УДК 542.61

АНИОНООБМЕННАЯ ЭКСТРАКЦИЯ ДВУХЗАРЯДНЫХ АНИОНОВ РАСТВОРАМИ ВЫСШИХ ЧЕТВЕРТИЧНЫХ АММОНИЕВЫХ СОЛЕЙ С РАЗЛИЧНОЙ СТЕРИЧЕСКОЙ ДОСТУПНОСТЬЮ ОБМЕННОГО ЦЕНТРА

© 2020 г. Ю. В. Матвейчук^{а, *}, Д. В. Станишевский^а

^аБелорусский государственный университет, химический факультет ул. Ленинградская, 14, Минск, 220030 Беларусь *e-mail: Yu_Matveychuk@mail.ru Поступила в редакцию 14.12.2018 г. После доработки 21.04.2019 г. Принята к публикации 05.11.2019 г.

Установлено, что увеличение стерической доступности обменного центра четвертичных аммониевых солей (**ЧАС**) приводит к существенному возрастанию константы обмена для большинства изученных двухзарядных анионов (сульфат-, сульфит-, молибдат-, вольфрамат-, гидрофосфат-, селенат-), достигающему для "чисто" анионообменных систем более чем 5 порядков. Обнаружен эффект нивелирования анионообменного сродства при введении в органическую фазу сольватирующей добавки — гептилового эфира *n*-трифторацетилбензойной кислоты. Эффект стерической доступности утрачивается не полностью, что обусловлено сохранением заряда у сольвата. Введение сольватирующей добавки позволяет существенно (до 6.5 порядков) улучшить сродство анионов к фазе ЧАС. Обнаружено влияние размера аниона на величину эффекта стерической доступности обменного центра для сульфат-, сульфит-, тиосульфат-ионов. Для тетратионат-иона обнаружена обратная зависимость, т.е. с уменьшением стерической доступности обменного центра ЧАС происходит

ослабление анионообменной экстракции, что обусловлено большим размером иона $S_4O_6^{2-}$.

Ключевые слова: анионообменная экстракция, четвертичная аммониевая соль, сольватирующая добавка.

DOI: 10.31857/S0044450220040106

Анионообменная экстракция высшими четвертичными аммониевыми солями находит широкое применение в технологии цветных металлов, редких и рассеянных элементов и др. областях. Высшие ЧАС также зарекомендовали себя как перспективные аналитические реагенты для экстракционно-фотометрических определений гидрофобных анионов, включая металлокомплексные, и создания анионселективных электродов [1–4].

Известно, что анионообменная экстракция двухзарядных анионов высшими ЧАС протекает незначительно [5], в связи с чем экстрагенты данного класса редко используют для их выделения и определения. Поиск экстрагентов для гидрофильных двухзарядных анионов, которые с трудом концентрируются и определяются, — актуальная задача.

Одним из путей улучшения экстракционных характеристик анионообменных систем на основе высших ЧАС является использование нейтральных переносчиков кислотного характера. Известно [6, 7], что трифторацетилпроизводные проявляют высокую сольватирующую способность по отношению к карбонат- и карбоксилат-ионам, их также используют и при изучении возможности экстракции и других анионов [1, 8, 9]. Влияние концентрации гексилового эфира *n*-трифторацетилбензойной кислоты на анионообменную экстракцию сульфат-, ацетат-, бензоат-, оксалат-, карбонат-, *o*-бромбензоат-, *o*-бензоилбензоат-ионов изучали в работах [5, 10, 11].

Целенаправленное использование анионообменных экстракционных систем как в аналитических, так и в прикладных целях должно основываться на ряде анионообменного сродства, в котором анионы расположены в соответствии с величинами констант обмена на стандартный анион, в качестве которого обычно используют хлорид. Однако некоторые двухзарядные анионы отсутствуют в ряде Гоф-

мейстера: $ClO_4^- > SCN^- > BF_4^- > I^- > NO_3^- > Br^- > Cl >$

497

 $> Ac^{-} > SO_{4}^{2-} > F^{-} > H_2PO_{4}^{-} > C_2O_{4}^{2-} > HCO_{3}^{-} > HPO_{4}^{2-} > CO_{3}^{2-} > PO_{4}^{3-} > OH^{-}$ [12, 13].

Для определения констант обмена ранее предложен метод промежуточного аниона [14, 15], в качестве которого используют подходящий кислотный краситель, например метиловый красный (**MK**) в солевой (натриевой) форме (**MK**⁻Na⁺).

Цель данной работы — изучить влияние стерической доступности обменного центра высших ЧАС на анионообменное сродство двухзарядных анионов (сульфат-, сульфит-, тиосульфат-, тетратионат-, молибдат-, вольфрамат-, гидрофосфат-, селенат-ионов) на хлорид-ион методом промежуточного иона как в "чисто" анионообменных системах, так и в присутствии сольватирующей добавки — гептилового эфира *n*-трифторацетилбензойной кислоты. Кроме того, рассмотрен вопрос влияния размера двухзарядного неорганического аниона на величину эффекта стерической доступности обменного центра ЧАС.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Экстракцию изучали при температуре 298 ± 1 К. Использовали следующие высшие ЧАС, синтез которых описан в работах [16, 17], а графические структурные формулы представлены на схеме 1: — бромиды R-трибутиламмония, Rтриэтиламмония, R-триметиламмония, где R — 3,4,5-трис(додецилокси)бензил; иодид тринонилоктадециламмония; хлорид 4-(3,4-дицетоксифенил)бутилтриметиламмония.

Схема 1. Структурные формулы катионов четвертичных аммониевых солей: тринонилоктадециламмония (ТНОДА), 3,4,5-трис(додецилокси)бензилтрибутиламмония (ТБ), 3,4,5-трис(додецилокси)бензилтрибутиламмония (ТЭ), 3,4,5-трис(додецилокси)бензилтриметиламмоний (ТМ), 4-(3,4-дицетоксифенил)бутилтриметиламмония (ДЦФБТМ).

Все высшие ЧАС очищали в экстракционной системе гексан-ацетонитрил/изопропиловый спирт. Выбранные ЧАС существенно отличаются по стерической доступности обменного центра (четвертичного атома азота), так как содержат при нем углеводородные радикалы различной длины от С₁ до С₉.

Использовали метиловый красный ч. д. а., толуол ч. д. а., NaCl х. ч., NaOH (фиксанал), $(NH_4)_2SO_4$ х. ч., Na_2SO_4 ч. д. а., Na_2SO_3 ч. д. а., Na_2S_2O_3 · 5H_2O ч. д. а., Na_2S_4O_6 (синтезирован по методике [18]), Na_2MoO_4 · 2H_2O х. ч., Na_2WO_4 · 2H_2O

х. ч., Na₂HPO₄ · 12H₂O ч. д. а., Na₂SeO₄ ч., аммиак водный ос. ч.

Гептиловый эфир *n*-трифторацетилбензойной кислоты (ГЭ *n*-ТФАБК), был синтезирован на кафедре аналитической химии БГУ по методике [16].

Экстракцию проводили в пробирках с пришлифованными пробками. Органическая фаза экстракционной системы представляла собой растворы ЧАС⁺МК⁻ (c = 0.001 М) в толуоле, водная фаза — растворы соответствующих солей с концентрацией от 5 × 10⁻⁴ до 1.0 М. рН в растворах всех солей поддерживали на уровне 9.8 ± 0.1, так как предварительно было установлено, что коэффициент распределения P для МК в системе толуол—вода имеет постоянное значение 2 × 10³ при pH > 9.5.

После установления концентрационного равновесия и расслаивания фазы экстракционной системы анализировали на содержание красителя фотометрически (спектрофлуориметр Solar CM2203) при 410 и 435 нм для органической и водной фаз соответственно. Значение молярного коэффициента поглощения для водного раствора MK составляет 2 × 10⁴, для толуольного раствора ЧАС⁺MK⁻ – (6.2 ± 0.2) × 10³.

Перевод ЧАС в форму ЧАС⁺МК⁻ осуществляли следующим образом: 100 мл 0.001 М толуольного раствора ЧАС⁺Сl⁻ обрабатывали несколько раз по 100 мл 0.005 М раствора МК⁻Na⁺ в делительной воронке (полноту перевода ЧАС в форму ЧАС⁺МК⁻ контролировали фотометрически до постоянства оптической плотности). Если ЧАС находились в бромидной или иодидной формах, то 100 мл их толуольных растворов предварительно обрабатывали 4 раза по 20 мл 5 М раствора NaCl, а затем промывали три раза по 100 мл дистиллированной воды.

Основная реакция анионообменной экстракции описывается уравнением:

$$2 \mathrm{YAC}^{+}\mathrm{MK}^{-} + \mathrm{An}^{2-} \leftrightarrow \left(\mathrm{YAC}^{+}\right)_{2} \mathrm{An}^{2-} + 2 \mathrm{MK}^{-}. (1)$$

Константы обмена анионов на стандартный хлорид-ион рассчитывали по соотношению:

$$K_{2Cl^{-}}^{An^{2-}} = \frac{[(R_{3}R'N^{+})_{2}An^{2-}]_{org}[Cl^{-}]_{aq}^{2}}{[R_{3}R'N^{+}Cl^{-}]_{aq}^{2}[An^{2-}]_{aq}}.$$
 (2)

Существует возможность комплексообразования катионов натрия и двухзарядных анионов. Так, рK комплекса NaSO₄ равен 0.72, а комплекса NaS₂O₃ – 1.08 [19]. В связи с этим провели предварительные исследования, в которых варьировали концентрации двухзарядных анионов, особенно сульфата и тиосульфата. В работе [20] для изучения анионообменных равновесий с участием сульфат-ионов использовали их постоянную концентрацию 0.9 М. Установлено, что при одинаковых концентрациях сульфата натрия и сульфата ам-

мония (например, 0.1 М) в случае $(NH_4)_2SO_4$ сульфат-ионами вытесняется в 1.5—2 раза больше ионов MK⁻ из органической фазы по сравнению с Na₂SO₄. По данным [3], комплексный ион NaSO₄⁻ практически не экстрагируется ЧАС. Данных по константам нестойкости комплексов катиона аммония с изучаемыми анионами не найдено.

Установлено, что постоянные значения констант обмена $K(\text{An}^{2-}/2\text{Cl}^{-})$ достигаются для концентраций ионов An^{2-} менее 5 × 10⁻³ M, что обусловлено уменьшением эффекта комплексообразования и, соответственно, увеличением активности обменивающихся анионов (следует отметить, что заметное влияние ионной силы на константы обмена для однозарядных ионов отсутствует [3]).

Зависимость константы обмена (для сульфатионов) от концентрации соли (ионной силы раствора, µ) описывается уравнением [3]:

$$\lg K_{2Cl^{-}}^{SO_4^{2-}} = \lg K_{2Cl^{-}}^{SO_4^{2-}} + 2.27 \frac{\sqrt{\mu}}{1 + \sqrt{\mu}},$$
 (3)

где $K_{2Cl^{-}}^{SO_{4}^{2-}}$ – константа ионного обмена, близкая к термодинамической.

В настоящей работе мы приводим концентрационные константы обмена, не учитывающие изменение концентраций двухзарядных ионов за счет образования комплексов Na⁺ с An²⁻, поскольку значения констант нестойкости комплексов Na⁺ с An²⁻, возможно, не являются достоверными (или таковые отсутствуют). Видимо, эти константы рассчитаны по изменению общей активности частиц в растворах соответствующих сульфатов или тиосульфатов [19]. Кроме того, сложно учитывать коэффициенты активности Na⁺, SO₄²⁻, S₂O₃²⁻, NaSO₄⁻ и др. на фоне комплексообразования.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Константы обмены двухзарядных анионов на хлорид-ион для "чисто" анионообменных систем. Значения констант обмена $K(Cl^-/MK^-)$ для различных ЧАС представлены ниже ($c(Cl^-) = 0.001$ M):

 1.8×10^{-4} 7.6×10^{-5} 5.2×10^{-5}

TM

ДЦФБТМ

ΤЭ

В табл. 1 представлены значения констант обмена $K(An^{2-}/2Cl^{-})$ в зависимости от природы высшей ЧАС. Как видно, константы обмена сильно зависят от природы ЧАС, используемой в качестве анионообменника. Все ЧАС имеют радикалы достаточной длины для предотвращения их растворения в воде. В связи с этим зависимость *K*(An^{2–}/2Cl[–]) от природы ЧАС нельзя объяснить изменением концентрации экстрагента или продукта экстракции.

Наблюдаемые эффекты можно объяснить особенностями ионной ассоциации катионов ЧАС с

Анион	ТНОДА	ТБ	ТЭ	ТМ	ДЦФБТМ
SO_4^{2-}	-2.4	-2.0	-0.3	1.2	2.0
SO_{3}^{2-}	-3.5	-3.0	-0.8	1.0	1.9
$S_2O_3^{2-}$	-2.1	-1.9	-0.9	0.2	0.6
$S_4O_6^{2-}$	-1.9	-2.2	-2.9	-3.3	-3.6
MoO_4^{2-}	-3.9	-3.7	-2.7	-1.4	-1.0
WO_4^{2-}	-5.0	-4.8	-4.0	-3.1	-2.6
HPO_4^{2-}	-3.0	-2.7	-1.1	0.4	0.8
SeO_4^{2-}	-2.9	-2.5	-0.1	1.6	2.2

Таблица 1. Значения логарифмов констант обмена $K(An^{2-}/2Cl^{-})$ для различных высших четвертичных аммониевых солей ($c_{An^{2-}} = 0.001$ M)

обменивающимися анионами [4, 20–22]. Для однозарядных анионов процесс ассоциации протекает в соответствии с уравнением:

$$R_4 N^+ + X^- \xleftarrow{(K_{ass})_{X^-}} R_4 N^+ X^-.$$
(4)

Для двухзарядных анионов процесс ассоциации идет в две стадии:

$$\mathbf{R}_{4}\mathbf{N}^{+}+\mathbf{Y}^{2-} \xleftarrow{\left(\mathbf{K}_{ass}^{+}\right)_{\mathbf{Y}^{2-}}} (\mathbf{R}_{4}\mathbf{N}^{+}\mathbf{Y}^{2-})^{-}, \qquad (5)$$

$$(\mathbf{R}_4\mathbf{N}^+\mathbf{Y}^{2-})^- + \mathbf{R}_4\mathbf{N}^+ \xleftarrow{(K_{ass}^{\vee})_{\gamma^2}} (\mathbf{R}_4\mathbf{N})_2\mathbf{Y}^{2-}, \quad (6)$$

где $(K'_{ass})_{Y^{2-}}, (K''_{ass})_{Y^{2-}}$ – константы образования ассоциатов по уравнениям (5), (6) соответственно.

Тогда с учетом протекания процессов ассоциации константу обмена однозарядных анионов на двухзарядные можно записать в виде:

$$\lg K_{2X^{-}}^{Y^{2-}} = \lg K_{2X^{-}}^{Y^{2-}}(ion) + \lg \frac{\left(K_{ass}^{'}\right)_{Y^{2-}}\left(K_{ass}^{'}\right)_{Y^{2-}}}{\left(K_{ass}\right)_{X^{2-}}^{2}}.$$
 (7)

Согласно теории Фуосса значения констант ионной ассоциации зависят от зарядов ассоциирующих ионов (z), их эффективных размеров (a) и диэлектрической проницаемости растворителя (ϵ):

$$\lg K_{\rm ass} = 2.6 + 243 \left| z_{\rm An^{2-}} z_{\rm R_4N^+} \right| / \varepsilon a + 3 \lg a.$$
 (8)

Анализ уравнения (8) позволяет объяснить влияние природы катиона ЧАС на относительную эффективность взаимодействия с одно- и двухзарядными анионами. Согласно данным [4] в случае контактных ионных пар, когда между ассоциированными ионами отсутствуют молекулы растворителя, значения параметров ближайшего подхода *а* между катионом ЧАС и анионом обычно находятся в пределах 4–8 Å. Таким образом, в растворителях с низкой ε (2.4 для толуола) определяющий вклад в величину константы ионной ассоциации вносит второе слагаемое уравнения (8). В результате улучшение стерической доступности обменного центра ЧАС, сопровождающееся уменьшением параметра ближайшего подхода *a*, должно приводить к возрастанию констант ионной ассоциации. Из уравнения (8) также следует, что при сопоставимых размерах одно- и двухзарядных анионов влияние стерической доступности обменного центра ЧАС на величину первой константы ассоциации катиона ЧАС с двухзарядным анионом (K'_{ass})^{2–}_Y должно быть гораздо сильнее, чем на величину константы ассоциации с однозарядным анионом (K_{ass})^{3–}_X из-за большей величины заряда z_Y^{2-} .

При использовании ЧАС с четырьмя длинноцепочечными заместителями ионная ассоциация с двухзарядным анионом по второй стадии (уравнение (6)) существенно затруднена в силу стерических препятствий. Улучшение стерической доступности обменного центра должно сопровожуменьшением параметра даться резким ближайшего подхода второго катиона ЧАС к отрицательно заряженному ассоциату [ЧАС+Ү2-]-. В результате возрастание второй константы ассоциации $(K''_{\rm ass})_{
m Y}^{2-}$ может оказаться более значительным, чем увеличение $(K_{ass})_X^-$ для однозарядных анионов, для которых стерическая доступность обменного центра ЧАС в меньшей степени влияет на величину а.

Поскольку параметр ближайшего подхода *а* является в первом приближении аддитивной функцией радиусов аниона и катиона [22], очевидно, что влияние стерической доступности обменного центра ЧАС на величины констант ассоциации определяется размерами ассоциирующих анионов [23]. В частности, на примере однозарядных анионов показано [4], что более выраженные эффекты изменения величин констант ассоциации наблюдаются в случае анионов меньшего размера [23], что обусловливает нивелирование констант обмена.

Анион	ТНОДА	ТБ	ТЭ	ТМ	ДЦФБТМ	
SO_4^{2-}	2.6	2.7	3.2	3.6	3.9	
SO_{3}^{2-}	2.0	2.3	3.1	3.4	3.6	
$S_2O_3^{2-}$	1.7	1.9	2.4	2.6	2.6	
$S_4O_6^{2-}$	-0.5	-0.7	-1.0	-1.3	-1.3	
MoO_4^{2-}	2.0	2.0	2.4	2.6	2.6	
WO_4^{2-}	1.5	1.5	1.8	2.0	2.1	
HPO_4^{2-}	2.2	2.2	2.5	2.8	2.9	
SeO_4^{2-}	2.8	2.9	3.4	3.8	4.2	

Таблица 2. Значения констант обмена $K(An^{2-}/2Cl^{-})$ для различных высших четвертичных аммониевых солей $(c_{\Gamma \ni n-T \Phi A \overline{D} K} = 0.002 \text{ M})$

Константы обмены двухзарядных анионов на хлорид-ион для анионообменных систем, содержащих сольватирующую добавку — гептиловый эфир *n*-трифторацетилбензойной кислоты. Зна-

чения констант обмена $K(Cl^-/MK^-)$ для различных высших ЧАС (растворитель – толуол, $c(\Gamma \Im n-T\Phi A B K) = 1 \times 10^{-2}$ М) представлены ниже:

ЧАС	ТНОДА	ТБ	ТЭ	TM	ДЦФБТМ
<i>K</i> (Cl ⁻ /MK ⁻)	2.9×10^{-4}	1.0×10^{-4}	8.2×10^{-5}	5.4×10^{-5}	3.0×10^{-5}

в табл. 2 представлены значения констант обмена $\kappa(an^{2-}/2cl^{-})$ в зависимости от природы высшей час. видно, что введение сольватирующей добавки приводит, с одной стороны, к существенному увеличению констант обмена, а с другой, к их сильному нивелированию. например, для сульфит-, молибдат-, вольфрамат-ионов увеличение констант обмена достигает 5.5, 5.9, 6.5 порядков величины соответственно (ионообменник – тнода).

Так, например, для сульфит-ионов в ряду ТНОДА–ТБ–ТЭ–ТМ–ДЦФБТМ константа обмена увеличивается на 1.4 порядка (табл. 2), тогда как в отсутствие ГЭ n-ТФАБК в органической фазе эффект стерической доступности достигает 5.4 порядков (табл. 1). Видимо, образование сольватной оболочки вокруг каждого из изучаемых анионов приводит к нивелированию эффекта стерической доступности ЧАС. Вместе с тем эффект проявляется, что обусловлено сохранением заряда сольвата -2.

Влияние размера двухзарядного неорганического аниона на величину эффекта стерической доступности высших четвертичных аммониевых солей. Данные табл. 1 и 2 также отражают влияние размера двухзарядного аниона на эффект стерической доступности обменного центра ЧАС. Ниже приведены радиусы серосодержащих двухза-рядных анионов [23–25]:

Ион	SO_{3}^{2-}	SO_4^{2-}	$S_2O_3^{2-}$	$S_4O_6^{2-}$
Радиус, нм	0.204	0.218	0.251	0.325

Видно, что в ряду анионов $SO_3^{2-}-SO_4^{2-}-S_2O_3^{2-}$ происходит нивелирование эффектов, связанных с увеличением стерической доступности обменного центра как для "чисто" анионообменных систем (табл. 1), так и в присутствии в органической фазе сольватирующей добавки (табл. 2). Например, в ряду ТНОДА–ТБ–ТЭ–ТМ–ДЦФБТМ для сульфит-иона константа обмена увеличивается на 5.4 порядка, для сульфат-иона – на 4.4 порядка, для тиосульфат-иона – на 2.7 порядка (табл. 1).

Для $S_4 O_6^{2-}$ -иона обнаружена обратная зависимость: при переходе от ТНОДА к ДЦФБТМ происходит ослабление анионообменной экстракции, что обусловлено большим размером иона $S_4 O_6^{2-}$, который, согласно теории Фуосса, должен проявлять более высокое анионообменное сродство к стерически затрудненным ЧАС. Проявление такого анионообменного сродства тетратионат-ионами аналогично поведению больших по размеру металлокомплексных анионов [25–27].

СПИСОК ЛИТЕРАТУРЫ

- 1. Matveichuk Yu., Rakhman'ko E., Akayeu Ya., Stanishevskii D. Ion-selective electrodes based on long-chain quaternary ammonium salts with enhanced steric accessibility, and their application for determination of hydrophilic double-charged inorganic anion // Chem. Papers. 2018. V. 72. № 3. P. 731.
- 2. Матвейчук Ю.В., Рахманько Е.М. Высшие четвертичные аммониевые соли со стерически затрудненным обменным центром: применение в разработке ионселективных электродов, обратимых к тиоцианатным комплексам металлов // Журн. аналит. химии. 2018. Т. 73. № 12. С. 922.
- 3. Рахманько Е.М., Слобода Н.А., Лагунович С.А. Анионообменная экстракция сульфат-ионов четвертичными и бис-четвертичными аммониевыми солями // Журн. неорг. химии. 1990. Т. 35. № 9. С. 2409.
- 4. Егоров В.В., Рахманько Е.М., Помеленок Е.В., Окаев Е.Б. Влияние стерической доступности обменного центра высших четвертичных аммониевых солей на анионообменную экстракцию двухзарядных анионов // Журн. физ. химии. 2006. Т. 80. № 6. С. 1104.
- 5. Рахманько Е.М., Гулевич А.Л., Подтероб А.П., Слобода Н.А., Цвирко Г.А., Сенин П.В. Анионообменная экстракция двухзарядных анионов растворами высших четвертичных аммониевых солей // Весці акадэміі навук Беларусі. 1997. № 4. С. 9.
- Гулевич А.Л., Рахманько Е.М., Кийко Т.Н. Тригалогенацетатселективные электроды на основе гексилового эфира *n*-трифторацетилбензойной кислоты // Журн. аналит. химии. 2001. Т. 56. № 5. С. 523.
- Рахманько Е.М., Матвейчук Ю.В., Станишевский Л.С., Ясинецкий В.В. Оксалатселективный электрод и его применение в анализе // Журн. аналит. химии. 2015. Т. 70. № 7. С. 758.
- Lomako S.V., Astapovich R.I., Nozdrin-Plotnitskaya O.V., Pavlova T.E., Lei S., Nazarov V.A., Okaev E.B., Rakhman'ko E.M., Egorov V.V. Sulfate-selective and its application for sulfate determinations in aqueous solutions // Anal. Chim. Acta. 2006. V. 562. №2. P. 216.
- Matveichuk Yu.V., Rakhman'ko E.M. Influence of the QAS nature and size of a doubly charged hydrophilic inorganic ions on the analytical characteristics of S₄O₆²⁻, SO₄²⁻, SO₃²⁻, S²⁻, S₂O₃²⁻ selective electrodes // Anal. Chem. Lett. 2017. V. 7. № 5. P. 647.
- Рахманько Е.М., Гулевич А.Л., Подтероб А.П., Сенин П.В. Сольватирующие свойства гексилового эфира *п*-трифторацетилбензойной кислоты и его аналогов в анионообменных экстракционных системах // Журн. аналит. химии. 1998. Т. 53. № 6. С. 585.
- 11. Гулевич А.Л., Рахманько Е.М., Подтероб А.П. Изучение сольватации гидрофильных анионов гексиловым эфиром *n*-трифторацетилбензойной кислоты методом анионообменной экстракции // Журн. физ. химии. 1996. Т. 70. № 12. С. 2191.
- 12. *Merenbloom S.I., Flick T.G., Daly M.P., Williams E.R.* Effects of select anions from the Hofmeister series on the gas-phase conformations of protein ions measured

with traveling-wave ion mobility spectrometry/mass spectrometry // J. Am. Soc. Mass Spectrom. 2011. V. 22. № 11. P. 1978.

- 13. Xie W.J., Liu C.W., Yang L.J., Gao Y.Q. On the molecular mechanism of ion specific Hofmeister series // Sci. China Chem. 2014. V. 57. № 1. P. 36.
- 14. Старобинец Г.Л., Рахманько Е.М., Сорока Ж.С. Применение кислотных красителей для определения констант анионообменных экстракционных равновесий // Журн. неорг. химии. 1978. Т. 23. № 6. С. 1628.
- 15. Цыганов А.Р., Рахманько Е.М., Старобинец Г.Л. Анионообменная экстракция кислотных красителей солями тринонилоктадециламмония // Весці акадэміі навук Беларусі. 1997. № 4. С. 9.
- 16. Матвейчук Ю.В., Рахманько Е.М., Окаев Е.Б. Ионоселективные электроды на основе высших четвертичных аммониевых солей, обратимые к двухзарядным неорганическим анионам. Минск: БГУ, 2018. 239 с.
- 17. Окаев Е.Б. Синтез новых высоколипофильных четвертичных аммониевых солей с регулируемой стерической доступностью катионного центра // Весці НАН Беларусі. Серыя хім. навук. 2005. № 1. С. 53.
- 18. Леснова Е.В. Практикум по неорганическому синтезу. М.: Высшая школа, 1977. 168 с.
- Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1989. 448 с.
- Рахманько Е.М., Егоров В.В., Окаев Е.Б., Помеленок Е.В. Высшие четвертичные аммониевые соли с повышенной стерической доступностью обменного центра – селективные обменники двухзарядных анионов // Доклады НАН Беларуси. 2003. Т. 47. № 6. С. 50.
- Fuoss R.M. Ionic association. The equilibrium between ion pairs and free ions // J. Am. Chem. Soc. 1958. V. 80. P. 5059.
- Berns S., Fuoss R.M. Electrolyte-solvent interaction. Tetra-alkylammonium tetraphenylborides in acetonitrile-carbon tetrachloride mixtures at 25° // J. Am. Chem. Soc. 1960. V. 82. P. 5585.
- Roobotton H.K., Jenkins H.D.B. Thermochemical radii of complex ions // J. Chem. Educ. 1999. V. 76. № 11. P. 1570.
- Marcus Yi. Ionic Radii in Aqueous Solutions // Chem. Rev. 1988. V. 88. P. 1475.
- 25. Рахманько Е.М., Матвейчук Ю.В., Ясинецкий В.В., Станишевский Л.С. Zn(NCS)²⁻-селективные электроды на основе высших четвертичных аммониевых солей (ЧАС) // Журн. аналит. химии. 2013. Т. 68. № 4. С. 355.
- 26. Егоров В.В., Рахманько Е.М., Гулевич А.Л., Ломако С.В., Ратько А.А. Комплексные соединения металлов как перспективные ионофоры для создания анион-селективных электродов // Коорд. химия. 2002. Т. 28. № 10. С. 754.
- 27. Рахманько Е.М., Качанович И.В., Таразевич М.Я. Анионообменная экстракция роданидных комплексов цинка четвертичными аммониевыми солями различного строения // Журн. неорг. химии. 2006. Т. 51. № 10. С. 1773.