— ОРИГИНАЛЬНЫЕ СТАТЬИ —

УДК 547.563:542.943-92:54.061:543.544.5:068.7:543.51

ХРОМАТО-МАСС-СПЕКТРОМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ПРОДУКТОВ ОКИСЛЕНИЯ АЛКИЛФЕНОЛОВ ХЛОРИДОМ ЖЕЛЕЗА(III)

© 2019 г. И. Г. Зенкевич^{а,} *, Т. И. Пушкарева^а

^аСанкт-Петербургский государственный университет, Институт химии 198504 Россия, Санкт-Петербург, Университетский просп., 26 *e-mail: izenkevich@yandex.ru

Поступила в редакцию 28.12.2017 г. После доработки 23.06.2018 г. Принята к публикации 06.11.2018 г.

В результате анализа продуктов окисления алкилфенолов (*opmo-, мета, napa-*крезолов и 4-изопропилфенола) хлоридом железа(III) в водных растворах методом ВЭЖХ с ионизацией электрораспылением и масс-спектрометрическим детектированием с регистрацией отрицательно заряженных ионов установлено, что основные продукты образуются путем нуклеофильного присоединения исходных алкилфенолов к промежуточно образующимся реакционноспособным интермедиатам хинонметидам. Получающиеся аддукты способны к дальнейшему окислению, что в результате нескольких циклов окисления/присоединения приводит к появлению серий соединений с молекулярными массами, принадлежащими последовательностям значений 108, 214, 320, 426, 536, 638, ... для крезолов и 136, 270, 404, 538, 672, ... в случае 4-изопропилфенола. Отмечены аналогии таких процессов с окислением алкилфенолов кислородом воздуха в водных растворах и с их электрохимическим окислением, которое приводит к образованию димерных и олигомерных продуктов.

Ключевые слова: алкилфенолы, продукты окисления хлоридом железа(III), ВЭЖХ, масс-спектрометрия, идентификация, олигомеры, хинонметиды. DOI: 10.1134/S0044450219050128

Взаимодействие фенолов (ArOH) с хлоридом железа(III) относят к наиболее известным в аналитической химии качественным реакциям на соединения этого класса [1, 2]. Так, при действии такого реагента водный раствор фенола приобретает интенсивную красно-фиолетовую окраску ($\lambda_{\text{макс}} = 558$ нм) [3], исчезающую в кислой среде. Для замещенных фенолов возможны вариации окраски: красная, пурпурная, голубая или зеленая. По современным представлениям появление окраски связано с образованием комплексных ионов вида [Fe(OAr)₆]³⁻ [2]. Из соединений иных классов этому цветному тесту удовлетворяют оксимы, гидроксамовые кислоты, енолы и некоторые другие.

С другой стороны, в синтетической органической химии соли железа(III) (как правило, хлорид железа и гексацианоферрат калия) используют как реагенты для окисления фенолов. Такое окисление часто приводит к димерным продуктам [4–6], в том числе с образованием новых связей С–С [5]. Возможность окисления определяется достаточно высоким значением окислительно-восстановительного потенциала процесса $Fe^{3+}(водн) + e^- \rightarrow Fe^{2+}(водн) + xH_2O$ (+0.77 В). Основному продукту окисления *n*-крезола хлоридом железа(III) приписывают структуру 4,4a-дигидро-8,9b-диметилдибензофуран-3-она (I, кетон Пуммерера), а 2,6-ксиленола — 3,5,3',5'-тетраметилдифениленхинона (II) (схема 1):

Схема 1.

Для окисления не только фенолов, но и других органических соединений, применяют растворы FeCl₃ в органических растворителях (например, в хлороформе [7]), комплексы с органическими лигандами (например, комплекс с диметилформамидом, ДМФА, [Fe(ДМФА)₃Cl₂]⁺[FeCl₄]⁻) [8, 9], а также твердый хлорид железа [10]. Один из предложенных для таких процессов механизмов включает промежуточное образование катионрадикальных интермедиатов типа ArO⁺.

Обращает на себя внимание "неэквивалентность" описаний аналитических и препаративных аспектов действия хлорида железа(III) на фе-

Время, мин	Содержание фазы В в элюенте, об. %	Время,	Содержание фазы В в элюенте, об. %		
	градиент 1	МИН	градиент 2	градиент 3	
0	5	0	20	50	
20	80	20	90	100	
22	80	24	90	100	
23	5	25	20	50	
25	5	27	20	50	

Таблица 1. Условия градиентного элюирования

нолы. Однако они не противоречат друг другу: при непосредственном смешении растворов фенолов и FeCl₃ действительно образуются окрашенные продукты, но спустя несколько часов растворы обесцвечиваются и из них выпадают бесцветные осадки продуктов окисления. Задачей настоящей работы является уточнение состава таких продуктов методом ВЭЖХ с масс-спектрометрическим детектированием (ВЭЖХ-МС) на примерах o-, m-, n-крезолов и 4-изопропилфенола, что представляет интерес для объяснения образования димерных продуктов окисления природных флавоноидов в водных растворах растворенным кислородом воздуха [11, 12], а также необычных электрохимических реакций фенолов [13].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реагенты. В работе использовали фенол х. ч. (Реахим, Москва), *о*-, *м*-, *n*-крезолы и 4-изопропилфенол (Merck, Дармштадт, Германия) с содержанием основного компонента 99%; ацетофе-

Таблица 2.	Времена уд	ерживания	(мин)	реперных	н-ал-
килфенилк	етонов				

PaulacTPO	Градиент					
Бещество	1	2	3			
Тиомочевина (t ₀)	2.0	1.9	1.8			
Ацетофенон	13.0	9.1	4.2			
Пропиофенон	15.7	12.1	5.8			
Бутирофенон	17.9	14.5	7.5			

нон, пропиофенон и бутирофенон (Мегск, Дармштадт, Германия) с содержанием основного компонента 99%; FeCl₃ · 6H₂O x. ч. (ГОСТ 4147-74, Реахим, Москва); хлороформ х. ч. (Реахим, Москва), ацетонитрил сорт 1 (Криохром, Санкт-Петербург), муравьиную кислоту х. ч. (Мегск, Дармштадт, Германия).

Приготовление водных растворов фенолов и их окисление хлоридом железа(III). Готовили водные растворы фенола (50 мкг/мл), о-, м-и п-крезолов (20 мкг/мл), 4-изопропилфенола (1 мг/мл) и хлорида железа(III) (60 мг/мл). К 2 мл раствора каждого из фенолов прибавляли раствор хлорида железа(III): 1.6 мл к раствору фенола, по 334 мкл к растворам крезолов и 20 мкл к раствору 4-изопропилфенола. Каждый из растворов приобретал характеристичную яркую окраску: растворы фенола и м-крезола – фиолетовую, о-крезола – зеленую, а *п*-крезола и 4-изопропилфенола – синюю. После выдерживания растворов при комнатной температуре в течение приблизительно двух суток их окраска исчезала, выпавшие осалки отделяли декантацией или фильтрованием, растворяли их в 1 мл хлороформа, разбавляли в 100 раз смесью водаацетонитрил-муравьиная кислота (50:50:0.1, по объему) и анализировали.

Для **хроматографического анализа приготовленных образцов** использовали хроматограф Agilent 1290 Infinity с масс-спектрометрическим детектором и колонкой (150 × 2.1 мм) Zorbax Eclipse XDB-C8 (размер частиц сорбента 3.5 мкм), защищенной предколонкой, заполненной таким же сорбентом. Расход элюента 200 мкл/мин. Объем дозируемых проб 10 мкл. Температура термостата колонки 30°С. Использовали три режима градиентного элюирования: фаза A (вода–ацетонитрил–муравьиная кислота 99 : 1 : 0.1, по объему) и фаза B (вода–ацетонитрил–муравьиная кислота 10 : 90 : 0.1, по объему), pH элюента ~2–3 (табл. 1). Для определения индексов удерживания (**ИУ**) продуктов окисления фенолов в идентичных условиях анализировали смесь трех реперных *н*-алкилфенилкетонов $C_6H_5COC_nH_{2n+1}$ (n = 1-3); времена удерживания (t_R) приведены в табл. 2. В качестве времени удерживания несорбируемого компонента (t_0) принимали время удерживания тиомочевины. Для вычисления ИУ использовали программу QBasic и программное обеспечение Microsoft Excel (версия 2007 г.).

Условия масс-спектрометрического детектирования. В качестве детектора в ВЭЖХ использовали масс-спектрометр с ионной ловушкой Bruker amaZON ETD (Германия) с ионизацией электрораспылением в режиме детектирования отрицательных ионов. Напряжение на капилляре –4.5 кВ, газ-осушитель азот, температура 250°С, поток 9 л/мин. Диапазон сканируемых масс 70–1000 Да. Каждый спектр получен в результате усреднения пяти последовательных сканов. Детектирование проводили по полному ионному току (режим AutoMS).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Общие закономерности окисления алкилфенолов и представление масс-спектрометрической информации. Специальное рассмотрение состава продуктов окисления 4-изопропилфенола в водных растворах растворенным кислородом воздуха при рН \approx р K_a , а также продуктов, образующихся в условиях его электрохимического окисления [13], предпринятое для объяснения закономерностей окисления природных флавоноидов [11, 12], показало, что основные продукты этой реакции согласуются с образованием таких интермедиатов, как хинонметиды (схема 2):

Схема 2.

Сами хинонметиды среди продуктов окисления не обнаружены из-за их высокой реакционной способности. Их важнейшим химическим свойством является сопряженное присоединение нуклеофильных реагентов (NuH) [14, 15], которое может протекать в положения 2-, 3- и 5-относительно карбонильной группы (схема 3):

Схема 3.

Нуклеофильное присоединение исходного 4-изопропилфенола приводит к формально димерным продуктам окисления. В отсутствие других нуклеофильных реагентов могут получаться продукты присоединения воды. Присоединение хинонметидами нуклеофильных реагентов, аналогичное свойствам хинонов и хинониминов [16, 17], объясняет легкость образования так называемых "димерных" продуктов окисления природных флавоноидов даже в разбавленных водных растворах. Следует заметить, что аналогичные реакции (восстановление хинонов и хинониминов бисульфитом натрия) составляют основу химии фотографических процессов [18].

Оптимальным по чувствительности и селективности способом масс-спектрометрического детектирования соединений фенольной природы в методе ВЭЖХ-МС представляется электрораспылительная ионизация с регистрацией отрицательно заряженных ионов. Однако даже в таких условиях масс-спектры могут быть сильно искажены сигналами фона прибора и примесей в образцах. По этой причине в современной практике при их представлении (см., например, [12]) принято указывать не все регистрируемые сигналы, а ограничиваться лишь частью наиболее характеристичных из них. Для более детального рассмотрения мы использовали хроматограммы по полному ионному току в сочетании с масс-фрагментограммами по массовым числам ионов [М - 1] ожидаемых соединений, приведенные на рис. 1 для продуктов окисления *n*-крезола и на рис. 2 для продуктов окисления 4-изопропилфенола.

В табл. 3 сопоставлены времена и ИУ главных продуктов окисления хлоридом железа(III) охарактеризованных алкилфенолов, детектируемых в различных режимах градиентного элюирования по приведенным значениями m/z ионов $[M - H]^-$. Помимо указанных, в каждой из реакционных смесей обнаружено несколько минорных компонентов с такими же значениями m/z, относящихся, скорее всего, к изомерам. В качестве реперных компонентов при вычислении ИУ использовали три алкилфенилкетона с ИУ в диапазоне 800–1000, так что бо́льшую часть ИУ (до 2000) продуктов вычисляли экстраполяцией. Точность такой операции по мере увеличения ИУ закономерно умень-

Рис. 1. Хроматограммы продуктов окисления *n*-крезола по полному ионному току (а) и по выделенным ионам с массовыми числами m/z 213 (б), 319 (в), 425 (г), 531 (д) и 637 (е) в режиме элюирования № 3.

шается, так что большие значения ИУ следует рассматривать как сугубо ориентировочные. Сравнение состава всех реакционных смесей показывает, что наибольшие количества продуктов окисления, детектируемых в режиме электрораспылительной ионизации по массовым числам ионов $[M - H]^-$, наблюдаются для *пара*-замещенных алкилфенолов, что согласуется с концепцией промежуточного образования хинонметидов. Идентификация продуктов окисления *n*-крезола хлоридом железа(III). На хроматограмме по полному ионному току (рис. 1а) в условиях наиболее "жесткого" градиентного элюирования (режим № 3, табл. 1) регистрируются шесть основных пиков с временами удерживания 7.0, 10.4 (максимальный), 13.2, 16.2, 18.3 и 20.0 мин. Первое предположение о химической природе этих продуктов можно сделать в результате использования такого математического (хемометрического) приема,

Рис. 1. Окончание.

как рассмотрение первых и вторых конечных разностей [19] их времен удерживания:

<i>t</i> _R , мин	7.0	10.4	13.2	16.2	18.3	20.0
Первые разности		3.4	3.2	3.0	2.9	2.7
Вторые разности			-0.2	-0.2	-0.1	-0.2

Математический смысл постоянства вторых разностей состоит в том, что рассматриваемый набор значений *t*_R может быть аппроксимирован

полиномом второй степени [19]. Однако этому факту можно придать и химический смысл, а именно: все регистрируемые продукты относятся к соединениям одинаковой химической природы, например, к структурным аналогам. С учетом результатов окисления 4-изопропилфенола в иных условиях [13] и литературных данных среди продуктов окисления фенолов хлоридом железа(III) можно было ожидать присутствия аналогов кетона Пуммерера либо продуктов превраще-

Рис. 2. Хроматограммы продуктов окисления 4-изопропилфенола по полному ионному току (а) и по выделенным ионам с массовыми числами m/z 269 (б), 403 (в), 537 (г), 671 (д) и 419 (е) в режиме элюирования № 3.

ния хинонметидов. Молекулярные массы этих изомерных соединений равны 2M - 2, где M – молекулярная масса исходного фенола. Заметим, что уже по этому критерию можно исключить образование аналогов дифениленхинона с массами 2M - 4, так как они соответствуют бо́льшей степени окисления исходных фенолов.

Таким образом, если молекулярная масса первичного "димерного" продукта окисления *n*-крезола равна 108 - 2 + 108 = 214, то он должен регистрироваться на масс-фрагментограмме по массовому числу иона $[M - H]^-$ с m/z 213, что иллюстрирует рис. 16. Фрагмент масс-спектра этого компонента приведен на рис. 3а. В нем присутствует достаточно интенсивный сигнал молекулярных ионов с m/z 214 и максимальный сигнал ионов $[M - H]^-$ с m/z 212.8 \approx 213. Такое сочетание сигналов типично для сопряженных ароматиче-

Рис. 2. Окончание.

ских соединений. Однако, учитывая низкую структурную специфичность масс-спектров отрицательных ионов, полученных в условиях ионизации электрораспылением, на этом этапе рассмотрения результатов невозможно отдать предпочтение ни структурам типа I, ни аддуктам хинонметидов (схема 3).

Для кетона I трудно предположить какие-либо приемлемые направления его дальнейших пре-

вращений, так как он не содержит активных атомов водорода, в отличие от аддуктов исходного *n*-крезола и промежуточно образующихся хинонметидов. Такие аддукты сохраняют способность к последующему окислению с образованием более сложных хинонметидных интермедиатов, которые снова могут присоединять исходные алкилфенолы. В случае *n*-крезола это позволяет объяснить образование как более гидрофобного про-

Рис. 3. Фрагменты масс-спектров продуктов окисления *n*-крезола в режиме разделения \mathbb{N} 3 с временами удерживания 7.0 мин (а) и 18.3 мин (б): (а) – димер с молекулярной массоl 214, (б) – гексамер с молекулярной массой 638.

дукта с временем удерживания 10.4 мин, так и всех остальных компонентов в результате после-

довательных циклов окисление/присоединение исходного *n*-крезола (схема 4):

В результате молекулярные массы серии олигомерных продуктов взаимодействия *n*-крезола с FeCl₃ оказываются равными 108 – 2 + 108 = 214 (димер, детектируемый по массовому числу ионов [M – H][–] с *m/z* 213, рис. 16); 214 – 2 + 108 = 320 (тример, *m/z* 319, рис. 1в); 320 – 2 + 108 = 426 (тетрамер, *m/z* 425, рис. 1г); 426 – 2 + 108 = 532 (пентамер, *m/z* 531, рис. 1д) и 532 – 2 + 108 = 638 (гексамер, *m/z* 637, рис. 1е). Фрагмент масс-спектра гексамера с молекулярной массой 638, приведенный на рис. 36, аналогичен спектру димера (рис. 3а) с тем лишь отличием, что в нем присутствует заметный сигнал ионов $[M - 107] = [M - CH_3C_6H_4O]^- с$ *m/z* 531, совпадающий по положению с ионами $[M - H]^-$ предыдущего олигомера (пентамера). Аналогичные сигналы регистрируются на всех масс-фрагментограммах (рис. 16–1е), причем их интенсивность увеличивается при переходе к каждому последующему продукту окисления. Тем не менее, масс-спектрометрические данные не позволяют однозначно провести структурнохимическое отнесение таких сигналов изомеров с бо́льшими временами удерживания. Во-первых, они могут принадлежать ионам [M - 107] =

1 1							
,	Градиент 1		Градиент 2		Градиент 3		DL
<i>m/z</i> ,	<i>t</i> _Р . МИН	RI	<i>t</i> р. МИН	RI	<i>t</i> _P . МИН	RI	$RI \pm s_{RI}$
	^K		K ³		^K		$775 \pm 17*$
212	19 5**	1020**	<i>о</i> -крезол 15 2**	1021**	76**	1006**	773 ± 17 1022 $\pm 14**$
213	10.5	1029	15.2	1031	7.0	1000	
319	18.6	1034	15.2	1031	7 .6	1006	1024 ± 15
	19.3	1070	16.0	1068	8.5	1057	1065 ± 11
	21.0	1160	17.8	1155	10.7	1181	1065 ± 21
			18.3	1179	11.2	1209	1194 ± 21
	23.0	1273	19.9	1260	13.3	1324	1286 ± 34
425	19.8	1095	16.6	1097	9.2	1097	1096 ± 1
125	20.3	1123	17.0	1116	9.2	1125	1000 ± 1 1121 ± 5
	20.5	1125	17.0	1170	9.7 11.5	1125	1121 ± 3 1107 ± 24
	21.5	1100	10.5	11/9	11.5	1225	1197 ± 24
	<i>LL.L</i>	1227	19.0	1214	12.4	12/5	1239 ± 32
			21.1	1322	13.7	1346	1334 ± 17
			23.5	1450	15.0	1417	1434 ± 23
531	20.9	1155	17.8	1155	10.7	1181	1164 ± 15
	21.3	1177	18.1	1170	11.3	1214	1187 ± 24
	22.3	1233	19.3	1230	12.6	1286	1250 ± 32
	22.7	1256	19.7	1250	13.2	1319	1275 ± 38
			22.4	1391	17.0	1526	1526***
637			22.1	1371	14.0	1363	1363
037	ļ		и Крезол		14.0	1505	760 ± 15
212	16.4	030	<i>m</i> - R pc30 <i>J</i>	028	55	887	700 ± 13 013 ± 27
215	10.4	930	12.0	920	5.5	002	913 ± 27
210	17.8	995	14.4	990	7.0	971	98/ ± 14
319	47.0		13.0	936	5.3	870	8/0
	17.3	971	13.8	970	6.0	912	951 ± 34
	18.5	1029	15.0	1022	7.4	994	1015 ± 18
	19.3	1070	15.9	1064	8.3	1046	1060 ± 12
	19.9	1101	16.5	1092	9.3	1102	1098 ± 6
	20.7	1144	17.5	1140	10.3	1159	1148 ± 10
425	19.0	1055	15.7	1054	8.2	1040	1050 ± 8
	21.5	1188	18.3	1179	11.3	1214	1194 ± 18
	I		<i>п</i> -Крезол		I I		760 ± 23
213	17.9	1000	14.5	1000	7.0	971	990 ± 17
319	20.8	1150	17.5	1140	10.4	1164	1151 + 12
515	20.0	1256	19.6	1245	13.0	1308	1270 + 34
125	22.7	1230	19.0	1245	15.0	1508	1270 ± 54 1212 ± 5
423	22.0	1210	10.9	1209	12.2	1210	1212 ± 3 1202 ± 27
	23.3	1291	20.0	1205	15.2	1319	1292 ± 27
					15.9	1466	1466
531	22.8	1262	22.0	1370	16.2	1482	1482
	23.6	1308	23.5	1450	18.3	1596	1596
637			23.6	1456	18.3	1596	1596
			25.8	1576	20.0	1687	1687
·	I	4-1	Изопропилфен	юл			973 ± 14
269			19.5	1240	12.1	1258	1249 ± 13
403			23.7	1461	17.9	1574	1574
					20.3	1703	1703
537					22.0	1794	1794
551					22.0	1901	1901
671					27.0	2002	2002
410			177	1150	23.9 10.1	2003	2003 1149 \pm 2
419			1/./	1170	10.1	114/	1140 ± 2
			18.3	1179	10.7	1181	1180 ± 1
553			21.8	1359	15.7	1455	1455
			22.5	1397	16.5	1498	1498

Таблица 3. Времена и индексы удерживания главных продуктов окисления алкилфенолов хлоридом железа(III) в различных режимах элюирования

* Для исходных фенолов приведены статистически обработанные справочные значения индексов удерживания [20, 21].

** Жирным шрифтом здесь и далее выделены значения для основных компонентов реакционных смесей.

жирным шрифтом здесь и далее выделены значения для основных компонентов реакционных смесси. *** Если стандартные отклонения средних значений ИУ в разных режимах разделения превышают 40, то вместо средних величин указаны только значения ИУ в режиме № 3.

Рис. 4. Фрагмент масс-спектра продукта окисления *n*-крезола в режиме разделения № 3 с временем удерживания 20.0 мин (соответствует гептамеру с молекулярной массой 744) (а) и наиболее вероятные структуры гексамера с M = 638 (б) (масс-спектр приведен на рис. 36) и гептамера с M = 744 (в).

 $= [M - CH_3C_6H_4O]^-$ олигомеров с бо́льшими молекулярными массами, однако в этом случае положения их максимумов должны точно совпадать с временами удерживания таких олигомеров. Вовторых, они могут относиться к изомерам, образующимся в меньших количествах. Если полагать, что основной компонент соответствует присоединению нуклеофильного реагента в положение 3 относительно карбонильной группы, то изомер с большим временем удерживания может отвечать более гидрофобному (за счет образования внутримолекулярной водородной связи) продукту присоединения в положение 2 (схема 3). В случае *п*-крезола значения фактора гидрофобности (lg P) составляют для 4-метил-3-(4-метилфенокси)фенола и 4-метил-2-(4-метилфенокси) ϕ енола 5.94 \pm 0.33 и 6.33 \pm 0.32 соответственно (расчетные значения получены с использованием программного обеспечения ACD). Наиболее гидрофильным из возможных продуктов присоединения *п*-крезола к хинонметиду является 4-[(4метилфенил)метил]фенол ($\lg P = 5.09 \pm 0.25$), и если основной сигнал принадлежит этому изомеру, то минорный может относиться к какому-либо из двух других.

Во всех этих случаях положения максимумов таких пиков на разных хроматограммах не должны совпадать. Наблюдаемые незначительные отличия времен удерживания не позволяют однозначно говорить о присутствии в реакционной смеси продуктов каждого типа. Более того, на рис. 16–1г отчетливо наблюдается перекрывание нескольких сигналов, что допускает оба варианта интерпретации результатов.

За гексамером с временем удерживания 18.3 мин на хроматограмме (рис. 1а) регистрируется сигнал еще одного компонента с $t_{\rm R} = 20.0$ мин, фрагмент масс-спектра которого представлен на рис. 4а. Судя по времени удерживания, он должен принадлежать гептамеру с молекулярной массой 744, а не 638, что подтверждается отсутствием в нем сигналов с m/z 638 — 107 = 531. Другим отличием его масс-спектра (рис. 4а) от масс-спектров предыдущих олигомеров является незначительная интенсивность пиков молекулярных ионов (неотличимы от фоновых сигналов). Можно предположить, что он принадлежит соединению с вероятной структурой, изображенной на рис. 4в. для которой фрагментация с образованием ионов [М - 107] = = $[M - CH_3C_6H_4O]^-$ с m/z 637 становится преоблалающей.

Помимо олигомерных продуктов, молекулярные массы которых в случае крезолов принадлежат последовательности 108, 214, 320, 426, 536, 638, ..., в реакционных смесях обнаруживаются несколько продуктов с другими массовыми числами. Так, один из продуктов окисления *n*-крезола (M = 442) образуется в результате окисления тетрамера с последующим присоединением воды: 426 - 2 + 18 = 442.

Индексы удерживания являются более информативной характеристикой аналитов чем их времена удерживания [20, 21]. В нашем случае точность ИУ ограничена использованием всего трех реперных компонентов (ацето-, пропио- и бутирофеноны), что для гидрофобных аналитов приводит к необходимости вычисления индексов путем экстраполяции в область больших значений времен удерживания. Тем не менее, значения ИУ (RI) продуктов с M = 214, 320 и 426, разности которых составляют ~164 ± 25, характеризуются неплохой аддитивностью и только для двух последних наблюдаются заметные отклонения, обусловленные как "удаленной" экстраполяцией ИУ, так и, возможно, их соответствием присоединению арильных фрагментов не в бензольное кольцо, а в α -положение к нему (рис. 4б и 4в):

<i>М</i> продукта	214	320	426	532	638	744
RI	990	1151	1292	1482	~1600	~1690
ΔRI		161	141	190	~120	~90

Особенности состава продуктов окисления 4-изопропилфенола хлоридом железа(III). Последовательность циклов окисление/присоединение исходного 4-изопропилфенола, аналогичная изображенной на схеме 4, приводит к образованию продуктов с молекулярными массами 136 – 2 + 136 = = 270 (димер, детектируемый по массовому числу ионов [M – H][–] с *m/z* 269, рис. 26), 270 – 2 + 136 = = 404 (тример, m/z 403, рис. 2в), 404 - 2 +136 = 538 (тетрамер, m/z 537, рис. 2г) и 538 – 2 + 136 = 672 (пентамер, m/z 671, рис. 2д), принадлежащих последовательности 136, 270, 404, 538, 672, Помимо этого среди минорных продуктов окисления обнаружены соединения с молекулярными массами 286 (детектируется по массовому числу ионов $[M - H]^{-}$ с m/z 285), 420 (по массовому числу ионов [M – H][–] с *m/z* 419, рис. 2e), а также 420 - 2 + 136 = 554 (*m*/*z* 553). Они представляют собой продукты присоединения воды к димеру (270 - 2 + 18 = 286), тримеру $(3 \times 134 + 18 = 420)$ и тетрамеру ($4 \times 134 + 18 = 554$) соответственно. Такой состав соответствует наборам продуктов окисления 4-изопропилфенола в водных растворах как растворенным кислородом воздуха при $pH \approx pK_a$, так и в условиях его электрохимического окисления [13].

Как отмечено при рассмотрении продуктов окисления *п*-крезола, основной причиной неопределенности состава является сложность структурного отнесения минорных сигналов на масс-фрагментограммах. Замена метильной группы в *n*-крезоле изопропильным фрагментом позволила установить, что по крайней мере для рассматриваемого 4-изопропилфенола речь идет не о сигналах $[M - 135] = [M - C_3H_7C_6H_4O]^-$ более сложных олигомеров, а о сигналах разных изомеров. Действительно, на фрагментограмме тримера регистрируется сигнал с $t_{\rm R} = 20.3$ мин, тогда как основной компонент тетрамера имеет время удерживания 22.0 мин. Аналогично примесь в тетрамере имеет $t_{\rm R} = 24.0$ мин, а для пентамера $t_{\rm R} = 25.9$ мин. Таким образом, можно утверждать, что при окислении алкилфенолов FeCl₃ каждая группа продуктов превращения хинонметидов содержит несколько изомеров.

Закономерности формирования состава продуктов окисления *о*- и *м*-крезолов аналогичны рассмотренным на примерах *n*-крезола и 4-изопропилфенола.

* * *

Таким образом, на основании результатов идентификации продуктов окисления алкилфенолов хлоридом железа(III) можно утверждать, что их состав аналогичен составу продуктов окисления алкилфенолов кислородом воздуха в водных растворах и их электрохимического окисления. Основные из них соответствуют присоединению исходных фенолов к промежуточно образующимся реакционноспособным интермедиатам — хинонметидам.

Авторы благодарят руководство ФГУП "НИИ ГПЭЧ" ФМБА России (Санкт-Петербург) за возможность использования оборудования при выполнении настоящей работы.

СПИСОК ЛИТЕРАТУРЫ

- Химическая энциклопедия / Под ред. Зефирова Н.С. Т. 5. М.: Большая Российская энциклопедия, 1998. С. 71.
- Gilbert J.C., Martin S.F. Experimental Organic Chemistry. A Miniscale and Microscale Approach. 5th ed. Boston: Cengage Learning, 2011. 966 p.
- Wesp E.F., Brode W.R. The absorption spectra of ferric compounds. I. The ferric chloride – phenol reaction // J. Am. Chem. Soc. 1934. V. 56. № 5. P. 1037.
- 4. *Trahanovski W*. Oxidation in Organic Chemistry. Amsterdam: Elsevier, 2012. 262 p.
- Sarham A.A.O., Bolm C. Iron(III) chloride in oxidative C-C coupling reactions // Chem. Soc. Rev. 2009. V. 38. № 9. P. 2730.
- 6. *The Chemistry of Phenols* / Ed. Rappoport Z. Chichester: J. Wiley & Sons, 2003. 1506 p.
- 7. Soloway S., Wilen S.H. Improved ferric chloride test for phenols // Anal. Chem. 1951. V. 24. № 6. P. 979.
- 8. *Tobinaga S*. A review: synthesis of alkaloids by oxidative phenol and nonphenol coupling // Bioorg. Chem. 1975. V. 4. P. 110.
- Tobinaga S., Kotani E. Intramolecular and intermolecular oxidative coupling reactions by a new iron complex [Fe(DMF)3Cl2][FeCl4] // J. Am. Chem. Soc. 1972. V. 94. P. 309.
- Toda F., Tanaka K., Iwata S. Oxidative coupling reactions of phenols with iron(III) chloride in the solid state // J. Org. Chem. 1989. V. 54. P. 3007.
- 11. Zenkevich I.G., Eschenko A.Yu., Makarova S.V., Vitenberg A.G., Dobryakov Yu.G., Utsal V.A. Identification of

the products of oxidation of quercetin by air oxygen at ambient temperature // Molecules. 2007. V. 12. № 3. P. 654.

- 12. Зенкевич И.Г., Пушкарева Т.И. Систематизация результатов хромато-масс-спектрометрической идентификации продуктов окисления кверцетина кислородом воздуха в водных растворах // Журн. аналит. химии. 2017. Т. 72. № 10. С. 890. (Zenkevich I.G., Pushkareva T.I. Systematization of the results of the chromatography-mass spectrometry identification of the products of quercetin oxidation by atmospheric oxygen in aqueous solutions// J. Analyt. Chem. 2017. V. 72. № 10. Р. 1062.)
- 13. Зенкевич И.Г., Пушкарева Т.И. Хромато-массспектрометрическая идентификация необычных продуктов окисления 4-изопропилфенола в водных растворах // Журн. общей химии. 2018. Т. 87. № 1. С. 9. (Zenkevich I.G., Pushkareva T.I. Chromatomass-spectral identification of unusual products of 4-isopropylphenol oxidation in aqueous solutions // Russ. J. General Chem. 2018. V. 87. № 1. Р. 7.)
- Шевченко С.М., Апушкинский А.Г. Хинонметиды в химии древесины // Успехи химии. 1992. Т. 61. № 1. С. 195. (Shevchenko S.M., Apushkinskii A.G. Quinone methides in the chemistry of wood // Russ. Chem. Rev. 1992. V. 61. № 1. P. 105.)
- Freccero M. Quinone methides as alkylating and crosslinking agents // Mini-Rev. Org. Chem. 2004. V. 1. № 4. P. 403.

- 16. *Katritzky A.R., Fedoseenko D., Mohapatra P.P., Steel P.J.* Reactions of p-benzoquinone with sulfur nucleophyles // Syntheses. 2008. № 5. P. 777.
- 17. Gulaborski R., Bogeski I., Mirceski V., Saul S., Pasieka B., Haeri H.H., Stefova M., Stanoeva J.P., Mitrev S., Hoth M., Kappl R. Hydroxilated derivatives of dimethoxy-1,4benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers // Sci. Rep. 2013. V. 3. Art. № 1865.
- Яштолд-Говорко В.А. Фотосъемка и обработка. М.: Искусство, 1964. 444 с.
- 19. Демидович Б.П., Марон И.А., Шувалова Э.З. Численные методы анализа. М.: Наука, 1967. 368 с.
- Зенкевич И.Г., Кочетова М.В., Ларионов О.Г., Ревина А.А. Индексы удерживания как наиболее воспроизводимые хроматографические параметры для характеристики фенольных соединений в обращено-фазовой ВЭЖХ // Журн. аналит. химии. 2005. Т. 60. № 7. С. 734. (Zenkevich I.G., Kochetova M.V., Larionov O.G., Revina A.A. Retention indices as the best reproducible chromatographic parameters for the characterization of phenolic compounds in reversed-phase high performance liquid chromatography // J. Analyt. Chem. 2005. V. 60. № 7. Р. 655.)
- Zenkevich I.G., Kochetova M.V., Larionov O.G., Revina A.A., Kosman V.M. Retention indices as the most reproducible retention parameters in reversed phase HPLC. Calculation for hydrophylic phenolic compounds using reference n-alkyl phenyl ketones // J. Liq. Chromatogr. Rel. Technol. 2005. V. 28. P. 2141.