углеродные нанотрубки, УПЭ – угольно-пастовый электрод, КВВ – квадратно-волновая вольтамперометрия, ПМО – полимер с молекулярными отпечатками, АдАИДИВ – адсорбционная анодная инверсионная ДИВ.

позволяющие создавать композитные и гибридные электроды [14-20] (табл. 1). Дальнейшее развитие этого направления состоит в использовании в качестве модификатора электродной поверхности наночастиц диоксида церия, диспергированных в поверхностно-активных веществах (ПАВ). При этом ПАВ как модификаторы электродной поверхности выполняют двойную функцию: обеспечивают стабильность суспензии наночастиц СеО₂ в водной среде (до 1 мес.) и оказывают влияние на вольт-амперные характеристики аналитов. Варьирование природы ПАВ позволяет управлять электрохимическими характеристиками электродов и селективностью их отклика на целевые аналиты за счет изменения электростатических и гидрофильно-липофильных свойств электродной поверхности [21]. Такой подход к модификации электрода успешно применен для определения эвгенола [22], капсаицина [23] и тимола [24].

Настоящая работа посвящена разработке чувствительных и селективных способов определения кверцетина и рутина на стеклоуглеродных электродах (СУЭ), модифицированных наночастицами CeO₂ и ПАВ, и их применению в анализе лекарственного растительного сырья.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты и растворы. Использовали 95% кверцетин (Sigma, Германия) и 97% рутина тригидрат (Alfa Aesar, Великобритания), стандартные

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 74 № 8 2019

1.0 мМ растворы которых готовили по точной навеске растворением в 5.0 мл этанола (ректификата). Стандартные 0.10 М растворы додецилсульфата натрия (ДДС) (Panreac, Испания), Brij® 35 (Sigma, Германия) и 0.50 мМ цетилпиридиния бромида (ЦПБ) (Aldrich, Германия) готовили растворением точных навесок в дистиллированной воде в мерных колбах емк. 10.0 мл. Более разбавленные растворы готовили разбавлением стандартных растворов. Остальные реактивы были марки х. ч.

Для модификации рабочего электрода использовали дисперсии наночастиц CeO₂ (Aldrich, Германия) в воде и растворах ПАВ различной природы с концентрацией 1.0 мг/мл, которые готовили ультразвуковой обработкой в течение 10 мин.

Вольтамперометрические измерения проводили на потенциостате/гальваностате µAutolab Type III (Есо Chemie B.V., Нидерланды) в трехэлектродной ячейке, состоящей из рабочего (СУЭ, СеО₂— $H_2O/СУЭ$ или СеО₂—ПАВ/СУЭ), вспомогательного (платинового) и насыщенного хлоридсеребряного электродов. Модифицированные электроды получали методом капельного испарения 5 мкл дисперсий наночастиц СеО₂. Рабочую поверхность СУЭ обновляли механически, полируя оксидом алюминия с размером частиц 0.05 мкм. Затем электрод ополаскивали ацетоном и дистиллированной водой. Платиновый электрод очищали в HNO₃ (1 : 1) в течение 3 мин и промывали дистиллированной водой.

Электрохимические измерения проводили в ячейке объемом 25.0 мл, в которую вносили 10.0 мл фонового электролита (буферного раствора Бриттона–Робинсона с pH 2.0–8.0) или фоновый электролит и аликвоту раствора кверцетина или рутина (объем раствора в ячейке составлял 10.0 мл) и регистрировали циклические вольтамперограммы в диапазоне от 0 до 1.0 В со скоростью изменения потенциала 100 мВ/с или дифференциально-импульсные вольтамперограммы от 0 до 0.9 В. Параметры импульса варьировали. Для более точного обсчета пиков использовали коррекцию базовой линии в программе GPES 4.9 (Есо Chemie B.V., Нидерланды).

Для определения pH фонового электролита использовали pH-метр Эксперт-001 (ООО "Эконикс-Эксперт", Россия).

Пробоподготовка лекарственного растительного сырья заключалась в получении настоев и отваров по стандартной методике [25], а также спиртовых извлечений и кислотных гидролизатов. Для приготовления настоев и отваров точную навеску лекарственного растительного сырья (10.000 ± 0.005 г) помещали в эмалированную посуду. Для приготовления отваров добавляли 200 мл дистиллированной воды комнатной температуры и кипятили на водяной бане в течение 30 мин. В случае насто-

ев лекарственное растительное сырье заливали 200 мл кипящей дистиллированной воды и настаивали в течение 15 мин. Затем извлечения охлаждали при комнатной температуре (для отваров в течение 10 мин), отфильтровывали и доводили водой до первоначального объема. Спиртовые извлечения получали из точной навески сырья $(1.0000 \pm 0.0005 \, \text{г})$, которую помещали в делительную воронку на 50 мл, и, варьируя объем экстрагента (этанола) и время экстракции, устанавливали рабочие условия извлечения аналитов. Экстракты отфильтровывали и использовали для дальнейших исследований. Для получения гидролизатов в круглодонную колбу помещали точную навеску (1.0000 ± 0.0005 г) сырья, заливали 20.0 мл (для толокнянки листьев и ноготков цветков) и 30.0 мл (для зверобоя травы) 1.1 М HCl в этаноле и кипятили на водяной бане в течение 10 (для толокнянки листьев), 15 (для зверобоя травы) и 20 мин (для ноготков цветков) с обратным холодильником. Затем полученные гидролизаты отфильтровывали и доводили спиртом до соответствующего объема [26].

Спектрофотометрическое определение обшего содержания флавоноидов проводили по стандартной методике [27]: в пробирку помещали 0.50 мл вытяжки лекарственного растительного сырья, 2.0 мл дистиллированной воды, 0.15 мл 5%-ного раствора NaNO₂ и выдерживали в течение 6 мин. Затем добавляли 0.15 мл 10%-ного раствора AlCl₃, через 6 мин добавляли 2.0 мл 4%-ного раствора NaOH и доводили объем дистиллированной водой до 5.0 мл. Через 15 мин измеряли оптическую плотность растворов при 510 нм, используя в качестве раствора сравнения дистиллированную воду. Общее содержание флавоноидов в растительном сырье выражали в пересчете на кверцетин (для толокнянки листьев, ноготков цветков и гидролизатов зверобоя травы) или рутин (для экстрактов, настоев и отваров зверобоя травы).

Статистическую обработку результатов проводили для 5 измерений при доверительной вероятности 0.95. Результаты представляли как $X \pm \Delta X$, где X – среднее значение и ΔX – доверительный интервал. Случайную погрешность определения оценивали по величине относительного стандартного отклонения (s_r). Корреляционный анализ проводился в программе OriginPro 8.0 (Origin-Lab, США).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Окисление кверцетина и рутина на ПАВ-модифицированных электродах. Кверцетин и рутин окисляются при 0.25 и 0.32 В соответственно как на СУЭ, так и на СУЭ, модифицированном наночастицами диоксида церия ($CeO_2-H_2O/CYЭ$) (рис. 1, кривые 2 и 3). На катодных ветвях цикли-

Рис. 1. Циклические вольтамперограммы 100 мкМ кверцетина (а) и рутина (б) на СУЭ (*2*) и СеО₂- H₂O/СУЭ (*3*) на фоне буферного раствора Бриттона- Робинсона с рН 6.0 (*1*). Скорость изменения потенциала 100 мВ/с.

ческих вольтамперограмм наблюдаются слабо выраженные ступени, высоты которых значительно меньше анодных, что позволяет говорить о необратимости электроокисления. При этом на модифицированном электроде наблюдается улучшение формы вольтамперограмм и увеличение токов окисления кверцетина и рутина в 2.1 и 2.3 раза соответственно по сравнению с СУЭ. Нанесение наночастиц CeO_2 приводит к увеличению эффективной площади поверхности электрода, а, следовательно, и токов окисления кверцетина и рутина.

Для дальнейшего улучшения вольт-амперных характеристик окисления флавоноидов изучили дисперсии наночастиц CeO₂ в ПАВ различной природы (ЦПБ, ДДС и Brij® 35). При этом ПАВ выступают в качестве сомодификаторов электродной поверхности. Наночастицы CeO₂ при рН 6.0 несут частичный положительный поверх-

ностный заряд [28], что обусловливает их электростатическое взаимодействие с отрицательно заряженными "головами" ДДС. Для катионного ЦПБ в этих условиях происходит электростатическое отталкивание, а в случае неионогенного Brij® 35 ключевую роль играют гидрофобные взаимодействия. Вольт-амперные характеристики кверцетина и рутина на электродах, модифицированных наночастицами СеО2 и ПАВ, представлены в табл. 2. Установлено, что на СеО₂-ШПБ/СУЭ происхолит заметное снижение токов окисления кверцетина и рутина по сравнению с СеО₂-Н₂О/СУЭ, что, вероятно, обусловлено частичным смыванием молификатора с поверхности электрода вследствие указанных выше причин. В случаях анионного ДДС и неионогенного Brij® 35 токи окисления аналитов увеличиваются при сохранении потенциалов окисления. Это можно объяснить гидрофобными взаимодействиями ароматических колец флавоноидов с гидрофобными хвостами молекул ПАВ, что приводит к концентрированию аналитов на поверхности электрода. Наилучшая форма вольтамперограмм и максимальные токи окисления флавоноидов получены на СеО₂–ДДС/СУЭ. Варьирование концентрации ДДС в диапазоне от 1.0 мкМ до 1.00 мМ показало, что параметры пика окисления кверцетина наилучшие для 10 мкМ ДДС (ток пика составляет 4.3 ± 0.1 мкА при потенциале 0.25 В). Дальнейшее увеличение концентрации ДДС приводит к уменьшению токов и анодному смещению потенциала окисления кверцетина, что, вероятно, связано с увеличением толщины покрытия ПАВ и его частичным вымыванием с электродной поверхности при помещении в раствор фонового электролита.

Для установления природы электрохимического процесса оценили влияние скорости изменения потенциала на токи окисления кверцетина и рутина в диапазоне от 0.01 до 1 В/с (рис. 2). Установлено, что электроокисление кверцетина и рутина контролируется адсорбцией аналитов, что подтверждается линейными зависимостями токов окисления от скорости сканирования потенциала и значениями тангенсов углов наклона линейных зависимостей $\ln I_n$ от $\ln v$ [29], равными 0.90 [уравнения (1) и (3) для кверцетина и (2) и (4) для рутина]:

$$I_{\pi} (MKA) =$$

$$= (0.51 \pm 0.04) + (37.5 \pm 0.7) \times 10^{-3} v (MB/c), \quad (1)$$

$$R^{2} = 0.9974,$$

$$I_{-} (MKA) =$$

$$I_{\pi} (MKA) =$$

= $(0.25 \pm 0.02) + (22.4 \pm 0.4) \times 10^{-3} v (MB/c),$ (2)
 $R^{2} = 0.9973,$

Аналит	Электрод	<i>с</i> _{ПАВ} , мМ	Е, В	<i>I</i> , мкА
Кверцетин	СеО ₂ -H ₂ O/СУЭ	0	0.25	2.31 ± 0.07
	СеО ₂ -ЦПБ/СУЭ	0.50	0.23	1.54 ± 0.04
	СеО ₂ ДДС/СУЭ	1.0	0.25	3.2 ± 0.1
	CeO ₂ –Brij® 35/СУЭ	1.0	0.27	2.88 ± 0.09
Рутин	СеО ₂ -Н ₂ О/СУЭ	0	0.33	2.23 ± 0.08
	СеО ₂ -ЦПБ/СУЭ	0.50	0.33	2.10 ± 0.04
	СеО ₂ ДДС/СУЭ	1.0	0.32	3.08 ± 0.05
	CeO ₂ -Brij® 35/СУЭ	1.0	0.33	3.06 ± 0.04

Таблица 2. Вольт-амперные характеристики кверцетина и рутина на электродах, модифицированных наночастицами CeO₂ и ПАВ (*n* = 5, *P* = 0.95)

$$\ln I_{\rm n} (\text{MKA}) =$$

$$= (3.59 \pm 0.06) + (0.90 \pm 0.03) \ln v \text{ (B/c)}, \quad (3)$$

$$R^{2} = 0.9942,$$

$$\ln I_{\rm n} (\text{MKA}) =$$

$$= (3.10 \pm 0.03) + (0.90 \pm 0.01) \ln v \text{ (B/c)}, \quad (4)$$

$$R^{2} = 0.9988.$$

Окисление кверцетина и рутина протекает необратимо, что подтверждается соотношением токов катодного и анодного пиков, а также смещением потенциалов окисления при увеличении скорости сканирования. В этом случае число электронов, участвующих в реакции, можно рассчитать по формуле $\Delta E_{1/2}$ (мВ) = 62.5/[(1 – α)*n*] при 298 К. Для необратимого процесса α = 0.5 [29]. Ширина пика окисления на половине высоты для кверцетина составляет 61 ± 3, а для рутина 56 ± ± 1 мВ, следовательно, число электронов, участвующих в реакции, равно 2.0 ± 0.1 и 2.23 ± 0.04, что хорошо согласуется с данными [5, 8, 30].

Варьирование pH фонового электролита в диапазоне от 2.0 до 8.0 показало, что для кверцетина при pH 2.0-6.0 наблюдается один пик окисления, который при pH \geq 7.0 расщепляется на два, причем второй пик слабо выражен; для рутина

имеется один пик окисления во всем диапазоне исследуемых значений pH. Потенциалы окисления кверцетина и рутина пропорционально смещаются в область меньших значений по мере увеличения pH фонового электролита (рис. 3), подтверждая участие протонов в электродной реакции. Полученные значения тангенсов углов наклона для кверцетина и рутина, равные 64 и 60.3 мВ соответственно [уравнения (5) и (6)], свидетельствуют о равном числе протонов и электронов, участвующих в реакции:

$$E(B) = (0.636 \pm 0.007) - (0.064 \pm 0.001) \text{ pH},$$

 $R^2 = 0.9974,$ (5)

$$E(B) = (0.681 \pm 0.005) - (0.0603 \pm 0.0009) \text{ pH},$$

 $R^2 = 0.9986.$ (6)

Токи окисления кверцетина и рутина уменьшаются по мере увеличения pH, поэтому для дальнейших исследований использовали pH 2.0.

На основе полученных результатов и данных [5, 8, 31] можно заключить, что в реакции окисления кверцетина и рутина участвуют гидроксильные группы кольца В с образованием соответствующих *о*-хинонов согласно схеме.

R = Н или глюкоза + рамноза

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 74 № 8 2019

Рис. 2. Циклические вольтамперограммы 100 мкМ кверцетина (а) и рутина (б) на CeO_2 –ДДС/СУЭ на фоне буферного раствора Бриттона–Робинсона с рН 6.0 (*1*) в зависимости от скорости изменения потенциала, мВ/с: 2 – 10, 3 – 25, 4 – 50, 5 – 100, 6 – 250, 7 – 500, 8 – 750, 9 – 1000.

Дифференциально-импульсная вольтамперометрия флавоноидов на СеО2-ДДС/СУЭ. Для количественного определения кверцетина и рутина использовали дифференциально-импульсную вольтамперометрию. Варьирование амплитуды импульса в диапазоне от 25 до 100 мВ и времени импульса от 25 до 75 мс показало, что наилучшие параметры пиков электроокисления аналитов достигаются при амплитуде импульса 75 мВ и времени импульса 25 мс. В этих условиях на дифференциально-импульсных вольтамперограммах кверцетина и рутина наблюдаются четко выраженные пики окисления при 0.44 и 0.51 В соответственно, высота которых увеличивается по мере роста концентрации аналита в ячейке (рис. 4). Диапазоны определяемых содержаний составляют 0.010-1.00 и 1.00-250 мкМ для кверцетина (уравнения (7) и (8)] и 0.10-100 мкМ для рутина [уравнение (9)] с

Рис. 3. Влияние рН фонового электролита на вольтамперные характеристики 100 мкМ кверцетина (а) и рутина (б) на CeO₂-ДДС/СУЭ.

пределами обнаружения (S/N = 3) 2.9 и 28 нM соответственно.

$$I_{\pi} (MKA) = (0.001 \pm 0.002) + (5.07 \pm 0.05) \times 10^{3} c_{\kappa B e p u e \tau u H a} (M), \quad R^{2} = 0.9996, \quad (7)$$

$$I_{\pi} (MKA) = (0.9 \pm 0.2) + (7)$$

+
$$(2.78 \pm 0.02) \times 10^{3} c_{\text{кверцетина}}$$
 (M), $R^{2} = 0.9997$, ⁽⁸⁾
 $I_{\pi} (\text{MKA}) = (0.2 \pm 0.1) +$ (9)

+
$$(2.04 \pm 0.02) \times 10^3 c_{\text{рутина}}$$
 (M), $R^2 = 0.9994$.

Полученные аналитические характеристики для кверцетина и рутина превосходят описанные ранее, в том числе и с применением других модифицированных электродов (табл. 1). Следует отметить, что даже квадратно-волновая вольтамперометрия, характеризующаяся большей чувствительностью, чем дифференциально-импульсная, не позволяет достичь более низких пределов обнаружения.

Кверцетин и рутин определяли в модельных растворах. Правильность результатов оценивали по методу введено—найдено (табл. 3). Величина относительного стандартного отклонения не превышает 5%. Полученные значения меры правильности свидетельствуют о высокой точности предложенного метода.

Оценена селективность отклика электрода на кверцетин и рутин, концентрация которых в ячейке составляла 10 мкМ. Показано, что 1000-кратные избытки неорганических ионов (K^+ , Na⁺, Mg²⁺, Ca²⁺, NO₃⁻, Cl⁻ и SO₄²⁻), 100-кратные избытки глюкозы, сахарозы, рамнозы, а также аскорбиновая кислота не мешают определению флавоноидов.

Определение кверцетина и рутина в лекарственном растительном сырье. Разработанный подход апробирован при анализе образцов лекарственного растительного сырья, являющегося важным источником рутина и кверцетина. В качестве объектов анализа исследовали зверобоя траву (*Hyperici herba*), ноготков цветки (*Calendulae officinalis flores*) и толокнянки листья (*Arctostaphyli uvae ursi folia*) различных производителей; основными флавоноидами являются рутин для зверобоя [26, 32] и кверцетин и его моногликозиды для ноготков [33] и толокнянки [34].

Флавоноиды извлекали из сырья экстракцией этанолом. Варьируя соотношение сырье : экстрагент (1 : 20 и 1 : 30) и продолжительность экстракции (10–25 мин), установили оптимальные условия извлечения целевых аналитов. Показано, что

Таблица 3. Результаты вольтамперометрического определения кверцетина и рутина в модельных растворах на CeO₂-ДДС/СУЭ на фоне буферного раствора Бриттона-Робинсона с pH 2.0 (n = 5, P = 0.95)

Аналит	Введено, мкг	Найдено, мкг	s _r	<i>R</i> , %
Кверцетин	0.030	0.031 ± 0.002	0.05	103
	0.30	0.30 ± 0.02	0.04	100
	3.0	2.99 ± 0.04	0.01	99.7
	30	30 ± 1	0.04	100
	302	301 ± 5	0.01	99.7
Рутин	5.6	5.7 ± 0.1	0.01	102
	28	28 ± 1	0.03	100
	56	56 ± 2	0.03	100
	305	307 ± 2	0.005	101
	611	610 ± 4	0.005	99.8

извлечение флавоноидов максимально при соотношении 1 : 20 и времени экстракции 20 мин для ноготков, 1 : 20 и 10 мин для толокнянки и 1 : 30 и 15 мин для зверобоя. На вольтамперограммах экстрактов имеются четко выраженные пики окисления при потенциале 0.44 В для ноготков и толокнянки и 0.51 В для травы зверобоя (рис. 5, кривая *1*), обусловленные окислением кверцетина и рутина соответственно, что подтверждается методом стандартных добавок (рис. 5, кривые *2* и *3*). Од-

Рис. 4. Дифференциально-импульсные вольтамперограммы кверцетина (а) и рутина (б) различной концентрации на CeO₂-ДДС/СУЭ на фоне буферного раствора Бриттона-Робинсона с pH 2.0 с коррекцией базовой линии; (а): *1* – 0.010, *2* – 0.050, *3* – 0.10, *4* – 0.25, *5* – 0.50, *6* – 0.75, *7* – 1.00 мкМ; вставка: *1* – 1.00, *2* – 5.00, *3* – 10.0, *4* – 25.0, *5* – 50.0, *6* – 75.0, *7* – 100 мкМ; (б): *1* – 0.10, *2* – 0.50, *3* – 1.00, *4* – 5.00, *5* – 10.0, *6* – 25.0, *7* – 50.0, *8* – 75.0, *9* – 100 мкМ. Амплитуда импульса 75 мВ, время импульса 25 мс, скорость изменения потенциала 10 мВ/с.

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 74 № 8 2019

Рис. 5. Дифференциально-импульсные вольтамперограммы экстрактов толокнянки листьев (а), ноготков цветков (б) и зверобоя травы (в) на CeO₂-ДДС/СУЭ на фоне буферного раствора Бриттона-Робинсона с pH 2.0 с коррекцией базовой линии; (а): *1* – экстракт, *2* – экстракт + 9.26 мкМ кверцетина, *3* – экстракт + 18.5 мкМ кверцетина; (б): *1* – экстракт, *2* – экстракт + 18.5 мкМ кверцетина; *3* – экстракт, *2* – экстракт + 0.220 мкМ кверцетина; *3* – экстракт + 0.432 мкМ кверцетина; (в): *1* – экстракт, *2* – экстракт + 12.3 мкМ рутина, *3* – экстракт + + 24.6 мкМ рутина. Амплитуда импульса 75 мВ, время импульса 25 мс, скорость изменения потенциала 10 мВ/с.

нако увеличение токов окисления при анализе цветков ноготков и травы зверобоя свидетельствует о матричных эффектах. В связи с этим для количественного определении флавоноидов в лекарственном растительном сырье использовали метод добавок.

Изучили различные способы получения извлечения из рассматриваемого лекарственного сырья (спиртовые экстракты, кислотные гидролизаты, отвары и настои, а также настойку календулы). На соответствующих вольтамперограммах регистрируются пики окисления при 0.44 и 0.51 В (рис. 6) как и для стандартных растворов кверцетина и рутина (рис. 6, кривые кверцетин и рутин соответственно). Следует отметить, что для гидролизата зверобоя травы наблюдается пик окисления при 0.44 В (рис. 6в), свидетельствующий о превращении рутина в кверцетин в ходе кислотного гидролиза, что хорошо согласуется с данными [26, 35].

Результаты определения содержания рутина и кверцетина в извлечениях из лекарственного растительного сырья представлены в табл. 4. Установлено, что наибольшее содержание кверцетина характерно для гидролизатов. Это еще раз доказывает, что в рассматриваемых объектах кверцетин присутствует главным образом в виде гликозидов, которые в ходе кислотного гидролиза переходят в форму агликона. Для отваров и настоев получены сопоставимые значения содержаний определяемых флавоноидов (за исключением толокнянки листьев), так как для извлечения активных компонентов из рыхлого мелкого сырья (травы, цветков и листьев) обычно достаточно условий получения настоев (отвары готовят из более плотного сырья – коры, корней и корневищ) [36]. Результаты вольтамперометрического определения кверцетина и рутина сопоставлены с данными спектрофотометрического определения общего содержания флавоноидов по реакции с хлоридом алюминия [27]. Полученное общее содержание флавоноидов статистически достоверно выше, чем содержание рутина и кверцетина, что подтверждает присутствие других флавоноидов в лекарственном растительном сырье. Установлены положительные корреляции содержания кверцетина и рутина с общим содержанием флавоноидов (*r* = 0.929 при *r*_{крит} = 0.521 для *n* = 11 в случае кверцетина и r = 0.951 при $r_{\text{крит}} = 0.729$ для n = 6 в случае рутина). Полученные данные позволяют рекомендовать разработанный подход для контроля лекарственного растительного сырья и лекарственных форм на его основе.

Рис. 6. Дифференциально-импульсные вольтамперограммы извлечений из толокнянки листьев (а), ноготков цветков (б) и зверобоя травы (в) и их основных флавоноидов (кверцетина и рутина) на СеО₂–ДДС/СУЭ на фоне буферного раствора Бриттона–Робинсона с pH 2.0 с коррекцией базовой линии. Амплитуда импульса 75 мВ, время импульса 25 мс, скорость изменения потенциала 10 мВ/с.

Таблица 4. Результаты вольтамперометрического определения флавоноидов в лекарственном растительном сырье (*n* = 5, *P* = 0.95)

Объекты анализа		Аналит	<i>m</i> , мг/г	s _r
Ноготков цветки:	экстракт	Кверцетин	0.558 ± 0.004	0.006
	отвар		2.05 ± 0.03	0.02
	настой		1.90 ± 0.05	0.03
	гидролизат		15.6 ± 0.2	0.01
Календулы цветки:	настойка	Кверцетин	1.86 ± 0.03	0.01
Толокнянки листья:	экстракт	Кверцетин	27.8 ± 0.2	0.008
	отвар		22 ± 2	0.08
	настой		31.5 ± 0.1	0.004
	гидролизат		72.7 ± 0.3	0.005
Зверобоя трава:	экстракт	Рутин	6.8 ± 0.2	0.03
	отвар		21 ± 1	0.05
	настой		20.7 ± 0.5	0.02
	гидролизат	Кверцетин	30 ± 1	0.04
Зверобоя трава:	экстракт	Рутин	5.3 ± 0.4	0.08
	отвар		9.7 ± 0.2	0.02
	настой		10.3 ± 0.3	0.02
	гидролизат	Кверцетин	28 ± 1	0.05

СПИСОК ЛИТЕРАТУРЫ

- 1. Зиятдинова Г.К., Будников Г.К. Природные фенольные антиоксиданты в биоаналитической химии: состояние проблемы и перспективы развития // Успехи химии. 2015. Т. 84. № 2. С. 194. (*Ziyatdinova G.K., Budnikov H.C.* Natural phenolic antioxidants in bioanalytical chemistry: state of the art and prospects of development // Russ. Chem. Rev. 2015. V. 84. № 2. Р. 194.)
- Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: an overview // J. Nutr. Sci. 2016. V. 5. P. e47. https://doi.org/10.1017/jns.2016.41
- Anand David A.V., Arulmoli R., Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid // Pharmacogn. Rev. 2016. V. 10. № 20. P. 84.
- Nijveldt R.J., van Nood E., van Hoorn D.E., Boelens P.G., van Norren K., van Leeuwen P.A. Flavonoids: A review of probable mechanisms of action and potential applications // Am. J. Clin. Nutr. 2001. V. 74. № 4. P. 418.
- Ziyatdinova G., Aytuganova I., Nizamova A., Morozov M., Budnikov H. Cyclic voltammetry of natural flavonoids on MWNT-modified electrode and their determination in pharmaceuticals // Collect. Czech. Chem. Commun. 2011. V. 76. № 12. P. 1619.
- 6. Saber-Tehrani M., Pourhabib A., Husain S.W., Arvand M. Electrochemical behavior and voltammetric determination of quercetin in foods by graphene nanosheets modified electrode // Anal. Bioanal. Electrochem. 2013. V. 5. № 1. P. 1.
- Wang J., Zhou N.D., Zhu Z.Q., Huang J.Y., Li G.X. Detection of flavonoids and assay for their antioxidant activity based on enlargement of gold nanoparticles // Anal. Bioanal. Chem. 2007. V. 388. № 5–6. P. 1199.
- Wang M.Y., Zhang D.E., Tong Z.W., Xu X.Y., Yang X.J. Voltammetric behavior and the determination of quercetin at a flowerlike Co₃O₄ nanoparticles modified glassy carbon electrode // J. Appl. Electrochem. 2011. V. 41. № 2. P. 189.
- 9. *Muti M., Gençdağ K., Nacak F.M., Aslan A.* Electrochemical polymerized 5-amino-2-mercapto-1,3,4thiadiazole modified single use sensors for detection of quercetin // Coll. Surf. B. 2013. V. 106. P. 181.
- Santos D.P., Bergamini M.F., Santos V.A.F.F.M., Furlan M., Zanoni M.V.B. Preconcentration of rutin at a poly glutamic acid modified electrode and its determination by square wave voltammetry // Anal. Lett. 2007. V. 40. № 18. P. 3430.
- Franzoi A.C., Spinelli A., Vieira L.C. Rutin determination in pharmaceutical formulations using a carbon paste electrode modified with poly(vinylpyrrolidone) / J. Pharm. Biomed. Anal. 2008. V. 47. № 4–5. P. 973.
- 12. *Chen X., Wang Z., Zhang F., Zhu L., Li Y., Xia Y.* Determination of rutin on the poly(*p*-aminobenzene sulfonic acid) modified glassy carbon electrode // Chem. Pharm. Bull. 2010. V. 58. № 4. P. 475.
- Sun W., Yang M.X., Li Y.Z., Jiang Q., Liu S.F., Jiao K. Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode // J. Pharm. Biomed. Anal. 2008. V. 48. № 5. P. 1326.

- 14. Gupta V.K., Golestani F., Ahmadzadeh S., Karimi-Maleh H., Fazli G., Khosravi S. NiO/CNTs nanocomposite modified ionic liquid carbon paste electrode as a voltammetric sensor for determination of quercetin // Int. J. Electrochem. Sci. 2015. V. 10. № 4. P. 3657.
- Kan X., Zhang T., Zhong M., Lu X. CD/AuNPs/ MWCNTs based electrochemical sensor for quercetin dual-signal detection // Biosens. Bioelectron. 2016. V. 77. P. 638.
- Reddaiah K., Reddy T.M., Raghu P., Swamy B.E.K. Electrochemical determination of quercetin at β-cyclodextrin modified chemical sensor: a voltammetric study // Anal. Bioanal. Electrochem. 2012. V. 4. № 2. P. 122.
- 17. Sun S., Zhang M., Li Y., He X. A molecularly imprinted polymer with incorporated graphene oxide for electrochemical determination of quercetin // Sensors. 2013. V. 13. № 5. P. 5493.
- Manokaran J., Muruganantham R., Muthukrishnaraj A., Balasubramanian N. Platinum- polydopamine @SiO₂ nanocomposite modified electrode for the electrochemical determination of quercetin // Electrochim. Acta. 2015. V. 168. P. 16.
- Ziyatdinova G., Kozlova E., Budnikov H. Poly(gallic acid)/MWNT-modified electrode for the selective and sensitive voltammetric determination of quercetin in medicinal herbs // J. Electroanal. Chem. 2018. V. 821. P. 73.
- Yang S., Qu L., Li G., Yang R., Liu C. Gold nanoparticles/ethylenediamine/carbon nanotube modified glassy carbon electrode as the voltammetric sensor for selective determination of rutin in the presence of ascorbic acid // J. Electroanal. Chem. 2010. V. 645. № 2. P. 115.
- Ziyatdinova G., Budnikov H. / Nanoanalytics. Nanoobjects and nanotechnologies in analytical chemistry / Ed. Shtykov S. Berlin/Boston: De Gruyter, 2018. P. 223.
- 22. Ziyatdinova G., Ziganshina E., Romashkina S., Budnikov H. Highly sensitive amperometric sensor for eugenol quantification based on CeO₂ nanoparticles and surfactants // Electroanalysis. 2017. V. 29. № 4. P. 1197.
- Ziyatdinova G., Ziganshina E., Shamsevalieva A., Budnikov H. Voltammetric determination of capsaicin using CeO₂-surfactant/SWNT-modified electrode // Arab. J. Chem. https://doi.org/10.1016/j.arabjc.2017.12.019
- 24. Ziyatdinova G., Ziganshina E., Cong P.N., Budnikov H. Voltammetric determination of thymol in oregano using CeO₂-modified electrode in Brij® 35 micellar medium // Food Anal. Methods. 2017. V. 10. № 1. P. 129.
- 25. *Japanese Pharmacopoeia XVI*. Tokyo: Pharmaceutical and medical device regulatory science society of Japan, 2011. 2326 p.
- Biesaga M., Stafiej A., Pyrzynska K. Extraction and hydrolysis parameters for determination of quercetin in *Hypericum perforatum* // Chromatographia. 2007. V. 65. № 11/12. P. 701.
- 27. Samatha T., Shyamsundarachary R., Srinivas P., Swamy N.R. Quantification of total phenolic and total flavonoid contents in extracts of *Oroxylum indicum* L. Kurz // Asian J. Pharm. Clin. Res. 2012. V. 5. № 4. P. 177.

- 28. Berg J.M., Romoser A., Banerjee N., Zebda R., Sayes C.M. The relationship between pH and zeta potential of ~30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations // Nanotoxicol. 2009. V. 3. № 4. P. 276.
- Bard A.J., Faulkner L.R. Electrochemical methods, fundamentals and applications. 2nd ed. New York: John Wiley& Sons Inc., 2001. 850 p.
- Liu W.Y., Guo R. Interaction between flavonoid, quercetin and surfactant aggregates with different charges // J. Coll. Interface Sci. 2006. V. 302. № 2. P. 625.
- Yakovleva K.E., Kurzeev S.A., Stepanova E.V., Fedorova T.V., Kuznetsov B.A., Koroleva O.V. Characterization of plant phenolic compounds by cyclic voltammetry // Appl. Biochem. Microbiol. 2007. V. 43. № 6. P. 661.
- 32. *Kurzawa M*. Determination of quercetin and rutin in selected herbs and pharmaceutical preparations // Anal. Lett. 2010. V. 43. № 6. P. 993.

- Muley B.P., Khadabadi S.S., Banarase N.B. Phytochemical constituents and pharmacological activities of *Calendula officinalis* Linn (Asteraceae): a review // Trop. J. Pharm. Res. 2009. V. 8. № 5. P. 455.
- 34. Panusa A., Petrucci R., Marrosu G., Multari G., Gallo F.R. UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi. A comparative study of phenolic compounds from leaf methanolic extracts // Phytochemistry. 2015. V. 115. P. 79.
- Wach A., Pyrzyńska K., Biesaga M. Quercetin content in some food and herbal samples // Food Chem. 2007. V. 100. № 2. P. 699.
- Государственная Фармакопея Российской Федерации XIII. Т. II. Москва, 2015. 1004 с.