———— ОБЗОРЫ ——

УДК 543.426:543.064:546.650

Обзор посвящен памяти академика АН УССР Н.С. Полуэктова в связи с 110-летием со дня его рождения.

УВЕЛИЧЕНИЕ ЧУВСТВИТЕЛЬНОСТИ ЛЮМИНЕСЦЕНТНОГО ОПРЕДЕЛЕНИЯ ЛАНТАНИДОВ ПРИ ИСПОЛЬЗОВАНИИ ИХ КОМПЛЕКСНЫХ СОЕДИНЕНИЙ

© 2020 г. С. Б. Мешкова^{а,} *, П. Г. Дога^а

^аФизико-химический институт им. А.В. Богатского Национальной академии наук Украины Люстдорфская дорога, 86, Одесса, 65080 Украина *e-mail: s_meshkova@ukr.net Поступила в релакцию 07.12.2018 г.

После доработки 06.03.2019 г. Принята к публикации 30.08.2019 г.

Обзор посвящен рассмотрению пути снижения пределов определения лантанидов люминесцентным методом за счет использования направленного выбора реагентов, образования смешанолигандных и разнометалльных комплексов, маскирования элемента-основы, снижения безызлучательных потерь энергии возбуждения с использованием полимерных матриц, в том числе модифицированных лигандом, комплексов с сополимерами, а также изменения люминесценции комплексных соединений лантанидов в разных агрегатных состояниях: раствор—вязкая среда (водорастворимый полимер)—твердая матрица полимера.

Ключевые слова: лантаниды, люминесценция, пределы определения. DOI: 10.31857/S0044450220030147

Соединения лантанидов (Ln) от La до Lu, входящих в группу редкоземельных элементов (РЗЭ), благодаря их уникальной способности к излучению, нашли широкое применение для создания материалов с заданными свойствами и разного назначения: ферромагнетиков, высокотемпературных сверхпроводников, оптических светодиодов, новых источников света, высокочувствительных зондов в биологии, биофизике, биомедицинских исследованиях [1-8]. Во многих случаях применение лантанидов основано на узкополосной люминесценции как в видимой (Pr³⁺, Sm³⁺, Eu³⁺, Tb³⁺, Dy³⁺, Tm³⁺), так и в ближней ИК-областях спектра (Nd³⁺, Yb³⁺, Er³⁺, Sm³⁺). Для высокочувствительного определения Ln в различных объектах применяют методы атомно-эмиссионной или масс-спектрометрии с индуктивно связанной плазмой (АЭС-ИСП или МС-ИСП), что предусматривает использование сложной и дорогостоящей аппаратуры, разложение анализируемых образцов, предварительное разделение и концентрирование определяемых Ln [9, 10].

Наряду с определением низких содержаний лантанидов в природных объектах актуальны задачи высокочувствительного определения отдельных лантанидов в различных функциональных материалах (люминесцентных, пленкообразующих) и в исходных для их синтеза особо чистых соединениях РЗЭ. Для решения таких задач эффективен люминесцентный метод как в кристаллофосфорном варианте [11], так и с применением комплексных соединений ионов лантанидов с различными органическими реагентами, способными к сенсибилизации люминесценции центрального иона [12].

Достаточная простота пробоподготовки и аппаратурного оформления, экспрессность, высокая в ряде случаев чувствительность, удовлетворительные метрологические характеристики позволяют считать люминесцентный метод определения лантанидов конкурентоспособным по сравнению с АЭС-ИСП и МС-ИСП. Кроме того, люминесцентный метод, благодаря высокой чувствительности определения, оказывается одним из немногих альтернативных методов аттестации стандартных образцов состава и системы контроля правильности результатов анализа различных веществ и материалов на содержание следов лантанидов. Об эффективности и востребованности люминесцентного метода определения лантанидов свидетельствует включение соответствующих методик с использованием кристаллофосфоров в нормативно-аналитическую документацию, в частности, в ГОСТы 23862.0-79–23862.36-79 "Редкоземельные металлы и их окиси. Методы анализа" (наряду с прямыми и химико-спектральными эмиссионными методиками анализа).

Тем не менее, до настоящего времени остаются до конца не решенными задачи повышения чувствительности и селективности определения ряда лантанидов, особенно при взаимном присутствии, в частности, в парах Eu–Sm, Tb–Dy и других.

Наибольшие возможности для поиска решений таких трудных задач предоставляет люминесцентный анализ с использованием растворов комплексных соединений ионов лантанидов с органическими реагентами [12].

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ ЛАНТАНИДОВ, ИСПОЛЬЗУЕМЫЕ ДЛЯ ИХ ЛЮМИНЕСЦЕНТНОГО ОПРЕДЕЛЕНИЯ

Лантаниды, благодаря заполнению электронами внутренней 4f-оболочки от La(0) до Lu(14), различаются по оптическим свойствам и характеризуются собственным набором излучательных уровней, поэтому спектры их строго индивидуальны. Вызванные переходами внутри 4f-оболочки спектры простых солей Ln³⁺ состоят из ряда узких полос, которые при комплексообразовании смещаются практически всегда батохромно, расщепляются на ряд компонент и изменяются по интенсивности. Особенно увеличивается интенсивность полос, соответствующих так называемым "сверхчувствительным переходам" (СЧП), что используют для повышения чувствительности определения отдельных Ln. Если в водных растворах солей лантанидов люминесценция наблюдается от Ce^{3+} до Dy^{3+} , то в комплексах ее проявляют Pr, Nd, Sm, Eu, Gd, Tb, Dy, Tm и Yb. Из них наиболее интенсивной люминесценцией характеризуются ионы Sm³⁺, Eu³⁺, Gd³⁺, Tb³⁺ и Dy^{3+} [12]. Возбуждение люминесценции Ln^{3+} , связанных в комплексные соединения с органическими реагентами, происходит при поглощении света не ионом Ln^{3+} , а лигандом. Согласно существующим представлениям [12, 13], при поглощении кванта света молекула органического соединения переходит в возбужденное синглетное (S_1) состояние, из которого она может дезактивироваться переходом в основное состояние S₀ (люминесценция лиганда), либо безызлучательно перейти в триплетное состояние Т₁ с большей продолжительностью жизни. С Т₁-уровня молекула может перейти в основное состояние ($T_1 \rightarrow S_0$, молекулярная фосфоресценция), но если энергия уровня Т₁ лиганда (*E*_{T1}) больше либо равна энергии излучательного уровня Ln^{3+} ($E_{изл. ур.}(Ln^{3+})$), то она может передаваться ему. Ион Ln^{3+} при этом переходит в возбужденное состояние и затем выделяет квант света (рис. 1).

Таким образом, люминесценция ионов Ln³⁺ в комплексных соединениях, обусловленная внутримолекулярным переносом энергии от лиганда к иону Ln³⁺, связана с взаимным расположением триплетных уровней Т₁ лигандов и излучательных уровней ионов Ln³⁺ и наблюдается лишь в том случае, когда Т₁-состояние лиганда по энергии приблизительно равно или выше энергии резонансного уровня Ln³⁺ [12]. В соответствии с этим перенос энергии от окрашенных реагентов, поглощающих свет в видимой области спектра $(E_{T_1} = 14000 - 16000 \text{ см}^{-1})$, принципиально возможен только к ионам Nd³⁺ и Yb³⁺ [14, 15], в то время как от β-дикетонов и других реагентов, поглощающих свет в УФ-области ($E_{T_1} = 20500 - 24500 \text{ см}^{-1}$), ко всем лантанидам, за исключением Gd³⁺, возбужденный уровень которого лежит значительно выше — 32200 см⁻¹ [12].

НАПРАВЛЕННЫЙ ВЫБОР ЛИГАНДОВ

Внутримолекулярный перенос энергии с триплетного уровня лиганда на резонансный (излучательный) уровень иона Ln^{3+} в комплексе – один из наиболее важных процессов, влияющих на квантовый выход люминесценции [16]. Однако его эффективность зависит не только от E_{T_1} лиганда (донора) и энергии излучательного уровня Ln^{3+} (акцептора), но и величины энергетического зазора между ними – $\Delta E = E_{T_1}(Lig) - E_{изл. ур.}(Ln^{3+})$, определяемого значениями E_{T_1} лигандов, поскольку $E_{изл. ур.}(Ln^{3+})$ неизменны. В литературе приводятся разные интервалы оптимальных энергетических зазоров ΔE : 2500–5000 см⁻¹ [17], 4000 ± 500 см⁻¹ [18], 2500–3500 см⁻¹ для соединений Eu^{3+} и 2500–4000 см⁻¹ для соединений Tb³⁺ [19].

Согласно схеме, приведенной на рис. 1, в комплексах с реагентами, поглощающими УФ-излучение, проявление люминесценции возможно практически для всех лантанидов, а с окрашенными реагентами – только для Nd и Yb с лежащими ниже излучательными уровнями. Наглядным примером может быть определение микросодержаний Nd и Yb в оксиде самария (Sm₂O₃) [20]. В комплексах с β -дикетонами наблюдается люминесценция как Sm, так и Nd и Yb, а в комплексах с ксиленоловым оранжевым и другими трифенилметановыми красителями с низкими значениями E_{T_i} возможен перенос энергии возбуждения только к Nd и Yb с ниже лежащих излучательных уровней (рис. 2 и 3). В табл. 1–3 приведены

Рис. 1. Схема переноса энергии к ионам Ln^{3+} от возбужденного состояния органической части молекулы комплекса. S₁ и T₁ – первые синглетный и триплетный уровни комплекса.

Рис. 2. Спектры люминесценции 1.0 мкг/мл (а) и 0.05 мкг/мл (б) неодима в присутствии 10 мкг/мл самария в комплексах с теноилтрифторацетоном и фенантролином (а), ксиленоловым оранжевым (KO) и этонием (б). $c_{\text{TTA}} = 1 \times 10^{-3}$ M, $c_{\Phi eH} = 1 \times 10^{-3}$ M, $c_{KO} = 5 \times 10^{-4}$ M, $c_{\Im T} = 1 \times 10^{-3}$ M. Предел определения неодима составляет 7.5 × 10⁻⁴%.

результаты определения 1×10^{-3} % Nd и 1×10^{-4} % Yb в образцах Sm₂O₃ высокой степени чистоты.

Случай обратного переноса энергии Ln \rightarrow Lig наблюдали авторы работы [21] на примере теноилтрифторацетоната (**TTA**) тербия Tb(TTA)₃(H₂O)₂. При экспериментально подтвержденном в условиях замораживания (10–60 K) эффективном переносе энергии возбуждения от ТТА к иону Tb³⁺ в комплексе люминесценция последнего не наблюдается вследствие того, что E_{T_1} (TTA) = 20410 см⁻¹ ниже энергии излучательного уровня Tb(⁵D₄) = 20500 см⁻¹ и в возбужденном состоянии проис-

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 75 № 3 2020

Рис. 3. Спектры люминесценции 1 мкг/мл иттербия в присутствии 10 мкг/мл самария (комплекс с теноилтрифторацетоном и фенантролином) (а) и 1 мкг/мл иттербия (комплекс с ксиленоловым оранжевым и этонием) (б). $c_{\text{TTA}} = 1 \times 10^{-3}$ M, $c_{\Phi e H} = 1 \times 10^{-3}$ M, $c_{\text{KO}} = 5 \times 10^{-4}$ M, $c_{\Im} = 1 \times 10^{-3}$ M. Предел определения иттербия составляет 1×10^{-4} %.

ходит обратный перенос энергии от Tb³⁺ к TTA – его тушителю.

Эти примеры подтверждают важность соответствия значений E_{T_1} лиганда и энергии излучательного уровня Ln^{3+} , которое определяет наличие или отсутствие возможности возбуждения и наблюдения узкополосной (~10 нм) "чистого цвета" люминесценции Ln: красной (Eu), оранжевой (Sm), зеленой (Tb), желтой (Dy), голубой (Tm). Интенсивность люминесценции определяется главным образом свойствами органических реагентов, их строением, способностью к комплексообразованию, поглощению УФ-излучения, а также величиной $E_{T_1}(Lig)$, определяющей

возможность переноса энергии возбуждения к иону Ln³⁺ в комплексе.

Наиболее интенсивную люминесценцию Ln проявляют в комплексах с β -дикетонами. Это – хелатные соединения с высоким значением констант образования (lg $\beta_3 = 13-18$), в которых центральный ион координирован с 3 молекулами Lig. Эффективность возбуждения Ln³⁺ и соответственно интенсивность его люминесценции ($I_{люм}$) зависят от того, насколько ограничены или исключены внутримолекулярные безызлучательные потери энергии возбуждения (**ВМПЭ**), связанные с колебаниями групп –OH молекул воды ("OH-осцилляторов"), входящих во внутреннюю координационную сферу комплекса, а также групп –NH, –CH, –OH лиганда, которые могут быть снижены его дейтерированием (до 1.5 раз) [22].

С целью увеличения гидрофобности В-дикетонов были синтезированы производные ацетилацетона со фторированными заместителями (R_F) разной длины и строения, в том числе содержащие атом кислорода [23, 24]. Поскольку замести--C₆F₁₃ и -C₈F₁₇ являются остатками тели перфторэнантовой и перфторпеларгоновой кислот, предположение об образовании ими высокогидрофобной оболочки, экранирующей Ln³⁺ от Н₂О, подтверждали данными молекулярной механики и ЯМР-спектроскопии. Найленные значения гидрофобности фторированных β-дикетонов в 2-3 раза выше, чем нефторированных аналогов [25]. Следует отметить роль асимметрии Lig, определяющей разность зарядов на атомах кислорода карбонильных групп и полярность связи с ними иона Ln³⁺ [26]. В комплексах с симметричными β-дикетонами (ацетилацетон и др.), содержащими даже длинные R_{F} , $I_{пюм}$ ионов Ln^{3+} ниже, чем с асимметричными, особенно содержащими циклические заместители: -тиенил, -фенил, -нафтоил ("фотоантенны"), интенсивно поглощающие УФ-излучение.

В табл. 2 и 3 приведены результаты определения Sm, Eu, Nd и Yb в оксидах Ln и Y высокой чистоты методом, разработанным в работе [23], с использованием вновь синтезированных фенильных производных ацетилацетона, содержащих длинные фторированные заместители бензоил-

Таблица 1. Результаты определения Nd и Yb в образцах Sm_2O_3 с использованием их комплексов с ксиленоловым оранжевым в присутствии этония (\mathbb{N} 1, 3) и в 70%-ном диметилсульфоксиде (\mathbb{N} 2) [20]

No		N	d	Yb		
JN⊼	oopasen Sin ₂ O ₃	$(c \pm \delta),$ нг/мл	$c \times 10^3, \%$	$(c \pm \delta),$ нг/мл	$c imes 10^{-4}$, %	
1	Ι	1.34 ± 0.06	4.48	0.97 ± 0.09	3.23	
2	Ι	1.35 ± 0.07	4.49	0.98 ± 0.05	3.27	
3	II	1.30 ± 0.03	4.33	1.05 ± 0.07	3.50	

Оконд	E	u	Yb		
Оксид	$\overline{x} \pm \Delta x$	s _r	$\overline{x} \pm \Delta x$	s _r	
La ₂ O ₃	$(1.0 \pm 0.1) \times 10^{-4}$	0.06	$(3.7 \pm 0.2) \times 10^{-4}$	0.05	
Ce ₂ O ₃	$(5.2 \pm 0.1) \times 10^{-3*}$	0.02	_	—	
Pr ₂ O ₃	$(5.0 \pm 0.1) \times 10^{-3}$	0.07	$(5.0 \pm 0.2) \times 10^{-2}$	0.04	
Gd_2O_3	$(4.4 \pm 0.1) \times 10^{-4}$	0.06	_	_	
Dy ₂ O ₃	$(2.0 \pm 0.2) \times 10^{-4}$	0.08	_	—	
Er ₂ O ₃	_	—	$(6.3 \pm 0.2) \times 10^{-3}$	0.05	
Tm_2O_3	$(1.2 \pm 0.1) \times 10^{-3}$	0.05	$(7.9 \pm 0.1) \times 10^{-4}$	0.04	
Lu ₂ O ₃	$(5.0 \pm 0.3) \times 10^{-4}$	0.06	$(1.5 \pm 0.1) \times 10^{-4}$	0.05	
Y_2O_3	$(1.0 \pm 0.2) \times 10^{-4}$	0.02	$(5.8 \pm 0.2) \times 10^{-4}$	0.03	

Таблица 2. Результаты (%) определения Eu и Yb в оксидах редкоземельных элементов высокой чистоты (*n* = 3-5, *P* = 0.95)

*Определено методом "введено-найдено".

Таблица 3. Результаты (%) определения Sm и Nd в оксидах редкоземельных элементов высокой чистоты (n = 3-5, P = 0.95)

Оконя	Si	m	Nd		
Оксид	$\overline{x} \pm \Delta x$ $s_{\rm r}$		$\overline{x} \pm \Delta x$	s _r	
La ₂ O ₃	$(3.0 \pm 0.2) \times 10^{-4}$	0.05	$(1.1 \pm 0.1) \times 10^{-4}$	0.02	
Ce ₂ O ₃	$*(3.1 \pm 0.2) \times 10^{-2}$	0.06	$*(5.1 \pm 0.1) \times 10^{-1}$	0.08	
Pr ₂ O ₃	$(3.2 \pm 0.2) \times 10^{-3}$	0.07	$(2.3 \pm 0.1) \times 10^{-2}$	0.02	
Gd_2O_3	$(1.4 \pm 0.1) \times 10^{-3}$	0.07	$(5.0 \pm 0.1) \times 10^{-4}$	0.04	
Dy ₂ O ₃	$(2.6 \pm 0.2) \times 10^{-3}$	0.06	—	—	
Y ₂ O ₃	$(1.2 \pm 0.2) \times 10^{-4}$	0.06	$(8.6 \pm 0.2) \times 10^{-5}$	0.02	

*Определено методом "введено-найдено".

перфторгексилкетон и бензоилперфтороктилкетон. Пределы обнаружения, рассчитанные по 3*s*-критерию, составляют 1×10^{-6} % для Sm, 1×10^{-8} % для Eu, 3×10^{-5} % для Nd и 7×10^{-5} % для Yb. Определению Sm, Eu, Nd и Yb разработанным методом не мешают катионы щелочных и щелочноземельных металлов, La, Gd, Lu, Y; 1000-кратные количества Zn, Al, Co, Ni снижают интенсивность люминесценции определяемых элементов. Снижают люминесценцию также Cu, Fe и лантанидытушители Ce, Pr, Ho, Er, Tm. Из анионов мешают определению фосфат, сульфат, в меньшей степени нитрат, не мешают хлорид и перхлорат.

Усиление люминесценции Ln в комплексах с асимметричными β -дикетонами, содержащими длинные R_F , в том числе включающими атом кислорода, отмечают авторы работ [27–29]. В табл. 4 приведены результаты количественного определения в оксидах Ln содержания Nd, Sm и Eu [28]. Существенное возрастание люминесценции Eu,

Sm и Nd наблюдалось в случае биядерных комплексов с бис- β -дикетонами [30]. В работе [31] описано влияние разных катионов и анионов на люминесценцию ацетилацетоната Tb³⁺ в 95%-ном этаноле (табл. 5). Строению, спектроскопическим свойствам и использованию β -дикетонатов лантанидов посвящен обзор [32].

213

ОБРАЗОВАНИЕ СМЕШАНОЛИГАНДНЫХ КОМПЛЕКСОВ

Работы Полуэктова [12] положили начало применению новых аналитических форм Ln- β -дикетон-органическое основание для высокочувствительного люминесцентного определения Ln. Введение в комплекс второго (дополнительного) лиганда приводит к увеличению интенсивности люминесценции в том случае, если E_{T_1} этого лиганда выше E_{T_1} комплекса или энергии излучательного уровня Ln³⁺ [12]. В практике люминес-

Orona D3.5	Nd	Į	Sm		Eu	
Оксид 1 55	$(\overline{x} \pm \Delta x) \times 10^{-4}$	s _r	$\overline{x} \pm \Delta x$	s _r	$\overline{x} \pm \Delta x$	s _r
La ₂ O ₃	3.9 ± 0.2	0.05	$(3.5 \pm 0.2) \times 10^{-4}$	0.04	$(1.08 \pm 0.06) \times 10^{-4}$	0.05
Gd_2O_3	1.9 ± 0.2	0.07	$(2.00 \pm 0.03) \times 10^{-5}$	0.05	$(1.6 \pm 0.1) \times 10^{-6}$	0.07
Lu_2O_3	2.11 ± 0.09	0.04	$(2.01 \pm 0.03) \times 10^{-5}$	0.06	$(2.07 \pm 0.05) \times 10^{-7}$	0.03
Y ₂ O ₃	3.8 + 0.3	0.06	$(2.05 \pm 0.04) \times 10^{-5}$	0.07	$(1.18 \pm 0.09) \times 10^{-7}$	0.06

Таблица 4. Результаты (%) определения неодима, самария и европия в оксидах редкоземельных элементов высокой чистоты (n = 6, P = 0.95)

центного определения Ln широко используют их комплексы с β -дикетонами и органическими основаниями (B) типа Ln(Lig)₃B, где B – 1,10-фенантролин и его производные – неокупроин и батофенантролин, а также триоктилфосфиноксид, трифенилфосфиноксид и др. [12, 33–36]. В табл. 6 приведены значения пределов определения оксидов Sm и Eu в различных РЗЭ [12, С. 105]. С использованием смешанолигандного комплекса Pr³⁺ с TTA и диантипирилпропилметаном (ДАПМ) – Pr(TTA)₃ДАПМ – определено содержание Pr в оптических материалах на основе допированных им соединений p- и d-металлов [37]. Результаты определения празеодима в оптических материалах приведены в табл. 7.

β-Дикетонаты Ln способны также к образованию продуктов присоединения с другими электронодонорными соединениями – 1,4-диоксаном, диметилформамидом, диметилсульфоксидом (**ДМСО**). При этом интенсивность полос СЧП как поглощения, так и люминесценции ионов Ln³⁺ изменяется в зависимости от природы не только лигандов, но и растворителей, характеризующихся разной донорно-акцепторной способностью [38–43].

Из окрашенных реагентов представляют интерес красители трифенилметанового ряда (ТФМК), которые образуют люминесцентные соединения с Nd³⁺ и Yb³⁺ [12, 44]. Спектры люминесценции этих соединений со всеми ТФМК идентичны: в случае Nd³⁺ — это две полосы с максимумами при 878, 903 и 1060 нм, а Yb³⁺ – одна полоса с максимумом при 980 нм. Из приведенных в табл. 8 спектроскопических характеристик комплексов Nd и Yb с ТФМК видно, что при практически одинаковых значениях молярных коэффициентов поглощения (є) комплексов Nd и Yb квантовый выход (ф) люминесценции соединений Yb выше, а его нижняя граница определяемых содержаний ниже в 3–5 раз. При введении в комплекс второго лиганда происходит батохромный сдвиг полос поглощения на 20-60 нм, а I_{люм} разнолигандных комплексов увеличивается в ≥5 раз. В присутствии катионных поверхностно-активных веществ (КПАВ) при таком же смещении полос в красную

область І_{люм} увеличивается в 14 (Nd)-36 (Yb) раз. Катионные поверхностно-активные вешества при концентрации до критической концентрации мицеллообразования (ККМ) образуют ассоциаты четкого стехиометрического состава, а вытеснение молекул воды из внутренней координационной сферы комплекса обеспечивает вхождение в него бо́лышего количества молекул лиганла (n = 2): Nd : Lig : этоний или цетилтриметиламмоний бромид (ЦТАБ) = 1 : 2 : 2; Nd : Lig : цетилпиридиний бромид = 1:2:4. Методики определения Yb в оксидах Ln с использованием комплексных соединений их с окрашенными реагентами в присутствии ПАВ приведены в работе [12]. Результаты определения следовых количеств Tb³⁺ в смеси Ln с использованием смешанолигандного комплекса с 4-хлорсалициловой кислотой и ЦТАБ приведены в табл. 9 [45]. Типы организованных сред и применение их в анализе описаны в работах [46-50]. Реакциям Ln в мицеллярных средах посвящены также работы [51, 52]. Описано [53] использование циклодекстринов, входящих в первую и вторую сферы металлокомплексов. Следует отметить, что увеличение концентрации КПАВ до ККМ и массы соединения приводит не только к возрастанию $I_{\text{люм}}$ Ln³⁺, но и к снижению межмолекулярных потерь энергии, связанных с диффузным столкновением молекул в растворе.

БЕЗЫЗЛУЧАТЕЛЬНЫЙ ПЕРЕНОС ЭНЕРГИИ ВОЗБУЖДЕНИЯ

Влияние на люминесценцию диффузии и связанного с ней безызлучательного переноса энергии возбуждения рассмотрено в работах [12, 54–56]. Исследуя люминесценцию комплексов неодима с дейтерированным гексафторацетилацетоном в ДМСО- d_6 , авторы работы [57] пришли к выводу, что на величину $I_{люм}$ в наибольшей степени влияют межмолекулярные безызлучательные потери энергии (ММПЭ), обусловленные диффузией. В работе [58] на примере комплексов Tb³⁺ с производными пиразола — пиразолонами-5 и пиразол-5-карбоновыми кислотами — исследована возможность снижения как ВМПЭ, так и ММПЭ.

Внутримолекулярные потери энергии устраняли добавлением высокодонорного растворителя – ДМСО (50 об. %) [59], а ММПЭ – сорбцией комплекса на полимерную матрицу полиметилметакрилат (**ПММА**). В результате интенсивность люминесценции комплексов Tb³⁺ с исследуемыми лигандами возрастает от 3.8 раза до двух порядков величины (табл. 10) [58].

Такой подход может быть использован для увеличения люминесценции Ln в комплексах и с другими реагентами. Усиление люминесценции Ln в смешанолигандных комплексах с ацилпиразолонами — структурными аналогами β-дикетонов описано в работах [60, 61] и обзорах [62–64].

Поиск новых интенсивно люминесцирующих комплексных соединений Ln является ключевым моментом всех проводимых исследований. Большое внимание уделяется синтезу органических реагентов, содержащих в структуре несколько циклов — фотоантенн, обеспечивающих интенсивное поглощение возбуждающего УФ-излучения. Отмечено [65] влияние числа "антенн" в лиганде на квантовый выход и время жизни люминесценции тербия в гидроксаматных комплексах.

СЕНСИБИЛИЗАЦИЯ ЛЮМИНЕСЦЕНЦИИ ОПРЕДЕЛЯЕМЫХ ЛАНТАНИДОВ В РАСТВОРАХ РАЗНОМЕТАЛЛЬНЫХ КОМПЛЕКСОВ

Комплексы лантанид-лантанид (f-f). Увеличение на порядки величины интенсивности и времени жизни люминесценции Eu³⁺ ионами Tb³⁺ в разнометалльных комплексах с антипирином, антраниловой и салициловой кислотами впервые описано в работе Полуэктова с сотр. [66], а позднее подтверждено на примере комплексов Ln с β-дикетонами [67]. В присутствии в растворе ионов Sm³⁺ и Eu³⁺ – акцепторов энергии – часть энергии сенсибилизатора (ионов Tb³⁺) передается им с усилением их люминесценции в десятки раз (рис. 4) [12]. Усиление люминесценции Eu³⁺ ионами Tb³⁺ в комплексах с макроциклическими лигандами описано в работе [68], в комплексах Yb³⁺ с каликс[4]аренами – в работе [69]. Многократное усиление люминесценции Eu³⁺ ионами Tb³⁺ в сорбатах их комплексов с налидиксовой кислотой на фосфате циркония (ZrP) и CaWO₄ (рис. 5) сопровождается резким снижением люминесценции Tb³⁺ в результате переноса энергии возбуждения к иону Eu³⁺ в разнометалльном комплексе [70]. Это же отмечено в работе [71] в случае комплексов Тb и Eu c 2,2,6,6-тетраметил-3,5-гептандионом в разных растворителях. Сенсибилизация люминесценции тербия ионами Tm³⁺ в разнометалльном комплексе описана в работе [72].

Таблица 5. Влияние избытка добавленных ионов на определение Tb^{3+} (каждый образец содержал 0.016 мкг/мл Tb^{3+} в 3 \times 10⁻⁴ М ацетилацетоне в 95%-ном этаноле; $\lambda_{воз6} = 310$ нм, $\lambda_{\rm изл} = 545$ нм)

Добавлено		Найлено Th ³⁺	Тушение <i>І</i> фл		
ион	содержание, мкг/мл	мкг/мл	Tb ³⁺ , %*		
La ³⁺	1.40	0.0148	7.5		
Ce ³⁺	1.40	0.0142	11.3		
Pr ³⁺	1.42	0.0148	7.5		
Nd ³⁺	1.44	0.0149	7.0		
Sm ³⁺	1.50	0.0153	4.4		
Eu ³⁺	1.52	0.0149	7.0		
Gd^{3+}	1.56	0.0150	6.3		
Dy ³⁺	1.62	0.0149	7.0		
Ho ³⁺	1.64	0.0150	6.3		
Er ³⁺	1.68	0.0149	7.0		
Tm ³⁺	1.70	0.0150	6.3		
Yb ³⁺	1.74	0.0148	7.5		
Lu ³⁺	1.76	0.0144	10.0		
Y ³⁺	0.89	0.0152	5.0		
Na ⁺	3.29	0.0155	3.0		
NH_4^+	2.98	0.0152	4.6		
\mathbf{K}^+	2.59	0.0154	3.4		
Mg ²⁺	1.97	0.0154	3.6		
Ca ²⁺	2.66	0.0150	6.2		
Fe ³⁺	0.93	0.0141	13.3		
Al ³⁺	1.32	0.0144	9.8		
Cu ²⁺	1.06	0.0156	2.6		
Ni ²⁺	1.09	0.0154	4.3		
Co ²⁺	1.12	0.0148	7.5		
Mn ²⁺	0.92	0.0150	6.5		
Cl-	3.63	0.0155	3.2		
NO_3^-	4.62	0.0156	2.8		
CO_{3}^{2-}	4.11	0.0154	4.0		

*Среднее значение 6 измерений для каждого образца.

Сенсибилизация люминесценции Eu, Tb, других Ln возможна также в разнометалльных комплексах с La, Gd и Lu, не проявляющими собственной люминесценции, но являющимися источниками энергии возбуждения за счет связанных с ними лигандов, дополнительно передаваемой определяемому Ln в разнометалльных нано-

МЕШКОВА, ДОГА

Alement ocnoba	Sm	₂ O ₃	Eu ₂ O ₃		
Элемент-основа	с фенантролином	с коллидином	с фенантролином	с коллидином	
La	0.0025	0.005	0.0005	0.0005	
Ce	2.0	_	0.1	_	
Pr	1.2	_	0.05	_	
Nd	0.8	_	0.05	—	
Sm	—	—	0.004	—	
Eu	0.025	—	_	—	
Gd	0.00125	0.001	0.0002	0.0001	
Tb	0.0013	0.001	0.0005	0.0001	
Dy	0.005	—	0.0008	—	
Но	0.5	—	0.01	—	
Er	1.25	—	0.05	—	
Tm	0.1	—	0.1	—	
Yb	0.04	0.005	0.0006	0.0005	
Lu	0.0025	0.005	0.0005	0.0005	
Y	0.03	0.005	0.0006	0.0005	

Таблица 6. Пределы обнаружения (%) Sm₂O₃ и Eu₂O₃ в различных редкоземельных металлах

Таблица 7. Результаты определения празеодима в оптических материалах (*n* = 5, *P* = 0.95)

Образец	Содержание Pr, %	Найдено Pr, %	s _r
Sr _{0.999} Pr _{0.001} AlF ₅	0.067	0.066 ± 0.002	0.028
$Sr_{0.995}Pr_{0.005}AlF_5$	0.336	0.33 ± 0.01	0.023
$Sr_{0.99}Pr_{0.01}AlF_5$	0.670	0.67 ± 0.01	0.012
$Sr_{0.985}Pr_{0.015}AIF_5$	1.005	1.01 ± 0.02	0.015
Lu _{0.85} In _{0.1} Pr _{0.05} BO ₃	3.117	3.11 ± 0.04	0.011

структурных комплексах [12, 73]. Как отмечают авторы работы [73], эффект максимального увеличения интенсивности люминесценции определяемого Ln достигается только при одновременном, а не последовательном введении ионов Ln в раствор, когда сведена к минимуму возможность предварительного образования гомогенных структур хелатов Ln-акцептора и Ln-донора энергии.

Закономерности колюминесценции ионов Ln^{3+} , формирования наночастиц их комплексов с органическими лигандами в водных растворах, механизма усиления люминесценции Ln^{3+} в наночастицах этих комплексов, применения явления колюминесценции в химическом анализе рассмотрены в обзоре [74]. Усиление люминесценции Eu^{3+} в разнометалльных β-дикетонатных комплексах с La, Gd, Y описано в работе [75]. Авторы отмечают, что наибольший эффект усиления люминесценции дают катионы, ионный радиус которых ближе к ионному радиусу сенсибилизируемого (определяемого) лантанида. Наибольшее

усиление люминесценции определяемых Ln наблюдается в присутствии La, Gd, Lu и Y, с которыми в комплекс привносятся дополнительные лиганды — источники энергии возбуждения [12].

Ионы лантанидов с низкими значениями энергии излучательных уровней (Pr^{3+} , Nd^{3+} , Ho^{3+} , Er^{3+} , Tm^{3+}) и проявляющие люминесценцию в ближней ИК-области спектра тушат люминесценцию Sm^{3+} , Eu^{3+} , Tb^{3+} и Dy^{3+} — наиболее интенсивно излучающих лантанидов. Однако Tm^{3+} , имеющий три излучательных уровня, может как сенсибилизировать, так и тушить люминесценцию Ln^{3+} . Только Yb^{3+} характеризуется одним излучательным и одним основным уровнями, что обусловливает наименьшие безызлучательные потери энергии возбуждения и наиболее высокую интенсивность его ИК-люминесценции [76].

Комплексы лантанид-d-металл (f-d). Изучение f-d-комплексов началось в 1985 г. Бенчини наблюдал уникальные магнитные свойства комплексов Cu^{II}Gd^{III} [77] и Cu^{II}Eu^{III} [78]. В обзоре

Реагент	рН _{опт}	λ, нм	$\epsilon \times 10^{-4}$	$\phi \times 10^{-3}$	с _{мин} , мкг/мл			
Иттербий								
Фталексон S	7.5	550	2.70	2.91	0.02			
Бромфталексон S	6.5	580	2.25	1.85	0.03			
Ксиленоловын оранжевый	5.5	575	2.60	2.96	0.02			
Метилтимоловый синий	6.5	600	1.65	1.90	0.03			
Фенилфлуорон	9.5	540	2.80	0.95	0.06			
Салицилфлуорон	6.5	545	2.75	0.90	0.06			
Нонилфлуорон	7.5	535	2.85	0.64	0.10			
Ализариновый красный S	4.5	530	0.80	0.15	0.40			
Арсеназо І	7.0	555	2.40	0.07	0.80			
Торон I	7.5	510	1.80	0.09	0.70			
Хдорфосфоназо III	4.0	665	3.05	0.20	0.30			
Пиридилазонафтол	8.5	560	2.75	1.15	0.05			
Пиридилазорезорцин	6.5	515	2.25	0.34	0.20			
Пиридилазоаминофенол	10.0	565	2.40	0.80	0.08			
Тиазолилазорезорцин	10.0	555	2.20	0.36	0.20			
Пиридилазоаминохрезол	10.0	560	2.55	0.76	0.08			
Бромбензтиазо	8.5	545	2.55	0.93	0.06			
Морин	5.0	380	0.18	0.28	0.25			
Кверцетин	6.0	385	0.29	0.09	0.80			
Неодим								
Фталексон S	5.5	560	2.90	0.49	0.08			
Бромфталексон S	4.5	580	2.20	0.38	0.15			
Ксиленоловый оранжевый	6.5	575	2.75	0.48	0.10			
Метилтимоловый синий	7.0	595	2.50	0.44	0.17			

Таблица 8. Характеристики комплексов иттербия и неодима с органическими реагентами, поглощающими свет в видимей области спектра

Таблица 9. Определение содержания Tb³⁺ в смешанных образцах оксидов лантанидов

Образец	Введено, мкг	Найдено, мкг	Мера правильности	<i>s</i> _r , %
1	40.0	40.2, 39.7, 40.1, 39.2, 39.6	99.4	1.2
2	40.0	39.5, 39.4, 39.5, 39.1, 39.9	98.8	1.6

Примечание. Образец 1: La 190, Ce 440, Pr 56, Nd 240, Sm 105, Eu 11, Gd 63, Tb 10, Dy 43, Ho 12, Er 24, Tm 21, Yb 26, Lu 7, Y 310; образец 2: La 13.83, Ce(IV) 62.98, Pr 5.76, Nd 14.43, Sm 1.83, Eu 0.25, Gd 0.42, Tb 0.027, Dy 0.077, Ho 0.019, Er 0.022, Tm 0.0076, Yb 0.015, Lu 0.001, Y 0.045 [45].

[79] приведены примеры эффективного тушения люминесценции Eu³⁺ и Tb³⁺ ионами Cu²⁺, Ni²⁺ и Cr³⁺ путем переноса энергии возбуждения к ним через связующие атомы кислорода в гетероядерных комплексах. Тушащее действие d-металлов послужило основанием для использования комплексов Sm, Eu и Tb [80, 81] в качестве люминесцентных зондов для определения наномолярных концентраций Cu²⁺ и и Cr³⁺ как по тушению люминесценции Sm³⁺ и Eu³⁺ [80–82], так и снижению времени жизни люминесценции комплекса

Тb³⁺ с хинолин-2-оном [83]. Для исследования влияния катионов d-металлов на люминесценцию Ln³⁺ в гетероядерных комплексах, кроме β -дикетонов, использовали основания Шиффа [84] и другие органические реагенты. Незначительное число работ посвящено изучению f—dкомплексов с подандами. Впервые в разнометалльном комплексе с подандом [1,5-бис(2-гидразинокарбофенокси)-3-оксапентан (ГКФО)], содержащим гидразиновые фрагменты, было обнаружено усиление (в 30 раз) люминесценции

МЕШКОВА, ДОГА

Таблица 10. Изменение интенсивности люминесценции пиразолкарбоксилатов тербия при снижении внутри-(I_2/I_0 , I_3/I_0) и межмолекулярных (I_1/I_0 , I_3/I_2) потерь энергии возбуждения ($c_{\text{Tb}} = 1 \times 10^{-5}$ M, $c_{\text{ДМСО}} = 50$ об. %, $\lambda_{\text{люм}} = 545$ нм)

Пигоня		$I_{_{\rm ЛЮМ}}$, отн. ед.				Kpathocti vienunenua I				r
литан,	ц	H ₂ O		Н ₂ О-ДМСО		кратность увеличения 1				
R ₁	R ₂	<i>I</i> ₀ (p–p)	<i>I</i> ₁ (ПММА)	<i>I</i> ₂ (p–p)	<i>I</i> ₃ (ПММА)	I_2/I_0	I_{3}/I_{1}	I_{1}/I_{0}	<i>I</i> ₃ / <i>I</i> ₂	<i>I</i> ₃ / <i>I</i> ₀
(CH ₃) ₂ CHCH ₂	C ₆ H ₅	18	271	27	490	1.5	1.8	14.2	16.3	27.2
C_6H_5	Н	12	210	28	420	2.3	2.0	17.5	15.0	35.0
C ₆ H ₄ Cl	Н	23	300	50	570	2.2	1.9	13.0	11.4	24.8
	Н	126	360	165	480	1.3	1.3	2.9	2.9	3.8
(CH ₃) ₂ CH	C ₆ H ₅	15	600	43	1260	2.8	2.1	40.0	29.1	84.0
C_6H_5	C_6H_5	17	870	56	1680	3.2	2.1	51.2	33.2	98.8

Тb³⁺ ионами меди [85, 86]. 1000-Кратные количества ионов Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Zn²⁺, Cd²⁺, Hg²⁺ в условиях получения разнометалльного комплекса Tb–Cu–ГКФО (1:1:1) не сенсибилизируют люминесценцию тербия. Интенсивная сенсибилизация люминесценции ионов Tb³⁺ в комплексе с ГКФО наблюдается в условиях образования разнометалльного комплекса (pH 6.2), при которых,

вероятно, реализуется возможность внутримолекулярного переноса энергии от меди(I) к тербию, аналогично наблюдаемому в работе [87]. При этом лиганды, включающие гидразиновые фрагменты (pH > 5), содержат енольный атом кислорода. Это позволило предположить, что разнометалльный комплекс Tb–Cu–ГКФО образуется по следующей схеме (схема 1):

Схема 1. Образование комплекса Тb-Сu-1,5-бис(2-гидразинокарбофенокси)-3-оксапентан.

с одновременной координацией енольных атомов кислорода ионами тербия и меди. Эффект усиления люминесценции ионов Tb³⁺ в комплексе Тb-Cu-ГКФО подтвержден для комплексов с ГКФО ионов Nd³⁺ и Yb³⁺, излучающих в ближней ИК-области спектра [86]. Влияние Cr³⁺ на люми-

Рис. 4. Схема переноса энергии между ионами Tb^{3+} и Eu в разнометалльных комплексах с теноилтрифторацетоном и дибензоилметаном. Для иона европия энергия органической части молекулы не показана; волнистые стрелки – безызлучательные переходы.

несценцию его гетероядерных комплексов с лантанидами, излучающими в видимой и ИК-областях спектра, рассмотрено в работе [88]. Вопросы синтеза, структуры, фотолюминесцентных свойств 3d-4f-комплексов рассмотрены в обзорах [89, 90].

ИСПОЛЬЗУЕМЫЕ ПРИЕМЫ ОПРЕДЕЛЕНИЯ ОДНИХ ЛАНТАНИДОВ В ПРИСУТСТВИИ ДРУГИХ

Наибольшую трудность в анализе представляет определение Ln в парах не только соседних элементов (Sm-Eu, Tb-Dy), но и отстоящих друг от друга, когда их спектральные линии перекрываются частично (Eu, 612 нм-Sm, 645 нм; Dy, 570 нм-Тb, 545 нм) или полностью (Pr, 608 нм-Еu, 612 нм). Задача осложняется, когда необходимо определять содержание слабо излучающего Ln в присутствии Ln, обладающего интенсивной люминесценцией, например Pr-Eu, Sm-Eu, Dy-Tb.

Использование времяразрешенной люминесценции. Определение Ln в течение времени жизни их люминесценции от нескольких сотен микросекунд до двух миллисекунд [91, 92] нашло широкое применение в биоанализе [93]. Описано [94] определение этим методом 0.5-5.0% диспрозия в скандий-боратах, допированных тербием и диспрозием (табл. 11). Анализ спектров люминесценции с

Рис. 5. Зависимость интенсивности люминесценции Eu (1) и Tb (2) в сорбатах на фосфате циркония их комплексов с налидиксовой кислотой от мольного соотношения Еи и Тb. Исходная концентрация европия 0.01 М.

временным разрешением комплексов Tb³⁺ и Dy³⁺ 3-(6-бензодиоксанил)-пиразол-5-карбоновой кислотой показал принципиальную возможность определения содержания Dv³⁺ в присутствии Tb³⁺ путем выделения короткоживущей компоненты свечения диспрозия. Разработанная методика пригодна для анализа объектов, в которых соотношение Tb : Dy ≤ 10 : 1.

Выбор участка спектра регистрации люминесценции лантанидов. Лантаниды Pr, Nd, Sm, Eu, Dy и Tm проявляют люминесценцию как в видимой, так и в ИК-областях спектра, что обеспечивает возможность выбора такого спектрального интервала, в котором линии излучения элементаосновы и определяемого элемента перекрываются не полностью, а частично, как в случае пары Pr (605 нм)-Еи (612 нм), когда определение Pr в разнометалльном комплексе с β-дикетоном возможно с чувствительностью 0.01 мкг/мл [37].

Таблица 11. Результаты (%) определения диспрозия в люминесцентных материалах (n = 5, P = 0.95)

Образец	Содержание по паспорту	Найдено	s _r
ScBO ₃ Tb _{1.5%} Dy _{5.0%}	5.00	4.96 ± 0.08	0.018
ScBO ₃ Tb _{1.5%} Dy _{1.0%}	1.00	1.02 ± 0.06	0.055
ScBO ₃ Tb _{1.5%} Dy _{0.5%}	0.50	0.46 ± 0.02	0.054

По данным [12] чувствительность определения Sm^{3+} в Eu_2O_3 по люминесценции комплекса с теноилтрифторацетоном и 1,10-фенантролином составляет 2.5 × 10^{-2%}. Однако при регистрации люминесценции Sm^{3+} в ИК-области, где $\lambda_{\text{макс}}(Sm) =$ = 950 нм удалена от $\lambda_{\text{макс}}(Eu) = 810$ нм на 140 нм, возможно определение Sm^{3+} с чувствительностью 5 × 10^{-3%} [95].

Маскирование лантанила-основы при определении примесей. Маскирование при определении одних Ln в присутствии других, даже в пределах одной группы (цериевой или иттриевой), – известный прием в спектрофотометрии [12], который в люминесцентном анализе не использовали. Между тем это один из путей увеличения селективности и чувствительности определения Ln, в частности, при наложении спектральных линий мешающих элементов на аналитическую линию определяемого элемента. Так, устранение мешающего влияния Ln с низкими потенциалами восстановления возможно путем их маскирования с помощью восстановителей [96]. Из всех Ln европий характеризуется самым низким потенциалом восстановления ($E_{\text{Eu}^{3+}/\text{Eu}^{2+}} = -0.35$ В), но поскольку Eu²⁺ чувствителен к следам кислорода в растворе, его стабилизируют, переводя в EuSO₄. Для восстановления используют редуктор Джонса. Пределы обнаружения Nd и Sm при этом составляют 3.2×10^{-4} и 2.2×10^{-4} % соответственно, что позволяет использовать этот метод для анализа Eu_2O_3 не только люминофорной, но и более высокой степени чистоты [97].

Усиление люминесценции лантанидов при низких температурах. В люминесцентном анализе охлаждение до 77 К используют для снижения пределов обнаружения Ln [12]. Так, при замораживании растворов комплексов Yb³⁺ с произволными оксиантрахинона их интенсивность люминесценции возрастает в 15-22 раза [98]. Установлено [99], что замораживание до 77 К приводит к увеличению интенсивности излучения комплексов Tb^{3+} и Dy^{3+} с ацетоуксусным эфиром в 240 (Tb) и 5 (Dy) раз в случае растворов, в 7.8 (Tb) и 9.3 (Dy) раз для взвесей осадков и в 640 (Tb) и 750 (Dy) раз при использовании бензольных экстрактов, что имеет значение для увеличения чувствительности метода. Прием замораживания до 77 К комплексов Nd³⁺ с теноилгептафторацетоном и N-октилнафтиламидом позволил разработать методику определения Nd в La_2O_3 с пределом обнаружения $1 \times 10^{-4}\%$ [100].

ПОВЫШЕНИЕ ИНТЕНСИВНОСТИ ЛЮМИНЕСЦЕНЦИИ ЛАНТАНИДОВ ПУТЕМ СНИЖЕНИЯ МЕЖМОЛЕКУЛЯРНЫХ БЕЗЫЗЛУЧАТЕЛЬНЫХ ПОТЕРЬ ЭНЕРГИИ ВОЗБУЖДЕНИЯ

Известно, что интенсивность люминесценции Ln в комплексах с органическими реагентами в наибольшей степени снижают безызлучательные потери энергии возбуждения, обусловленные тепловым соударением молекул в растворе в результате диффузии, для устранения которой используют разные приемы.

Сорбция комплексов на твердые матрицы, включая полимерные. Эффективным способом понижения пределов определения в результате подавления межмолекулярного переноса энергии, а также эффекта концентрирования является закрепление тем или иным способом комплексов определяемого Ln на твердой матрице – оксидах или солях тяжелых металлов, цеолитах, полимерах, в том числе модифицированных лигандами. Использование сорбционных методов обеспечивает возможность быстрого извлечения различных элементов, включая Ln, из больших объемов растворов разного состава [101, 102].

В работе [103] определена статическая емкость сорбента (СЕС) ПММА для всех Ln от La до Lu. Для суммы Ln величина СЕС составляет 8 мг/г сорбента. В случае ПММА, модифицированного ТТА, СЕС почти в 2 раза выше и для суммы Ln составляет 14.5 мг/г сорбента. Для модифицирования ПММА можно использовать другие β -дикетоны и налидиксовую кислоту. Модифицирование ПММА разными по своей природе реагентами позволило также разработать высокочувствительные и экспрессные сорбционно-люминесцентные методики определения Eu и Tb в водах с нижними границами определяемых содержаний 1 × 10⁻¹² и 1 × 10⁻¹¹ мкг/мл соответственно.

В полимерной пленке ПММА, как и в растворах, наблюдается перенос энергии возбуждения в комплексах с дибензоилметаном от Tb^{3+} к Eu^{3+} [104] и Sm³⁺ [105] с усилением их люминесценции. Комплексообразование европия с синтезированным бифенильным фторсодержащим β -дикетоном позволило [106] получить высокие значения квантового выхода люминесценции комплекса в ПММА – 70 и 98% при возбуждении светом с длиной волны 400 и 385 нм соответственно.

Использование полимеров, модифицированных органическими реагентами. Установлено [107], что оптические свойства иммобилизованных на полимерах реагентов и их комплексов с металлами практически аналогичны спектрам соединений, образующихся в растворах. При этом из различных способов иммобилизации реагентов к полимерной матрице предпочтительна ковалентная, обеспечивающая наибольшую устойчивость.

Альтернативой сорбции комплекса является его получение на полимере, модифицированном реагентом [108, 109]. Установлено [108], что интенсивность люминесценции комплекса Eu(TTA)₃, полученного на ПММА, модифицированном ТТА, в 6.7 раз выше, чем комплекса, сорбированного немодифицированным ПММА. В модифицированном сорбенте массовое соотношение компонентов ПММА : ТТА = 2 : 1. По данным ЯМР к ПММА β-дикетон присоединяется по С⁴ $[F_2C^1 - OC^2 - H_2C^3 - OC^4 - (\alpha$ -тиенил)]. Усилению люминесценции комплексов Ln³⁺ способствует также выделение ПММА в виде тонких нитей с большой излучающей поверхностью при смешивании водного раствора комплекса с раствором ПММА в ацетоне [110], а также фторирование ПММА [111].

Комплексообразование лантанидов с сополимерами, включающими β-дикетоны. В растворах комплексов Ln перенос энергии от определяемого элемента к лантаниду-тушителю возможен только при диффузионном соударении молекул. Сравнение интенсивности люминесценции β-дикетонатов Еи³⁺ в рялу лиганлов: В-ликетон – мономер – сополимер показало безусловное преимущество последних [112, 113]. Несмотря на то, что образование трис(хелатов) Ln с сополимерами (СП) затруднено, высокая интенсивность люминесценции комплексов Ln с СП по сравнению с их β-дикетонатами достигается не только за счет раздельного закрепления ионов Ln^{3+} в структуре $C\Pi$, но также за счет их большей молекулярной массы. Это обусловливает резкое снижение безызлучательных потерь энергии возбуждения при диффузионных соударениях молекул комплексов в растворах. Насколько возрастает люминесценция европия при сравнении раствора его комплекса с бензоилацетоном $Eu(BA)_3$, его сорбата его на ПММА и соединения с сополимером 3-аллил-1-фенилбутандионом-2,4 (аллил-ФАА-ММА), видно из спектров люминесценции на рис. 6.

Использование в анализе СП, включающих простые β-дикетоны (трифторацетон, бензоилацетон), позволило снизить пределы обнаруже-

Рис. 6. Спектры люминесценции иона европия (переход ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{2}$, $\lambda_{\text{max}} = 612$ нм): *1* – раствор комплекса с бензоилацетоном Eu(БА)₃, *2* – сорбат Eu(БА)₃ на полиметилметакрилате, *3* – соединение с сополимером 3-аллил-1-фенилбутандионом-2,4 (1 : 5). *c*_{Eu} = 1×10^{-6} M, *c*_{БА} = 1×10^{-4} M, *c*_{СОПОЛ} = 0.2 мг/мл.

ния европия в оксидах лантанидов-тушителей люминесценции (CeO₂, Pr₆O₁₁, Nd₂O₃, Ho₂O₃) на 2–3 порядка величины (до $n \times 10^{-4}$ %) (табл. 12) [113] по сравнению с наиболее часто используемым для этой цели комплексом европия с теноилтрифторацетоном и 1,10-фенантролином [12]. Синтез винил- β -дикетонов различного строения и их сополимеров с метилметакрилатом при разном соотношении мономеров описан в работе [114].

Влияние природы полимерной матрицы на люминесценцию лантанидов в комплексах с сополимерами. Изучение влияния природы полимерной матрицы на люминесценцию комплексов тербия с сополимерными β-дикетонами [114] показало,

Таблица 12. Результаты определения содержания европия в оксидах лантанидов – тушителей люминесценции (*n* = 5, *P* = 0.95)

Объект анализа	Сополимер	Найдено Еи,	s	Пределы обнаружения Eu, %		
	Сополимер	$c \times 10^3, \%$	⁵ r	данные [113]	данные [12]	
CeO ₂	Аллил-ФАА-стирол (1:5)	2.6 ± 0.1	0.05	3×10^{-4}	0.1	
Pr ₆ O ₁₁	Аллил-ТФА-стирол (1 : 2)	3.1 ± 0.2	0.05	6×10^{-4}	0.05	
Nd_2O_3	Аллил-ТФА-стирол (1 : 2)	3.0 ± 0.2	0.06	6×10^{-4}	0.05	
Ho ₂ O ₃ *	Аллил-ФАА-стирол (1:5)	1.23 ± 0.03	0.03	1×10^{-4}	0.01	

*Определено методом введено-найдено.

Puc. 7. Зависимость от количества сополимера в растворе интенсивности люминесценции комплексов Tb³⁺ с сополимерами полиметилметакрилата (*I*) и полистирола (*2*) с β-дикетонами, содержащими заместители $-CF_3$ (a) и $-C_6H_5$ (б) при соотношении с β-дикетон : мономер = 1 : 5. $c_{Tb} = 1 \times 10^{-4}$ M, условия регистрации люминесценции одина-ковые.

что, в отличие от комплексообразования в растворах лантанидов с мономерными β-дикетонами, образование соединений с СП возможно в том случае, когда фиксированные комплексообразующие группы расположены на поверхности сополимера таким образом, что ориентируют как положение β-дикетоновых фрагментов, так и самой матрицы СП. В связи с этим ионы Ln³⁺ проявляют более интенсивную люминесценцию в комплексах с СП, менее загруженными β-дикетонами, имеющими больше возможностей для координации. При этом расположение в СП β-дикетонов с определенным интервалом обеспечивает "отдаление" определяемого элемента от мешающего, что способствует повышению селективности и чувствительности определения одних Ln в присутствии других - тушителей люминесценции. Рис. 7 иллюстрирует зависимость интенсивности люминесценции комплексов Tb³⁺ с сополимерами ПММА и полистирола, включающими β-дикетоны с заместителями -CF₃ и -C₆H₅. Циклический заместитель -C₆H₅ (фотоантенна) в βдикетоне обусловливает более интенсивную люминесценцию Tb³⁺, чем фторированный -CF₃. При этом люминесценция Tb³⁺ в комплексах с СП на основе ПММА в 3–4 раза выше, чем с СП на основе полистирола за счет координации иона Ln³⁺ с карбонильным атомом кислорода ПММА.

Синтез сополимеров непредельных β-дикетонов со стиролом и метилметакрилатом описан в работе [114]. Фото- и электролюминесценции нового европийсодержащего сополимера посвящена работа [115].

Влияние агрегатного состояния комплексов лантанидов на интенсивность их люминесценции. Серьезной помехой наблюдению высокоинтенсивной люминесценции соединений Ln^{3+} являются внутри- и межмолекулярные потери энергии возбуждения (см. выше). В работе [58] показано, что при устранении внутримолекулярных потерь энергии заменой H_2O на ДМСО интенсивность люминесценции Tb^{3+} в комплексах с производными пиразола возрастает в 3 раза, а при снижении межмолекулярных потерь энергии за счет диффузии путем сорбции комплексов на полиметилметакрилат — в 50 раз. Это крайние состояния конденсированных систем раствор комплекса—твердая матрица.

Согласно теории диффузионного тушения люминесценции Вавилова [116], самым важным доказательством тушения люминесценции в растворах является наличие зависимости тушения от вязкости. Исследование влияния конденсированных сред, включающих раствор, вязкую среду и твердую матрицу, проведено на примере комплексов Eu³⁺ и Tb³⁺ с производными бензойной кислоты и β-дикетонами [117–119]. В качестве вязких сред использовали водные растворы водорастворимых полимеров (**ВРП**): поливинилового спирта ($c_{\text{макс}} = 17\%$), метилцеллюлозы (**МЦ**, $c_{\text{макс}} = 3\%$), камеди ксантана (**КК**, $c_{\text{макс}} = 2\%$) (схема 2). Растворы ВРП высокой концентрации использовали для получения пленок с допированными в них комплексами. Для получения сред с разной вязкостью исходные растворы ВРП разбавляли водой.

Как видно из приведенных на схеме 2 структур ВРП, наличие в них кислородсодержащих групп свидетельствует о возможности координации как свободных ионов Ln^{3+} , так и связанных в комплекс. При этом наблюдается батохромное смещение максимумов поглощения комплексов Tb^{3+} в KK относительно водных растворов на 11-19 нм. Это свидетельствует о влиянии ВРП на диффузионно контролируемые процессы в растворах комплексных соединений Ln^{3+} как при увеличении их содержания в растворах, так и в случае влияния посторонних элементов-тушителей.

Схема 2. Структурные формулы водорастворимых полимеров.

На рис. 8 приведены графики зависимости интенсивности люминесценции комплекса $Eu(TTA)_3$ от концентрации лантанида в водном растворе и в растворах МЦ разных концентраций. По мере увеличения содержания МЦ в растворе диапазон линейности зависимости $I_{\pi NOM} - c_{Eu}$ увеличивается вплоть до концентрации МЦ = 0.6%. При большем содержании МЦ интенсивность люминесценции Eu^{3+} уменьшается за счет физических процессов реабсорбции и "внутреннего экранирования".

Выше отмечено, что в наибольшей степени влияние безызлучательного переноса энергии на люминесценцию Ln^{3+} проявляется в присутствии d- и f-элементов с низко расположенными излучательными уровнями. К их числу относят Pr^{3+} , Nd^{3+} , Ho^{3+} , Er^{3+} , Yb^{3+} , тушащие люминесценцию Eu^{3+} и Tb^{3+} за счет образования разнометалльных комплексов. Интенсивность люминесценции комплекса Eu(TTA)₃ в водном растворе в присутствии ионов Ho^{3+} резко снижается (рис. 9, кривая *1*). В 1%-ном растворе КК при одновременном комплексообразовании Eu³⁺ и Ho³⁺ с TTA до соотношения Еи : Но = 1 : 1 интенсивность люминесценции увеличивается до 2 раз, что может быть обусловлено как большим количеством лигандов в разнометалльном комплексе, так и передачей энергии возбуждения от КК ($E_{T_1} = 24500 \text{ см}^{-1}$), которая выше, чем в случае ТТА ($E_{T_1} = 20500 \text{ см}^{-1}$). По мере увеличения в растворе концентрации ионов Но³⁺ интенсивность люминесценции Eu³⁺ снижается пропорционально соотношению Ho³⁺ : Eu³⁺ (рис. 9, кривая 2). Однако при добавлении Ho³⁺ после образования комплекса Eu(TTA)₃ и координации его в структуре КК влияние Но³⁺ не наблюдается вплоть до его 5-кратного избытка (рис. 9, кривая *3*).

Рис. 8. Зависимости интенсивности люминесценции комплекса Eu^{3+} с теноилтрифторацетоном от концентрации лантанида в водном растворе (*1*) и в растворах метилцеллюлозы с концентрациями 0.15 (*2*), 0.3 (*3*), 0.6% (*4*) и 1.2% (*5*). $c_{\text{TTA}} = 1 \times 10^{-4}$ M.

Изучение люминесцентных свойств β-дикетонатов Ln³⁺ в разных агрегатных состояниях показало, что имеется определенная закономерность их изменения в ряду водный раствор – раствор ВРП – пленка ВРП. При сравнении излучения комплекса Ln³⁺ в волном растворе и пленке в случае всех ВРП, в том числе для ПВС с наибольшим в его структуре числом ОН-осцилляторов, максимальное увеличение интенсивности люминесценции излучающего Ln³⁺ (Eu, Tb) наблюдается в пленке полимера. В растворе ВРП интенсивность люминесценции зависит от соотношения энергий триплетных уровней лиганда и ВРП. Люминесценция увеличивается, когда $E_{T_1}(BP\Pi) > E_{T_1}(Lig)$ и происходит дополнительная передача центральному иону энергии возбуждения от ВРП. Люминесценция снижается, когда $E_{T}(Lig) > E_{T}(BP\Pi)$ и часть энергии возбуждения лиганда передается ВРП, безызлучательно переходя в тепловую. Следует отметить, что в отсутствие переноса энергии возбуждения от лиганда к ВРП их вязкие среды можно использовать для наблюдения люминесценции Ln³⁺ в более широком интервале концентраций, чем в водном растворе. Кроме того, можно значительно увеличить интенсивность люминесценции Ln³⁺ в присутствии элементов-тушителей.

Сведения о пределах обнаружения люминесцентным методом всех лантанидов, включая также Y и Sc, приведены в обзорах [120–122].

Рис. 9. Зависимости интенсивности люминесценции комплекса Eu(TTA)₃ от концентрации ионов Ho³⁺ в водном растворе (*1*) и в растворах камеди ксантана (*2*, *3*); Ho³⁺ введен в раствор комплекса до (*2*) и после прибавления камеди ксантана (*3*). $c_{Eu} = 1 \times 10^{-5}$ M, $c_{TTA} = 2 \times 10^{-4}$ M. pH 7.0, $c_{KK} = 1\%$. (TTA – теноилтрифторацетон.)

* * *

Определение индивидуальных лантанидов является трудной задачей вследствие сходства их химических свойств. Метод люминесценции характеризуется большими возможностями благоларя присушей каждому иону Ln³⁺ отличающейся энергии излучательных уровней и подуровней основного состояния. Направленный выбор реагентов, обеспечивающих возможность переноса энергии в комплексе от лиганда к иону Ln³⁺ с оптимальным зазором, препятствующим ее обратному безызлучательному переносу, выбор спектрального диапазона, в котором полоса излучения определяемого Ln не перекрывается с полосой мешающего, маскирование элементаосновы, использование времяразрешенной люминесценции и низких температур, повышение люминесценции за счет снижения безызлучательных потерь энергии возбуждения путем сорбции комплексов на твердые матрицы и комплексообразования с сополимерами, включающими лиганд, открывают пути повышения чувствительности и селективности определения одних Ln в присутствии других, особенно в парах сопутствующих элементов, таких как Sm-Eu, Tb-Dy, Pr-Eu(Sm). Полученные зависимости люминесценции Ln³⁺ не только от характера их ионов и свойств лигандов, но и от агрегатного состояния комплексов обусловливают выбор лучших аналитических форм и способствуют разработке высокочувствительных методов определения индивидуальных Ln в присутствии мешающих f- и d-элементов.

СПИСОК ЛИТЕРАТУРЫ

- Binnemans K. Rare-earth beta-diketonates / Handbook on the Physics and Chemistry of Rare Earths / Eds. Gschneidner K.A.Jr., Bünzli J.-C.G., Pecharsky V.K. Amsterdam, Netherlands: Elsevier, 2005. V. 35. Ch. 225. P. 107.
- 2. Каткова М.А., Витухновский А.Г., Бочкарев М.Н. Координационные соединения редкоземельных металлов с органическими лигандами для электролюминесцентных диодов // Успехи химии. 2005. Т. 74. № 12. С. 1193. (Katkova M.A., Vitukhnovskii A.G., Bochkarev M.N. Coordination compounds of rareearth metals with organic ligands for electroluminescent diodes // Russ. Chem. Rev. 2005. V. 74. № 12. P. 1089.)
- 3. *Eliseeva S.V., Bünzli J.-C.G.* Lanthanide luminescence for functional materials and bio-sciences // Chem. Soc. Rev. 2010. V. 39. № 1. P. 189.
- Bünzli J.-C.G., Eliseeva S.V. Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion // J. Rare Earths. 2010. V. 28. № 6. P. 824.
- Leonard J.P., Gunnlaugsson T. Luminescent Eu(III) and Tb(III) complexes: developing lanthanide luminescent-based devices // J. Fluoresc. 2005. V. 15. № 4. P. 585.
- 6. *Zheng Y., Lin J., Liang Y., Lin Q., Yu Y., Guo C., Wang S., Zhang H.* A novel terbium (III) beta-diketonate complex as thin film for optical device application // Mater. Lett. 2002. V. 54. № 5–6. P. 424.
- 7. *Hemmilä I., Laitala V.* Progress in lanthanides as luminescent probes // J. Fluor. 2005. V. 15. № 4. P. 529.
- Применение люминесценции ионов лантанидов в биоанализе / Под ред Антоновича В.П. Saarbrücken, Deutsland: LAP – Lambert Academic Publishing, 2014. 309 с.
- 9. Yenisoy-Karakaş S., Gaga E.O., Doğangün A., Tuncel S.G. Determination of major and rare earth elements in bastnasite ores by ICP-AES // Anal. Lett. 2004. V. 37. № 13. P. 2701.
- 10. Жерноклеева К.В., Барановская В.Б. Анализ чистых скандия, иттрия и их оксидов методами атомноэмиссионной спектрометрии с индуктивно-связанной плазмой и масс-спектрометрии с индуктивно-связанной плазмой // Заводск. лаборатория. Диагностика материалов. 2010. Т. 76. № 11. С. 20.
- 11. Полуэктов Н.С., Ефрюшина Н.П., Гава С.А. Определение микроколичеств лантаноидов по люминесценции кристаллофосфоров. Киев: Наукова думка. 1976. 214 с.
- Полуэктов Н.С., Кононенко Л.И., Ефрюшина Н.П., Бельтюкова С.В. Спектрофотометрические и люминесцентные методы определения лантаноидов. Киев: Наукова думка. 1989. 256 с.

- Ермолаев В.Л., Бодунов Е.Н., Свешникова Е.Б., Шахвердов Т.А. Безызлучательный перенос энергии электронного возбуждения. Л.: Наука, 1977. 311 с.
- Полуэктов Н.С., Мешкова С.Б., Коровин Ю.В. Возбуждение люминесценции иона иттербия (III) путем внутримолекулярного переноса энергии // Докл. АН СССР. 1983. Т. 273. № 6. С. 1422.
- Русакова Н.В., Мешкова С.Б., Полуэктов Н.С. Возбуждение люминесценции иона неодима в растворах его комплексов путем внутримолекулярного переноса энергии // Докл. АН СССР. 1984. Т. 279. № 2. С. 404.
- Latva M., Takalo H., Mukkala V.-M., Matachescu C., Rodríguez-Ubis J.C., Kankare J. Correlation between the lowest triplet state energy level of the ligand and lanthanide (III) luminescence quantum yield // J. Lumin. 1997. V. 75. № 2. P. 149.
- Li X.-L., Chen C.-L., Xiao H.-P., Wang A.-L., Liu C.-M., Zheng X., Gao L.-J., Yanga X.-G., Fang S.-M. Luminescent, magnetic and ferroelectric properties of noncentrosymmetric chain-like complexes composed of nine-coordinate lanthanide ions // Dalton Trans. 2013. V. 42. № 43. P. 15317.
- Cable M.L., Levine D.J., Kirby J.P., Gray H.B., Ponce A. Luminescent lanthanide sensors // Adv. Inorg. Chem. 2011. V. 63. P. 1.
- 19. Кандель А.В., Михалёва Е.А., Зеллер М., Эддисон А.В., Павлищук В.В. Влияние строения 3-арилацетилацетонатных лигандов на люминесцентные свойства комплексов Eu^{3+} и Tb^{3+} // Теор. и эксперим. химия. 2017. Т. 53. № 3. С. 168. (Kandel A.V., Mikhalyova E.A., Zeller M., Addison A.W., Pavlishchuk V.V. Influence of the structure of 3-arylacetylacetonate ligands on the luminescence properties of Eu^{3+} and Tb^{3+} complexes // Theor. Exp. Chem. 2017. V. 53. № 3. P. 180.)
- Meshkova S.B., Rusakova N.V., Bolshoi D.V. The directed choice of a ligand for the selective luminescent determination of some lanthanides in the presence of others // Acta Chim. Hung. Models Chem. 1992. V. 129. № 3–4. P. 317.
- 21. Souza A.S., Nunes L.A., Felinto M.C.F.C., Brito H.F., Malta O.L. On the quenching of trivalent terbium luminescence by ligand low lying triplet state energy and the role of the $^{7}F_{5}$ level: The [Tb(tta)₃ (H₂O)₂] case // J. Lumin. 2015. V. 167. P. 167.
- 22. *Lis S.* Luminescence spectroscopy of lanthanide (III) ions in solution // J. Alloys Comp. 2002. V. 341. № 1–2. P. 45.
- 23. Мешкова С.Б., Топилова З.М., Лозинский М.О., Русакова Н.В., Большой Д.В. Перфторпроизводные ацетилацетона — реагенты для высокочувствительного люминесцентного определения Sm, Eu, Nd и Yb // Журн. аналит. химии. 1997. Т. 52. № 9. С. 939.
- Vigato P.A., Peruzzo V., Tamburini S. The evolution of β-diketone or β-diketophenol ligands and related complexes // Coord. Chem. Rev. 2009. V. 253. № 7–8. P. 1099.
- 25. Исакова В.Г., Хлебникова Т.С., Лахвич Ф.А. Химия фторзамещенных β-дикетонов и их производных //

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 75 № 3 2020

Успехи химии. 2010. Т. 79. № 10. С. 929. (*Isakova V.G., Khlebnikova T.S., Lakhvich F.A.* Chemistry of fluorosubstituted β -diketones and their derivatives // Russ. Chem. Rev. 2010. V. 79. № 10. Р. 849.)

- 26. *Iwamuro M., Hasegawa Y., Wada Y., Murakoshi K., Nakashima N., Yamanaka T., Yanagida S.* Luminescence of Nd³⁺ complexes with some asymmetric ligands in organic solutions // J. Lumin. 1998. V. 79. № 1. P. 29.
- Zhu T., Chen P., Li H., Sun W., Gao T., Yan P. Structural effects on the photophysical properties of monoβ-diketonate and bis-β-diketonate Eu^{III} complexes // Phys. Chem. Chem. Phys. 2015. V. 17. № 24. P. 16136.
- Топилова З.М., Русакова Н.В., Мешкова С.Б., Лозинский М.О., Кудрявцева Л.С., Кононенко Л.И. Высокочувствительное люминесцентное определение неодима, самария и европия с применением β-дикетонов, содержащих атом кислорода во фторированном радикале // Журн. аналит. химии. 1991. Т. 46. № 5. С. 863.
- Varaksina E.A., Taydakov I.V., Ambrozevich S.A., Selyukov A.S., Lyssenko K.A., Jesus L.T., Freire R.O. Influence of fluorinated chain length on luminescent properties of Eu³⁺ β-diketonate complexes // J. Lumin. 2018. V. 196. P. 161.
- 30. Bassett A.P., Magennis S.W., Glover P.B., Lewis D.J., Spencer N., Parsons S., Williams R.M., Cola L.D., Pikramenou Z. Highly luminescent, triple- and quadruple-stranded, dinuclear Eu, Nd, and Sm(III) lanthanide complexes based on bis-diketonate ligands // J. Am. Chem. Soc. 2004. V. 126. № 30. P. 9413.
- Elbanowski M., Lis S. Spectrofluorimetric determination of trace amounts of Tb(III) using acetylacetone in ethanol solution // Fresenius' Z. Anal. Chem. 1988. V. 330. № 8. P. 698.
- 32. De Sá G.F., Malta O.L., de Mello Donegá C., Simas A.M., Longo R.L., Santa-Cruz P.A., da Silva E.F., Jr. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes // Coord. Chem. Rev. 2000. V. 196. № 1. P. 165.
- 33. Pietraszkiewicz M., Mech-Piskorz J., Pietraszkiewicz O. Tetraphenylimidodiphosphinate ligand as potent complexation agent for ternary photoluminescent lanthanide complexes // Opt. Mater. 2017. V. 74. P. 183.
- 34. Oliva M. de los A., Olsina R.A., Masi A.N. Sensitive detection of salbutamol using europium-enhanced fluorescence with trioctylphosphine oxide (TOPO) as coligand // Analyst. 2005. V. 130. № 9. P. 1312.
- 35. Martín-Ramos P., Silva P.S.P., Chamorro-Posada P., Silva M.R., Milne B.F., Nogueira de F., Martín-Gil J. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium (III) complex with acetylacetone and bathophenanthroline ligands // J. Lumin. 2015. V. 162. P. 41.
- 36. Lv Y., Zhang J., Wang L., Cao W., Xu Z. Enhanced electroluminescence of Eu³⁺ by Tb³⁺ in complexes Tb_{1-x}Eu_x(TTA)₃Dipy // J. Lumin. 2008. V. 128. № 1. P. 117.
- 37. Мешкова С.Б., Кирияк А.В., Топилова З.М., Антонович В.П. Люминесцентное определение празеодима в растворах его β-дикетонатов // Журн. аналит. химии. 2007. Т. 62. № 4. С. 402. (Meshkova S.B., Kiriyak A.V., Topilova Z.M., Antonovich V.P. Lumines-

cence determination of praseodymium in solutions of its β -diketonates // J. Analyt. Chem. 2007. V. 62. Nº 4. P. 362.)

- 38. *Harrowfield J.M., Skelton B.W., White A.H., Wilner F.R.* Lanthanide (III) solvation: N,N'-dimethylformamide as a unidentate O-donor // Inorg. Chim. Acta. 2004. V. 357. № 8. P. 2358.
- Ansari A.A., Singh N., Khan A.F., Singh S.P., Iftikhar K. Solvent effect on optical properties of hydrated lanthanide tris-acetylacetone // J. Lumin. 2007. V. 127. № 2. P. 446.
- 40. Lo W.-S., Wong W.-T., Law G.-L. Friend or foe? The role of solvents in non-triplet, intraligand charge transfer sensitization of lanthanide (III) luminescence // RSC Adv. 2016. № 78. V. 6. P. 74100.
- 41. Näslund J., Lindqvist-Reis P., Persson I., Sandström M. Steric effects control the structure of the solvated lanthanum(III) ion in aqueous, dimethyl sulfoxide, and N,N'-dimethylpropyleneurea solution. An EXAFS and large-angle X-ray scattering study // Inorg. Chem. 2000. V. 39. № 18. P. 4006.
- 42. Comuzzi C., Bernardo P.D., Portanova R., Tolazzi M., Zanonato P. Affinity of lanthanide (III) ions for oxygenand mixed oxygen-nitrogen-donor ligands in dimethylsulfoxide: a thermodynamic and spectroscopic investigation // Polyhedron. 2002. V. 21. № 14–15. P. 1385.
- 43. Chen S., Fan R.-Q., Gao S., Wang X., Yang Y.-L. Synthesis, crystal structure and effect of deuterated solvents and temperature on visible and near infrared luminescence of N4-donor Schiff base lanthanide complexes // J. Lumin. 2014. V. 149. P. 75.
- 44. Коровин Ю.В., Русакова Н.В., Мешкова С.Б. Применение в анализе ИК-люминесценции комплексных соединений лантанидов // Укр. хим. журн. 2000. Т. 66. № 10. С. 121.
- 45. Jiang W., Feng Y., Ma Y.D., Wang N.X., Si Z. Spectrofluorometric determination of trace amounts of terbium with 4-chlorosalicylic acid, EDTA, and cetyltrimethylammonium bromide // Anal. Sci. 2003. V. 19. № 6. P. 923.
- 46. Штыков С.Н. Химический анализ в нанореакторах: основные понятия и применение // Журн. аналит. химии. 2002. Т. 57. № 10. С. 1018. (*Shtykov S.N.* Chemical analysis in nanoreactors: main concepts and applications // J. Analyt. Chem. 2002. V. 57. № 10. P. 859.)
- 47. Штыков С.Н., Смирнова Т.Д., Молчанова Ю.В. Синергетические эффекты в системе европий-теноилтрифтор-ацетон-1.10-фенантролин в мицеллах блоксополимеров неионных ПАВ и их аналитическое применение // Журн. аналит. химии. 2001. Т. 56. № 10. С. 1052. (*Shtykov C.N., Smirnova T.D., Molchanova Yu.V.* Synergistic effects in the europium (III)-thenoyltrifluoroacetone-1,10-phenanthroline system in micelles of block copolymers of nonionic surfactants and their analytical applications // J. Analyt. Chem. 2001. V. 56. № 10. Р. 920.)
- 48. Смирнова Т.Д., Неврюева Н.В., Штыков С.Н., Кочубей В.И., Жемеричкин Д.А. Определение варфарина методом сенсибилизированной флуоресценции с применением организованных сред // Журн. аналит. химии. 2009. Т. 64. № 11. С. 1142. (Smirnova T.D., Nevryueva N.V., Shtykov S.N., Kochu-

bei V.I., Zhemerichkin D.A. Determination of warfarin by sensitized fluorescence using organized media // J. Analyt. Chem. 2009. V. 64. No 11. P. 1114.)

- 49. Arnaud N., Georges J. Comprehensive study of the luminescent properties and lifetimes of Eu³⁺ and Tb³⁺ chelated with various ligands in aqueous solutions: influence of the synergic agent, the surfactant and the energy level of the ligand triplet // Spectrochim. Acta A. 2003. V. 59. № 8. P. 1829.
- 50. Дога П.Г., Мешкова С.Б., Шульгин В.Ф., Гусев А.Н., Лобко Е.В., Козак Н.В., Смола С.С. Синтез и люминесцентные свойства комплексов Eu(III) и Tb(III) с ацилированными производными 2-аминобензойной кислоты // Журн. неорг. химии. Т. 58. № 11. 2013. С. 1496. (Doga P.G., Meshkova S.B., Shul'Gin V.F., Gusev A.N., Lobko E.V., Kozak N.V., Smola S.S. Synthesis and luminescent properties of europium(III) and Terbium(III) complexes with acylated derivatives of 2-aminobenzoic acid // Russ. J. Inorg. Chem. 2013. V. 58. № 11. P. 1341.)
- 51. Sun C., Yang J., Wu X., Liu S., Su B. Study on the fluorescent enhancement effect in terbium-gadoliniumprotein-sodium dodecyl benzene sulfonate system and its application on sensitive detection of protein at nanogram level // Biochimie. 2004. V. 86. № 8. P. 569.
- Dwars T., Paetzold E., Oehme G. Reactions in Micellar Systems // Angew. Chem. Int. Ed. 2005. V. 44. № 44. P. 7174.
- 53. *Hapiot F., Tilloy S., Monflier E.* Cyclodextrins as supramolecular hosts for organometallic complexes // Chem. Rev. 2006. V. 106. № 3. P. 767.
- Buono-core G.E., Li H., Marciniak B. Quenching of excited states by lanthanide ions and chelates in solution // Coord. Chem. Rev. 1990. V. 99. P. 55.
- 55. Lis S., Elbanowski M., Mąkowska B., Hnatejko Z. Energy transfer in solution of lanthanide complexes // J. Photochem. Photobiol. A: Chem. 2002. V. 150. № 1–3. P. 233.
- 56. Yanagida S., Hasegawa Y., Murakoshi K., Wada Y., Nakashima N., Yamanaka T. Strategies for enhancing photoluminescence of Nd³⁺ in liquid media // Coord. Chem. Rev. 1998. V. 171. P. 461.
- 57. Yanagida S., Hasegawa Y., Wada Y. Remarkable luminescence of novel Nd(III) complexes with low-vibrational hexafluoroacetylacetone and DMSO-d₆ molecules // J. Lumin. 2000. V. 87–89. P. 995.
- 58. Мешкова С.Б., Кирияк А.В., Топилова З.М., Городнюк В.П. Усиление люминесценции комплексов Tb³⁺ с производными пиразола путем устранения внутри- и межмолекулярных потерь энергии // Оптика спектроскопия. 2006. Т. 100. № 6. С. 908. (*Meshkova S.B., Kiriyak A.V., Topilova Z.M., Gorodnyuk V.P.* Enhancement of the luminescence of complexes of Tb³⁺ with pyrazole derivatives by elimination of intra-and intermolecular energy losses // Opt. Spectrosc. 2006. V. 100. № 6. Р. 836.)
- 59. Борина А.Ф. Сольватация празеодима(III) в водно-диметилсульфоксидных растворах // Журн. неорг. химии. 1988. Т. 33. № 7. С. 1696.
- 60. Taydakov I.V., Akkuzina A.A., Avetisov R.I., Khomyakov A.V., Saifutyarov R.R., Avetissov I.Ch. Effective electroluminescent materials for OLED applications

based on lanthanide 1,3-diketones bearing pyrazole moiety // J. Lumin. 2016. V. 177. P. 31.

- 61. Мешкова С.Б., Топилова З.М., Литвиненко А.В., Назаренко Н.А. Получение и люминесцентные свойства комплексов тербия(III) с пиразолонами-5 на фосфате циркония // Коорд. химия. 2003. Т. 29. № 10. С. 790. (Meshkova S.B., Topilova Z.M., Litvinenko A.V., Nazarenko N.A. Terbium (III) complexes with pyrazolones-5 on zirconium phosphate: synthesis and luminescent properties // Russ. J. Coord. Chem. 2003. V. 29. № 10. Р. 732.)
- 62. *Marchetti F., Pettinari R., Pettinari C.* Recent advances in acylpyrazolone metal complexes and their potential applications // Coord. Chem. Rev. 2015. V. 303. P. 1.
- Casas J.S., García-Tasende M.S., Sánchez A., Sordo J., Touceda Á. Coordination modes of 5-pyrazolones: A solid-state overview // Coord. Chem. Rev. 2007. V. 251. № 11–12. P. 1561.
- 64. *Bünzli J.-C.G., Piguet C.* Taking advantage of luminescent lanthanide ions. // Chem. Soc. Rev. 2005. V. 34. No 12. P. 1048.
- 65. Gutierrez F., Tedeschi C., Maron L., Daudey J.-P., Poteau R., Azema J., Tisnès P., Picard C. Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties // Dalton Trans. 2004. № 9. P. 1334.
- 66. Полуэктов Н.С., Виткун Р.А., Тищенко М.А., Кононенко Л.И. Сенсибилизация тербием флуоресценции европия в комплексах с салолом и (в меньшей степени) антранилат- и антипирин-салицилатах // Журн. прикл. спектроск. 1966. Т. 5. № 5. С. 625.
- 67. Кононенко Л.И., Дробязко В.Н., Полуэктов Н.С. Сенсибилизация тербием люминесценции европия в комплексах с некоторыми β-дикетонами // Оптика и спектроскопия. 1972. Т. 32. № 2. С. 312.
- Yi F.-Y., Wang S., Gu M., Wu M., Pan L.-Q., Zheng J.-Q., Hu L., Han L. Tunable and white luminescence from mixed lanthanide with aza-macrocycles through multistimuli responses // Polyhedron. 2018. V. 144. P. 95.
- 69. *Karashimada R., Iki N.* Thiacalixarene assembled heterotrinuclear lanthanide clusters comprising Tb^{III} and Yb^{III} enable f–f communication to enhance Yb^{III}-centred luminescence // Chem. Commun. 2016. V. 52. № 15. P. 3139.
- 70. Топилова З.М., Мешкова С.Б., Доценко В.П., Кирияк А.В., Антонович В.П. Сенсибилизация ионами тербия(III) люминесценции соединений европия на твердых матрицах // Журн. прикл. спектроск. 2004. Т. 71. № 2. С. 231. (*Topilova Z.M., Meshkova S.B., Dotsenko V.P., Kiriyak A.V., Antonovich V.P.* Sensitization of luminescence of europium compounds on solid matrices by terbium(III) ions // J. Appl. Spectrosc. 2004. V. 71. № 2. Р. 253.)
- Brittain H.G., Richardson F.S. Intermolecular energy transfer between Tb(thd)₃ and Eu(thd)₃ complexes in solution // J. Chem. Soc. Far. Trans. 2: Mol. Chem. Phys. 1977. V. 73. № 4. P. 545.
- 72. *Guo L., Li W.-X., Shi X.-Y., Sun X.-J., Sun X.-L.* Enhanced luminescence of rare-earth Tb(III) by Tm(III) in bis(benzoylmethyl) sulfoxide complexes and intra-mo-

lecular energy transfer // J. Lumin. 2009. V. 129. № 6. P. 639.

- 73. Свешникова Е.Б., Дударь С.С., Ермолаев В.Л. Влияние способа приготовления раствора на интенсивность колюминесценции хелатов ионов Eu(III) и оценка размера возникающих нанострукрур // Оптика и спектроскопия. 2006. Т. 100. № 6. С. 913. (Sveshnikova E.B., Dudar' S.S., Ermolaev V.L. The influence of the solution preparation method on the columinescence intensity of chelates of Eu(III) ions and estimation of the size of arising nanostructures // Opt. Spectrosc. 2006. V. 100. № 6. Р. 840.)
- 74. Ермолаев В.Л., Свешникова Е.Б. Колюминесценция ионов и молекул в наночастицах комплексов металлов // Успехи химии. 2012. Т. 81. № 9. С. 769. (Ermolaev V.L., Sveshnikova E.B. Co-luminescence of ions and molecules in nanoparticles of metal complexes // Russ. Chem. Rev. 2012. V. 81. № 9. Р. 769.)
- 75. Li Y., Zhao Y. Intramolecular energy transfer and columinescence effect in rare earth ions (La, Y, Gd and Tb) doped with Eu³⁺ β-diketone complexes // J. Fluoresc. 2009. V. 19. № 4. P. 641.
- 76. Венчиков В.Я., Цвирко М.П. Определение эффективности внутримолекулярного переноса энергии в хелатах иттербия // Журн. прикл. спектроск. 2000. Т. 67. № 4. С. 539. (Venchikov V.Ya., Tsvirko M.P. Determination of intramolecular energy-transfer efficiency in ytterbium chelates // J. Appl. Spectrosc. 2000. V. 67. № 4. Р. 745.)
- 77. Bencini A., Benelli C., Caneschi A., Carlin R.L., Dei A., Gatteschi D. Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(III) and copper(II) ions // J. Am. Chem. Soc. 1985. V. 107. № 26. P. 8128.
- Bencini A., Benelli C., Caneschi A., Dei A., Gatteschi D. Crystal and molecular structure and magnetic properties of a trinuclear complex containing exchange-coupled GdCu₂ species // Inorg. Chem. 1986. V. 25. № 4. P. 572.
- Sakamoto M., Manseki K., Okawa H. d-f Heteronuclear complexes: synthesis, structures and physicochemical aspects // Coord. Chem. Rev. 2001. V. 219– 221. P. 379.
- Jiménez J.A. Samarium(III) as luminescent probe for copper(II) // J. Lumin. 2015. V. 161. P. 352.
- 81. *Barja B.C., Aramendía P.F.* Luminescent Eu(III) hybrid materials for sensor applications // Photochem. Photobiol. Sci. 2008. V. 7. № 11. P. 1391.
- Arakawa T., Akamine M. Determination of transition metal irons based on quenching of the rare earth luminescence // Sens. Actuators B. 2003. V. 91. № 1–3. P. 252.
- Turel M., Duerkop A., Yegorova A., Scripinets Y., Lobnik A., Samec N. Detection of nanomolar concentrations of copper(II) with a Tb-quinoline-2-one probe using luminescence quenching or luminescence decay time // Anal. Chim. Acta. 2009. V. 644. № 1–2. P. 53.
- 84. Sousa C., Gameiro P., Freire C., de Castro B. Nickel(II) and copper(II) Schiff base complexes bearing benzo-15crown-5 functionalities as probes for spectroscopic recognition of lanthanide ions // Polyhedron. 2004. V. 23. № 8. P. 1401.

- 85. Мешкова С.Б., Топилова З.М., Городнюк В.П., Кирияк А.В., Антонович В.П., Андрианов А.М. Сенсибилизация ионами меди 4f-люминесценции тербия и ее аналитическое использование // Журн. аналит. химии. 2004. Т. 59. № 10. С. 1049. (Meshkova S.B., Topilova Z.M., Gorodnyuk V.P., Kiriyak A.V., Antonovich V.P., Andrianov A.M. Sensitization of the 4f-luminescence of terbium with copper ions and its analytical application // J. Analyt. Chem. 2004. V. 59. № 10. Р. 945.)
- Eliseeva S.V., Golovach I.P., Liasotskyi V.S., Antonovich V.P., Petoud S., Meshkova S.B. A role of copper (II) ions in the enhancement of visible and nearinfrared lanthanide (III) luminescence // J. Lumin. 2016. V. 171. P. 191.
- 87. *Головина А.П., Иванова И.М.* Определение меди по ее собственной люминесценции // Журн. аналит. химии. 1985. Т. 11. № 6. С. 1010.
- Imbert D., Cantuel M., Bünzli J.-C.G., Bernardinelli G., Piguet C. Extending lifetimes of lanthanide-based near-infrared emitters (Nd, Yb) in the millisecond range through Cr(III) sensitization in discrete bimetallic edifices // J. Am. Chem. Soc. 2003. V. 125. № 51. P. 15698.
- Bünzli J.-C.G., Eliseeva S.V. Photophysics of lanthanoid coordination compounds / Comprehensive Inorganic Chemistry II. From Elements to Applications. 2nd Ed. Elsevier, 2013. V. 8. P. 339.
- 90. Cariati E., Lucenti E., Botta C., Giovanella U., Marinotto D., Righetto S. Cu(I) hybrid inorganic—organic materials with intriguing stimuli responsive and optoelectronic properties // Coord. Chem. Rev. 2016. V. 306. P. 2. P. 566.
- Kulmala S., Suomi J. Current status of modern analytical luminescence methods // Anal. Chim. Acta. 2003. V. 500. № 1–2. P. 21.
- 92. Hemmilä I., Mukkala V.-M., Latva M., Kiilholma P. Di- and tetracarboxylate derivatives of pyridines, bipyridines and terpyridines as luminogenic reagents for time-resolved fluorometric determination of terbium and dysprosium // J. Biochem. Biophys. Methods. 1993. V. 26. № 4. P. 283.
- 93. Yuan J., Wang G. Lanthanide-based luminescence probes and time-resolved luminescence bioassays // Trends Anal. Chem. 2006. V. 25. № 5. P. 490.
- 94. Мешкова С.Б., Кирияк А.В., Цвирко М.П., Городнюк В.П. Новый люминесцентный метод определения диспрозия в присутствии тербия // Журн. аналит. химии. 2008. Т. 63. № 9. С. 920. (Meshkova S.B., Kiriyak A.V., Gorodnyuk V.P., Tsvirko M.P. A new luminescence method for determining dysprosium in the presence of terbium // J. Analyt. Chem. 2008. V. 63. № 9. P. 840.)
- 95. Русакова Н.В., Мешкова С.Б., Полуэктов Н.С. Люминесцентное определение самария в оксиде европия // Заводск. лаборатория. 1989. Т. 55. № 6. С. 39.
- 96. *Юрист И.М., Талмуд М.М., Зайцев П.М.* Новые данные о маскирующих реагентах в комплексонометрии // Журн. аналит. химии. 1985. Т. 40. № 7. С. 1157.
- 97. Мешкова С.Б., Русакова Н.В. Высокочувствительное люминесцентное определение неодима и са-

мария в оксиде европия // Журн. аналит. химии. 1990. Т. 45. № 5. С. 1017.

- 98. Мешкова С.Б., Кравченко Т.Б., Кононенко Л.И., Полуэктов Н.С. Люминесценция комплексов тербия и диспрозия при низких температурах // Журн. аналит. химии. 1979. Т. 34. № 1. С. 121.
- 99. Коровин Ю.В., Мешкова С.Б., Полуэктов Н.С. Люминесцентные свойства комплексов иттербия с производными оксиантрахинона // Журн. прикл. спектроск. 1988. Т. 48. № 1. С. 58.
- 100. Русакова Н.В., Мешкова С.Б., Пыхтеев Д.М., Коровин Ю.В. А.с. № 1469395 СССР. Опубл. 05.01.87.
- 101. *Кузьмин Н.М., Золотов Ю.А.* Концентрирование следов элементов. М.: Наука, 1988. 268 с.
- 102. Определение малых концентраций элементов / Под ред. Золотова Ю.А., Рябухина В.А. М.: Наука, 1988. 280 с.
- 103. Мешкова С.Б., Топилова З.М., Герасименко Г.И. Полиметилметакрилат – сорбент для эффективного извлечения лантанидов из растворов и высокочувствительного люминесцентного определения европия и тербия в водах // Журн. аналит. химии. 1993. Т. 48. № 1. С. 65.
- 104. Luo Y, Yan Q., Wu S., Wu W., Zhang Q. Inter- and intra-molecular energy transfer during sensitization of Eu(DBM)₃Phen luminescence by Tb(DBM)₃Phen in PMMA // J. Photochem. Photobiol. A: Chem. 2007. V. 191. № 2–3. P. 91.
- 105. Jiu H., Zhang L., Liu G., Fan T. Fluorescence enhancement of samarium complex co-doped with terbium complex in a poly(methyl methacrylate) matrix // J. Lumin. 2009. V. 129. № 3. P. 317.
- 106. Usha Gangan T.V., Sreenadh S., Reddy M.L.P. Visiblelight excitable highly luminescent molecular plastic materials derived from Eu³⁺-biphenyl based β-diketonate ternary complex and poly(methylmethacrylate) // J. Photochem. Photobiol. A: Chem. 2016. V. 328. P. 171.
- 107. *Кузнецов В.В., Шереметьев С.В.* Чувствительные элементы оптических сенсоров на основе полистирола с ковалентно иммобилизованными реагентами // Журн. аналит. химии. 2007. Т. 62. № 3. С. 303. (*Kuznetsov V.V., Sheremet'ev S.V.* Sensing elements of optical sensors based on polystyrene with covalently immobilized reagents // J. Analyt. Chem. 2007. V. 62. № 3. Р. 270.)
- 108. Meshkova S.B., Topilova Z.M., Lozinsky M.O., Kudryavtseva L.S., Shapiro Yu.E. Application of modified polymers for high sensitive sorption-luminescent determination of europium (III) // Acta Chim. Hung. Models Chem. 1992. V. 129. № 3–4. P. 325.
- 109. Dwivedi Y., Singh A.K., Prakash R., Rai S.B. Preparation and characterization of Tb^{3+} and $Tb(sal)_3 \cdot nH_2O$ doped PC:PMMA blend // J. Lumin. 2011. V. 131. No 12. P. 2451.
- Zang X.M., Shen L.F., Pun E.Y.B., Guo J., Lin H. Photon quantification of electrospun europium-complexes/PMMA submicron fibers // J. Alloy Compd. 2017. V. 709. P. 620.
- 111. Gordon J., Ballato J., Jin J., Smith D.W., Jr. Spectroscopic properties as a function of fluorine content in

Eu³⁺:PMMA // J. Polym. Sci. B: Polym. Phys. 2006. V. 44. № 11. P. 1592.

- 112. *Meshkova S.B.* The dependence of the luminescence intensity of lanthanide complexes with β-diketones on the ligand form // J. Fluoresc. 2000. V. 10. № 4. P. 333.
- 113. Мешкова С.Б., Топилова З.М., Назаренко Н.А., Волошановский И.С., Малинка Е.В. Усиление люминесценции β-дикетонатов европия(III) в ряду: β-дикетоны — их ненасыщенные аналоги — сополимеры // Журн. аналит. химии. 2000. Т. 55. № 7. С. 754. (Meshkova S.B., Topilova Z.M., Nazarenko N.A., Voloshanovskii I.S., Malinka E.V. Enhancement of the luminescence of europium(III) β-diketonates in the ligand series β-diketones — their unsaturated analogues copolymers // J. Analyt. Chem. 2000. V. 55. № 7. Р. 676.)
- 114. Волошановский И.С., Шевченко О.В., Бутова Т.Д., Манаева Т.И. Синтез сополимеров непредельных β-дикетонов со стиролом и метилметакрилатом // Журн. прикл. химии. 2003. Т. 76. № 2. С. 279. (Voloshanovskii I.S., Shevchenko O.V., Butova T.D., Manaeva T.I. Synthesis of copolymers of unsaturated β-diketones with styrene and methyl methacrylate // Russ. J. Appl. Chem. 2003. V. 76. № 2. Р. 271.)
- 115. *Ling Q., Yang M., Zhang W., Lin H., Yu G., Bai F.* PL and EL properties of a novel Eu-containing copolymer // Thin Solid Films. 2002. V. 417. № 1–2. P. 127.
- 116. Wawilow S.I. Die Lebensdauer der angeregten Moleküle in den wässerigen fluoreszierenden Lösungen // Z. Physik. 1929. V. 53. № 9–10. P. 665.
- 117. Мешкова С.Б., Дога П.Г., Кирияк А.В., Кучер А.А. Изменение люминесцентных характеристик гидроксибензоатов тербия в конденсированных средах // Журн. неорг. химии. 2016. Т. 61. № 1. С. 78. (Meshkova S.B., Doga P.G., Kiriyak A.V., Kucher A.A. Changes in luminescence characteristics of terbium hydroxybenzoates in condensed matter // Russ. J. Inorg. Chem. 2016. V. 61. № 1. Р. 73.)
- 118. *Мешкова С.Б., Дога П.Г., Кучер А.А.* ИК-люминесценция β-дикетонатов Nd³⁺, Sm³⁺ и Yb³⁺ в разных агрегатных состояниях // Коорд. химия. 2017. Т. 43. № 10. С. 624. (*Meshkova S.B., Doga P.G., Kucher A.A.* IR luminescence of Nd³⁺, Sm³⁺, and Yb³⁺ βdiketonates in different aggregate states // Russ. J. Coord. Chem. 2017. V. 43. № 10. P. 657.)
- 119. Мешкова С.Б., Дога П.Г., Антонович В.П. Влияние конденсированных сред на люминесцентные характеристики комплексных соединений лантанидов // Журн. физ. химии. 2016. Т. 90. № 4. С. 631. (Meshkova S.B., Doga P.G., Antonovich V.P. Effect of condensed media on the luminescent characteristics of lanthanide complexes // Russ. J. Phys. Chem. A. 2016. V. 90. № 4. P. 870.)
- 120. *Efryushina N.P., Gubanova E.R.* Luminescent determination of lanthanides using phosphor crystals // Fresenius Z. Anal. Chem. 1989. V. 335. № 1. P. 40.
- 121. Rao T.P., Biju V.M. Trace determination of lanthanides in metallurgical, environmental, and geological samples // Crit. Rev. Anal. Chem. 2000. V. 30. № 2–3. P. 179.
- 122. *Rao T.P., Vijayalakshmi B., Iyer C.S.P.* Fluorimetric/luminescence determination of lanthanides // Rev. Anal. Chem. 2001. V. 20. № 1. P. 27.

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 75 № 3 2020