— ОРИГИНАЛЬНЫЕ СТАТЬИ —

УДК 547-326:543.572.3:543.544.43

ДИФФЕРЕНЦИАЛЬНАЯ СКАНИРУЮЩАЯ КАЛОРИМЕТРИЯ КАК МЕТОД КОНТРОЛЯ ПОДЛИННОСТИ РАСТИТЕЛЬНЫХ МАСЕЛ

© 2021 г. О. Б. Рудаков^{а, *}, И. А. Саранов^{ь, **}, Нгуен Ван Ань^с, Л. В. Рудакова^d, К. К. Полянский^e

^аВоронежский государственный технический университет ул. 20-летия Октября, 84, Воронеж, 394006 Россия ^bВоронежский государственный университет инженерных технологий просп. Революции, 19, Воронеж, 394036 Россия ^cБелгородский государственный национальный исследовательский университет ул. Победы, 85, Белгород, 308015 Россия ^dВоронежский государственный медицинский университет им. Н.Н. Бурденко ул. Студенческая, 10, Воронеж, 394000 Россия ^eВоронежский филиал Российского экономического университета им. Г.В. Плеханова ул. Карла Маркса, 67А, Воронеж, 394030 Россия *e-mail: robi57@mail.ru **e-mail: mr.saranov@mail.ru

Поступила в редакцию 09.07.2020 г. После доработки 20.08.2020 г. Принята к публикации 29.08.2020 г.

Методом дифференциальной сканирующей калориметрии (**ДСК**) изучены теплофизические свойства жидких при комнатной температуре растительных масел амаранта, кукурузы, льна, подсолнечника, рапса, расторопши, рыжика и тыквы. Установлены характеристические тепловые эффекты этих масел – температуры максимумов эндотермических пиков и их площади на термограммах ДСК. В качестве идентификационных показателей обсуждены эндотермические пики разной интенсивности на кривых плавления жидких растительных масел в диапазонах от -40 до -15° С, от -25 до -8° С, от -19 до $+6^{\circ}$ С и от -10 до $+4^{\circ}$ С. Координаты максимумов этих пиков по оси абсцисс (T_i) и их площади (S_i) значимо коррелируют с содержанием основных жирных кислот и триацилглицеринов (W_i , %), определенных методом обращенно-фазовой ВЭЖХ. Показана возможность эффективно контролировать методом ДСК подлинность растительных масел.

Ключевые слова: жидкие растительные масла, дифференциальная сканирующая калориметрия, кривые плавления, обращенно-фазовая ВЭЖХ, триглицеридный состав. **DOI:** 10.31857/S0044450221020110

Теплофизические свойства твердых жиров, таких как молочный жир, масло какао, пальмовое и кокосовое масло, а также целого спектра заменителей молочного жира и масла какао изучены методом дифференциальной сканирующей калориметрии (ДСК) достаточно подробно [1-4], поскольку для пищевой технологии и потребления сведения о температурах плавления и кристаллизации жиров имеют важное значение. Кроме того, молочный жир и масло какао относятся к категории дорогостоящих продуктов. Для снижения стоимости масложировой и кондитерской продукции и оптимизации технологии молочный жир и масло какао частично или полностью заменяют искусственными комбинированными жирами. Термический анализ применяют и для жидких растительных масел [5–7]. В работе [1], пожалуй, наиболее детально изучены методом ДСК теплофизические свойства 17 пищевых жиров, в том числе типичных растительных масел (РМ). Для интерпретации кривых кристаллизации и плавления в качестве подтверждающих методов использованы газожидкостная хроматография (ГЖХ) и ВЭЖХ (данные о жирнокислотном и триглицеридном составе жиров), а также химическое определение иодного числа, учтено распределение фракций триацилглицеринов (ТАГ): триненасыщенных, диненасыщенных, мононасыщенных и тринасыщенных ТАГ. В работе [1] сопоставлены данные ДСК разных РМ, однако не выполнен корреляционный анализ изменения температур максимумов и их площадей на термограммах в зависимости от химического состава РМ. Обычно для исследования РМ методом ДСК используют кривые кристаллизации, однако они хуже воспроизводятся, чем кривые плавления [2, 4].

В работах [3, 5] применяют так называемую "быструю" ДСК с градиентом температур 10-20 град/мин. При быстром нагреве пики, характеризующие тепловые эффекты, сливаются, снижается информативность термограмм, поэтому стандартная скорость нагрева или охлаждения составляет 5 град/мин. Часто в исследованиях РМ методом ДСК не приводятся хроматографические данные для подкрепления сделанных выводов, делается акцент на том, что ДСК – самодостаточный метод идентификации жиров, который не требует больших затрат времени, реактивов и растворителей, сложного оборудования, высокой квалификации персонала. Демонстрируя высокую чувствительность термограмм к изменениям жирнокислотного и триглицеридного состава, авторы цитируемых работ не обсуждают вариативность химического состава РМ, обусловленную генотипическими и фенотипическими факторами. Наконец, в работах [1-7] не предложен понятный и простой алгоритм идентификации, например, с использованием контрольных карт, визуализирующих цифровую информацию, содержащую несколько параметров термограмм [8].

Цель настоящей работы — изучение теплофизических свойств некоторых жидких растительных масел, полученных из выращенного в России сырья, с использованием кривых плавления ДСК и контрольных карт, учитывающих вариативность химического состава, для проверки подлинности этих масел.

В качестве объектов изучения выбрали подсолнечное, кукурузное, рапсовое и рыжиковое масла как недорогие сорта, и амарантовое, льняное, тыквенное и масло расторопши как масла, используемые преимущественно в качестве биологически активных добавок (БАД). БАДы на основе дорогих натуральных РМ могут фальсифицироваться или разбавляться недорогими РМ, которые в 10–20 раз дешевле.

Приоритетными методами контроля качества и подлинности жиров и масел являются капиллярная ГЖХ жирных кислот (ЖК) и обращеннофазовая ВЭЖХ триацилглицеринов, входящих в состав жировой фазы [8-18]. Триацилглицерины рассматриваемых жидких РМ содержат в сумме от 75 до 90% ненасыщенных ЖК (олеиновой, линолевой и линоленовой), 5-20% насыщенных ЖК (пальмитиновой и стеариновой) и различное количество минорных насыщенных и/или ненасыщенных ЖК [8, 9]. Покомпонентная идентификация ТАГ в различном растительном сырье методом ВЭЖХ позволила получить большую базу хроматографических данных [8–18], которую использовали в настоящей работе при интерпретации хроматограмм. В первую очередь использовали инкрементный подход, разработанный Дейнекой с соавт. [10-15] и основанный на идее аддитивности вкладов (инкрементов) функциональных групп в удерживание сорбата [15]. Этот подход не позволяет различить изомеры положения и отдельные аналогичные по хроматографическим свойствам ТАГ, но в целом он зарекомендовал себя продуктивным и хорошо согласующимся с данными других работ.

В отличие от покомпонентного анализа методами ГЖХ и ВЭЖХ, в методе ДСК в качестве идентификационных параметров и аналитических сигналов служат геометрические параметры кривых ДСК – экстремумы температур плавления или кристаллизации, площади эндо- и экзотермических пиков и их соотношения [1-4]. Преимуществом метода ДСК является простота пробоподготовки и высокая чувствительность теплофизических характеристик к составу жировой фазы. Например, ДСК смесей молочного жира и пальмового масла позволяет обнаружить 2-10% добавки последнего в молочный жир [2–4]. Аналогичные результаты получены при анализе методом ДСК смесей оливкового масла с другими более дешевыми РМ [5, 6]. По характерному профилю термограмм ДСК можно проверить не только аутентичность образца масла, но также географическое происхождение и сорт масличного растения, из которого оно выделено [6].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы масел (образцы сравнения) произведены в лабораторных условиях в ФГБОУ ВО "ВГУИТ" и в ООО "Русская Олива" методом холодного отжима с применением шнекового пресса. Для проведения термического анализа использовали прибор синхронного термического анализа STA 449 F3 Jupiter® фирмы "NETZSCH" (Германия). Для анализа отбирали навески образцов РМ массой 15–22 мг. Теплофизические свойства измеряли в диапазоне температур от –150 до +20°С, скорость нагрева 5 град/мин. Систему охлаждали жидким азотом. Измерения выполняли в атмосфере гелия (расход продувочного газа 10 мл/мин, расход защитного газа 10 мл/мин). Точность измерения температуры составляла ±0.3°С.

Состав РМ анализировали методом ВЭЖХ на хроматографе Shimadzu L20 с рефрактометрическим детектором Shimadzu RID-10A (Япония). Колонка: 250 × 4.6 мм, Kromasil 100-5C18, 35°С. Элюент – смесь ацетонитрил–ацетон (15 : 85, по объему), расход 0.8 мл/мин. Идентификацию ТАГ и ЖК проводили с применением инкрементного расчета [15].

Для повышения информативности термограмм, полученных методом ДСК, использовали программное разделение суперпозиции пиков тепловых эффектов, накладывающихся друг на друга, в программе NETZSCH Peak Separation по алгоритму General.

Триацилглицерины обозначали по общепринятой схеме — буквами указывали тип ЖК с указанием их числа в ТАГ с помощью подстрочного индекса без дифференциации положения радикалов в молекуле. Буквенные обозначения кислот, входящих в состав изучаемых РМ: А — арахиновая, В — бегеновая, Е — эйкозеновая, Е'' — эруковая, L — линолевая, L'' — линоленовая, О олеиновая, Р — пальмитиновая, S — стеариновая кислота. Например, L₂O обозначает ТАГ, образованный двумя радикалами линолевой и одним радикалом олеиновой кислоты.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 и 2 приведены кривые плавления ДСК образцов РМ и хроматограммы ТАГ. На термограммах плавления ДСК масел можно выделить от 2 до 4 характеристичных эндотермических максимумов, которые имеют различную амплитуду и геометрию, расположены на различных расстояниях по оси температур; пики имеют отличающиеся по величине площади (S_i), которые также несут в себе идентификационные признаки.

Для более точного определения T_i слабо выраженных термических эффектов, так называемых "плеч" на основных пиках, применяли вторые производные от ДСК по времени (см. пример на рис. 2д). Наиболее интенсивный пик, а точнее суперпозиция неразделенных пиков, на термограммах ДСК, имеющий ассиметричную форму, расположен в диапазоне примерно от -30 до -20° С, окончание плавления происходит в диапазоне от -10 до $+5^{\circ}$ С. В связи с плохим разделением суперпозиции пиков эндотермических эффектов РМ их программно разделяли на 2-4 пика и рассчитывали относительные площади S_i (%). На рис. 3 приведены примеры программного разделения пиков на термограммах ДСК плавления.

В табл. 1 приведены установленные величины теплофизических характеристик исследуемых образцов РМ – T_i и S_i . В табл. 2 представлены результаты идентификации ТАГ, а в табл. 3 – обнаруженные ЖК. Отметим, что в табл. 2 и 3 приведены наши данные, полученные для конкретных образцов РМ, теплофизические свойства которых определяли в данной работе. Это важно, так как теплофизические свойства масел чутко реагируют на химический состав жиров, который может заметно варьировать даже для РМ одного и того же вида растений в зависимости от генотипа и фенотипа [8, 9]. Хроматографические данные находятся в типичных диапазонах содержания ЖК, нормируемых или установленных ранее для рассматриваемых видов РМ [8, 9], отсутствуют данные о ЖК, содержание которых <1%. Детальную интерпретацию кривых ДСК осложняет наличие полиморфизма, взаимной растворимости различных фракций ТАГ, образующиеся эвтектики. Однако как показал корреляционный анализ для взятой выборки РМ, между химическим составом РМ и эндотермическими эффектами прослеживаются значимые корреляции. В работе [1] показано, что жидкие пищевые РМ, содержащие в своем составе 61-81% триненасыщенных ТАГ (UUU) и 35-17% диненасыщенных, мононасыщенных ТАГ (UUS), такие как оливковое, каноловое масло и др., имеют на кривых плавления ДСК ярко выраженный эндотермический пик в области от -42 до $+6^{\circ}$ С, на плечах которого слева и справа можно выделить как минимум еще два пика. В указанном диапазоне температур наблюдаются основные тепловые эффекты и в исследуемых нами PM, у которых сумма ТАГ (UUU) составляет от 84 до 44%, а ТАГ (UUS) - 16-40%. Кроме этих ТАГ, в РМ присутствует несколько процентов мононенасыщенных, динасыщенных ТАГ (USS) и незначительное или следовое количество тринасыщенных ТАГ (SSS), которые имеют более высокие температуры плавления, чем ТАГ (UUU) и ТАГ (UUS) (табл. 2).

Следует отметить индивидуальный характер сочетания температур максимумов (T_i) и площадей (S_i) на кривых РМ, что позволяет использовать эти теплофизические параметры для качественной идентификации.

Триглицеридный состав РМ в табл. 2 ранжирован по величине эквивалентного углеродного числа NEC, который в первом приближении прогнозирует диапазон плавления и хроматографического поведения ТАГ [18]. Чем ниже величина NEC, тем ниже температура плавления ТАГ, тем меньше его время удерживания при обращеннофазовой ВЭЖХ. В табл. 4 приведены обнаруженные значимые линейные корреляции (1)-(32) между теплофизическими свойствами РМ и химическим составом (коэффициенты парной корреляции R > 0.50). Конечно, наблюдаемые частные тренды (1)–(32) нельзя считать репрезентативными для больших баз данных по свойствам РМ, вместе с тем установленные тенденции позволяют интерпретировать теплофизические свойства РМ и помогают проверить их подлинность.

Максимум при T_1 . Как видно из табл. 1, максимум пика при T_1 слабо варьирует от $-39 \text{ до} -33^{\circ}$ С, его относительная площадь S_1 также изменяется в зависимости от вида РМ незначительно в области 12-16%, асимбатно уменьшаясь при увеличении суммы ТАГ (UUS) и симбатно возрастая с увеличением в РМ доли L_3 (табл. 4). Таким образом, этот пик можно отнести прежде всего к фракции ТАГ (UUU) с наименьшими температурами плавления и NEC ≤ 41.4 .

Рис. 1. Термограммы ДСК плавления и хроматограммы ВЭЖХ растительных масел из рыжика (а), расторопши (б), рапса (в), подсолнечника (г).

Максимум при T_2 . Второй пик с максимумом при T_2 от -28.5 до -21.5° С имеет наибольшую площадь S_2 , которая варьирует от 32 до 72%. Его формирует смесь фракций ТАГ (UUU) и ТАГ (UUS). Площадь S_2 растет при увеличении в РМ доли линолевой кислоты и ТАГ, в которых присутствует остаток этой кислоты – L_3 , L_2O , LOP, при этом возрастание доли LOP приводит к смещению максимума пика в область более высоких температур. Увеличение всей суммы ТАГ (UUS) в целом снижает площадь S_2 за счет включения в состав ТАГ остатков стеариновой и других насы-

Рис. 2. Термограммы ДСК плавления и хроматограммы ВЭЖХ растительных масел из льна (а), амаранта (б), тыквы (в), кукурузы (г); вторая производная кривой ДСК плавления кукурузного масла (д).

щенных ЖК. NEC этих ТАГ находится, как правило, в области от 41.6 до 45.6.

Максимум при T_3 смещается от -19 до -6° С. Его площадь (S_3) для жидких РМ может изменяться в зависимости от вида РМ в самом широком диапазоне — от 6 до 77.5%. Он формируется смесью, содержащей преимущественно ТАГ (UUS), но с примесью ТАГ (UUU) и ТАГ (USS). Увеличение доли олеиновой, пальмитиновой и стеариновой кислот и суммы ТАГ (USS) смещает максимум пика в область более высоких температур. Площадь S_3 симбатно растет при увеличении в ТАГ доли оле-

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 76 № 2 2021

Рис. 3. Термограммы ДСК плавления с компьютерным разделением пиков: (а) – льняное масло; (б) – масло расторопши.

иновой и пальмитиновой кислот (O₃, LP₂) и асимбатно уменьшается при увеличении доли линолевой и линоленовой кислот в составе ТАГ. Эту область плавления можно отнести к фракции ТАГ, для которых характерны значения NEC от 45.8 до 48.8.

Максимум при T_4 . Этот пик образуют прежде всего фракции ТАГ (USS) и ТАГ (SSS). Если этот пик находится в области положительных температур, то в нем преобладают ТАГ (SSS), содержащие пальмитиновую и стеариновую кислоты. Площадь S_4 растет симбатно сумме ТАГ (USS) и ТАГ (SSS). Для ТАГ, формирующих этот пик, характерны значения NEC от 48 до 52.

Анализ реальных проб рассматривали на примере масла расторопши. В качестве образца сравнения использовали полученный нами образец масла (ВГУИТ). Один образец, полученный под контролем авторов, предоставлен ООО "Русская олива". Третий образец приобрели в торговой сети. Кроме этого, из третьего образца приготовили две смеси с 10% подсолнечного и кукурузного масел. Результаты определения теплофизических характеристик приведены в табл. 1. Для визуализации и анализа данных построили контрольные карты (**КК**) с нормализованными параметрами T_i и S_i в виде диаграмм, на оси ординат которых отложены нормализованные значения T_i и S_i (рис. 4):

$$X_{\rm H} = (X - X_{\rm MUH}) / (X_{\rm MAKC} - X_{\rm MUH}),$$

а ось абсцисс является осью категорий, на которой обозначены контролируемые параметры. Известно, что натуральный состав РМ варьирует в достаточно широких пределах в зависимости от генотипических и фенотипических факторов [8, 9], что несколько усложняет контроль подлинности продукции. В связи с этим, учитывая типичный

Рис. 4. Контрольные карты для масла расторопши: 1 – нормализованные значения T_i (а) и S_i (б), образец сравнения; 2 – образец ООО "Олива"; 3 – образец из торговой сети; 4 – образец 3 с подсолнечным маслом (9 : 1); 5 – образец 3 с кукурузным маслом (9 : 1).

1								
Растительное масло	T_1	T_2	T_3	T_4	S_1	S_2	S_3	S_4
Амарант	-39.3*	-22.6	-6.3*	4.2*	12.1	55.0	29.4	3.5
Лён	-38.2*	-28.5	-19.1*	-7.4	14.1	60.2	21.0	4.8
Подсолнечник	-36.4	-27.4	-18.8*	-10.7	15.3	71.8	8.4	4.5
Рапс	_	-23.0*	-15.4	_	_	22.5	77.5	_
Рыжик	-34.6	-23.8*	-12.8	_	14.1	21.3	64.6	_
Тыква	-36.6	-23.1	-16.3*	3.8*	16.1	50.4	5.8	16.1
Кукуруза	-33.2	-21.5	-7.0*	_	12.9	32.1	55.0	_
Расторопша (ВГУИТ), образец 1	-35.7	-24.9	-18.2*	-6.2*	13.5	35.2	33	18.4
Расторопша (ООО "Русская олива", образец 2	-34.8	-21.7	-15.1*	-5.8*	11.9	40.5	28.5	21.0
Расторопша (торговая сеть), образец 3	-38.3	-26.6	-20*	-3.7*	14.3	12.1	49.6	23.9
Расторопша, образец 3 + подсолнечник (9:1)	-40.3	-21.4	-10.5*	0.4*	19.3	28.5	7.8	14.3
Расторопша, образец 3 + кукуруза (9:1)	-35.5	-28.1	-22.5*	-13.3*	7.8	3.6	64.4	24.2

Таблица 1. Температуры максимумов (T_i , °C) и площади (S_i , %) характеристичных пиков кривых плавления ДСК растительных масел

*Значения температур определены по второй производной от ДСК по времени.

разброс в химическом составе РМ, который будет влиять на вид кривых ДСК, в КК выделили коридор допустимых значений, составляющий ±15% от значений T_i и S_i, характерных для образца сравнения. В нормализованном виде минимально допустимое значение равно 0, максимальное -1, идеальное совпадение соответствует 0.5. Как видно из рис. 4, в коридор допустимых значений от 0 до 1 попадает только образец 2. В образце 3 заметно ниже коридора находятся значения T_4 и S_3 , и завышено значение S_2 . Добавка к этому образцу подсолнечного масла приводит к занижению значения T_3 , выравниванию до нормы S_2 и резкому снижению T_4 при завышенном значении S_1 и заниженном значении S_3 . Внесение кукурузного масла приводит к дополнительному падению нормализованных значений T₄ и S₃ и завышению величины S₂ относительно допустимого уровня. В самом общем виде такие изменения кривых ДСК для образца 3 и его смесей с подсолнечным и кукурузным маслами можно интерпретировать завышенной по сравнению с натуральным маслом расторопши долей в них ТАГ (UUU), в частности L_3 , и заниженной долей ТАГ (SSS). Сопоставление полученных данных позволяет предположить, что образец масла расторопши, приобретенный в розничной сети, содержал добавку около 5% кукурузного масла.

Таким образом, современные разработки в области термического анализа растительных масел методом ДСК демонстрируют его широкие возможности в идентификации и контроле качества растительных масел. Метод ДСК позволяет характеризовать теплофизические свойства образцов масла, важные в технологии их получения и применения в фармацевтической, пищевой и технической отраслях. Выполненные исследования подтверждают тот факт, что жировая фаза каждого растительного масла имеет свое неповторимое соотношение теплофизических характеристик, которое взаимосвязано с определенным фракционным составом триацилглицеринов. Метод идентификации растительных масел по термограммам плавления ДСК отличается простотой пробоподготовки и хорошей воспроизводимостью, предоставляет дополнительную информацию о происхождении сырья к полученной с помощью хроматографических методов, и может быть самостоятельным методом идентификации и контроля качества жировой фазы.

* * *

Авторы выражают благодарность канд. биол. наук Мирошниченко Л.А. (ООО "Русская Олива") за предоставленные образцы растительных масел.

Работа выполнена при финансовой поддержке гранта № МК-590.2020.8.

Таблица 2. Триглицеридный состав образцов растительных масел

Триглицерид	NEC*	Рыжик	Лён	Рапс	Подсолнечник	Амарант	Тыква	Расторопша	Кукуруза
L'' ₃	35.4	4.6	22.6	1.2	0	0	0	0	0
L''2L	37.4	4.5	11.4	1	0	0	0	0	0
L"L ₂	39.4	3.1	3.7	3.8	0	0	0	0	3.7
L''20	39.4	4.9	13.9	7.7	0	0	0	0	1.9
L''_2 P	39.6	3.0	7.0	0.6	0	0	0	0	0
L ₃	41.4	3.3	1.5	1.4	33.0	12.0	14.2	15.6	30.7
L"LO	41.4	12.7	5.4	6.5	0	0	0	0	5.7
L''_E	41.4	9.8	0	0	0	0	0	0	0
L"LP+L" ₂ S	41.6	4.1	8.5	1.2	0	0	0	0	0
L ₂ O	43.4	2.5	2	9.1	26	16.4	19.6	20.5	15
L"O ₂	43.4	3.2	6.9	8.9	0	0	0	0	0
L"LE	43.4	4.9	0	0	0	0	0	0	0
$L'LS + L_2P$	43.6	4.2	0	1.2	0	0	0	0	0
L"OP	43.6	1.8	3.6	2	0	0	0	0	0
L"P ₂	43.8	2.7	0	0	0	0	0	0	0
L ₂ P	43.6	0	0	0	9.8	15.8	14.3	8.4	0
LO ₂	45.4	6.2	2.5	18.7	9.3	10.2	10.7	11.6	12
L_2E	45.4	3.9	0	0	0	0	0	1.6	0
L_2S	45.6	3.9	2.7	0	4.8	3.7	5.2	7.1	5.7
LOP	45.6	2.3	0	3.7	4.3	11.4	10.3	6.7	5.9
LOP + L''OS	45.6	0	4	0	0	0	0	0	0
LP ₂	45.8	2.3	0.9	0	0.8	6.4	3.8	1.8	2
L"OE	45.4	2	0	0	0	0	0	0	0
L"OA	47.6	0	0	1.6	0	0	0	0	0
LPS	45.8	0	0	0	0	3.2	4.0	0	0
O ₃	47.4	5.2	2.4	24.2	6.5	5	3.9	8.1	7.8
LOS	47.4	0	0	0	1.9	3.1	5.3	5.8	2.5
O ₂ P	47.6	1.5	1	3.9	2.0	4.0	2.6	1.7	2.6
P ₃	48.0	0	0	0	0.9	1.3	1.3	1.6	0.3
OP2	48.8	0	0	0	0	2.1	1.2	0	2.8
LS ₂	49.8	0	0	0	0	2.0	0	0	0
OPS	49.8	0	0	0	0	2.3	1.2	0.9	0.5
O ₂ E	49.4	0	0	1.5	0	0	0	1.7	0
O ₂ S	50.4	0	0	1.8	0.7	1.1	2.4	2.0	0.9
O ₂ E"	51.4	3.4	0	0	0	0	0	0	0
LOB	51.6	0	0	0	0	0	0	2.2	0
S ₂ O	51.8	0	0	0	0	0	0	0.9	0
LPB	51.8	0	0	0	0	0	0	0.6	0
PS ₂	52.0	0	0	0	0	0	0	1.2	0
ΣΤΑΓ (UUU)		72.2	72.3	84.0	74.8	43.6	48.4	59.1	76.8
ΣTAΓ (UUS)		20.8	26.8	16	23.5	39.1	40.1	33.9	17.6
ΣΤΑΓ (USS)		7	0.9	0	0.8	16	10.2	4.1	5.3
ΣTAΓ (SSS)		0	0	0	0.9	1.3	1.3	2.9	0.3

*NEC = NC – 2.0ND – 0.2NAl, где NC – общее количество атомов углерода в остатках ЖК, ND – общее количество двойных связей входящих в структуру ТАГ, а NAl – количество ненасыщенных ЖК в молекуле [18].

ЖК	Амарант	Лён	Подсолнечник	Кукуруза	Рапс	Расторопша	Рыжик	Тыква
Пальмитиновая (С16:0)	17.9	8.3	6.5	12.3	4.4	9.7	9.0	13.3
Стеариновая (С18:0)	5.3	1.4	2.8	2.0	1.4	6.1	2.8	6.4
Олеиновая (С18:1)	25.2	18.7	23.3	27.8	58.6	28.3	20	27.7
Линолевая (С18:2)	49.1	16.9	66.4	54.1	20.1	50.4	21.6	52.6
α-Линоленовая (С18:3)	1.3	54.6	—	1.9	11.6	—	32.3	_
Арахиновая (С20:0)	_	—	—	-	_	1.7	1.3	—
Эйказеновая (С20:1)	—	—	—	-	_	1.0	11.1	—
Бегеновая (С22:0)	—	—	—	—	—	1.6	—	_

Таблица 3. Состав жирных кислот исследуемых образцов растительных масел (W, %)

Таблица 4. Значимые корреляции между теплофизическими свойствами растительных масел и содержанием фракций триацилглицеринов и отдельных жирных кислот: $T_i = ax + b$ и $S_i = ax + b$ (n = 8, P = 0.95)

Тренд	R	x/y	Тренд	R
y = -0.6x + 69.2(1)	-0.96	O_3/S_3	y = 2.6x + 13.6(17)	0.71
y = -0.3x + 27.0 (2)	-0.85	$L3 + L_2O/S_2$	y = 0.6x + 31.2 (18)	0.60
y = 0.4x - 5.3 (3)	0.69	$L3 + L2O/S_3$	y = -0.9x + 56.1 (19)	-0.64
y = -0.4x + 29.3 (4)	-0.57	$LP_{2} + O_{3}/S_{3}$	y = 2.8x + 5.4 (20)	0.69
y = -2.0x + 89.9(5)	-0.66	P/T_3	y = 0.9x - 26.6 (21)	0.92
y = 1.0x - 27.9 (6)	0.53	P/T_4	y = 1.0x - 18.4 (22)	0.77
y = 0.7x - 17.4(7)	0.73	S/T_3	y = 1.5x - 22.7 (23)	0.69
y = 0.8x - 6.8 (8)	0.76	S/T_4	y = 1.7x - 14.6 (24)	0.67
y = 0.5x - 17.1 (9)	0.64	S/S_4	y = 1.6x + 3.7 (25)	0.53
y = 0.8x - 8.1 (10)	0.83	O/T_3	y = 0.7x - 32.9 (26)	0.57
y = 4.5x - 7.5 (11)	0.69	O/S_3	y = 1.2x - 0.7 (27)	0.60
y = 3.8x + 5.8 (12)	0.58	O/S_4	y = 1.4x - 24.2 (28)	0.77
y = 0.3x + 11.6 (13)	0.58	L/S_2	y = 0.6x + 22.9 (29)	0.59
y = 0.9x + 33.6 (14)	0.63	L/S_3	y = -1.0x + 72.1 (30)	-0.59
y = -1.6x + 52.5 (15)	-0.65	L"/ <i>T</i> ₂	y = -0.2x - 22.8 (31)	-0.73
y = 0.5x - 26.6 (16)	0.69	L''/T_3	y = -0.2x - 8.2 (32)	-0.90
	Тренд y = -0.6x + 69.2 (1) y = -0.3x + 27.0 (2) y = 0.4x - 5.3 (3) y = -0.4x + 29.3 (4) y = -2.0x + 89.9 (5) y = 1.0x - 27.9 (6) y = 0.7x - 17.4 (7) y = 0.8x - 6.8 (8) y = 0.5x - 17.1 (9) y = 0.8x - 8.1 (10) y = 4.5x - 7.5 (11) y = 0.3x + 11.6 (13) y = 0.9x + 33.6 (14) y = 0.5x - 26.6 (16)	Тренд R $y = -0.6x + 69.2 (1)$ -0.96 $y = -0.3x + 27.0 (2)$ -0.85 $y = 0.4x - 5.3 (3)$ 0.69 $y = -2.0x + 89.9 (5)$ -0.66 $y = 1.0x - 27.9 (6)$ 0.53 $y = 0.7x - 17.4 (7)$ 0.73 $y = 0.5x - 17.1 (9)$ 0.64 $y = 4.5x - 7.5 (11)$ 0.69 $y = 0.3x + 11.6 (13)$ 0.58 $y = -1.6x + 52.5 (15)$ -0.65	Тренд R x/y $y = -0.6x + 69.2 (1)$ -0.96 O_3/S_3 $y = -0.3x + 27.0 (2)$ -0.85 $L3 + L_2O/S_2$ $y = 0.4x - 5.3 (3)$ 0.69 $L3 + L2O/S_3$ $y = -0.4x + 29.3 (4)$ -0.57 $LP_2 + O_3/S_3$ $y = -2.0x + 89.9 (5)$ -0.66 P/T_3 $y = 1.0x - 27.9 (6)$ 0.53 P/T_4 $y = 0.7x - 17.4 (7)$ 0.73 S/T_3 $y = 0.5x - 17.1 (9)$ 0.64 S/S_4 $y = 0.8x - 6.8 (8)$ 0.76 S/T_4 $y = 0.5x - 17.1 (9)$ 0.64 S/S_4 $y = 0.3x + 11.6 (13)$ 0.58 L/S_2 $y = 0.9x + 33.6 (14)$ 0.63 L/S_3 $y = 0.5x - 26.6 (16)$ 0.69 L''/T_3	ТрендR x/y Тренд $y = -0.6x + 69.2 (1)$ -0.96 O_3/S_3 $y = 2.6x + 13.6 (17)$ $y = -0.3x + 27.0 (2)$ -0.85 $L3 + L_2O/S_2$ $y = 0.6x + 31.2 (18)$ $y = 0.4x - 5.3 (3)$ 0.69 $L3 + L2O/S_3$ $y = -0.9x + 56.1 (19)$ $y = -0.4x + 29.3 (4)$ -0.57 $LP_2 + O_3/S_3$ $y = 2.8x + 5.4 (20)$ $y = -2.0x + 89.9 (5)$ -0.66 P/T_3 $y = 0.9x - 26.6 (21)$ $y = 1.0x - 27.9 (6)$ 0.53 P/T_4 $y = 1.0x - 18.4 (22)$ $y = 0.7x - 17.4 (7)$ 0.73 S/T_3 $y = 1.5x - 22.7 (23)$ $y = 0.8x - 6.8 (8)$ 0.76 S/T_4 $y = 1.6x + 3.7 (25)$ $y = 0.8x - 8.1 (10)$ 0.83 O/T_3 $y = 0.7x - 32.9 (26)$ $y = 0.3x + 11.6 (13)$ 0.58 L/S_2 $y = 0.6x + 22.9 (29)$ $y = 0.9x + 33.6 (14)$ 0.63 L/S_3 $y = -1.0x + 72.1 (30)$ $y = 0.5x - 26.6 (16)$ 0.69 L''/T_3 $y = -0.2x - 8.2 (32)$

*n = 3.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Tan C.P., Cheman Y.B.* Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition // J. Am. Oil Chem. Soc. 2000. V. 77. № 2. P. 143.
- 2. *Tomaszewska-Gras J.* Rapid quantitative determination of butter adulteration with palm oil using the DSC technique // Food Control. 2016. V. 60. № 2. P. 629.
- 3. Верещагин А.Л., Резниченко И.Ю., Бычин Н.В. Термический анализ в исследовании качества шоколада и кондитерских изделий // Техника и технология пищевых производств. 2019. Т. 49. № 2. С. 289.
- 4. *Рудаков О.Б., Саранов И.А., Полянский К.К.* Контроль содержания пальмового масла в смесях с молочным жиром методом ДСК // Аналитика и контроль. 2019. Т. 23. № 1. С. 127.

- 5. Van Wetten I.A., Van Herwaarden A.W., Splinter R., Boerrigter-Eenling R., Van Ruth S.M. Detection of sunflower oil in extra virgin olive oil by fast differential scanning calorimetry // Thermochim. Acta. 2015. V. 603. № SI. P. 237.
- Chatziantoniou S.E., Triantafillou D.J., Karayannakidis P.D., Diamantopoulos E. Traceability monitoring of Greek extra virgin olive oil by Differential Scanning Calorimetry // Thermochim. Acta. 2014. V. 576. P. 9.
- Zhang Zhen-Shan, Li Dong, Zhang Li-Xia, Liu Yu-Lan, Wang Xue-De. Heating effect on the DSC melting curve of flaxseed oil // J. Therm. Anal. Calorim. 2014. V. 117. № 3. P. 2129.
- 8. Рудаков О.Б., Пономарев А.Н., Полянский К.К., Любарь А.В. Жиры. Химический состав и экспертиза качества. М.: ДеЛи Принт, 2005. 312 с.

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 76 № 2 2021

- О'Брайен Р. Жиры и масла. Производство, состав и свойство, применение. СПб: Профессия, 2007. 752 с.
- 10. Дейнека В.И., Туртыгин А.В., Дейнека Л.А. Сопоставление эффективности методов ГЖХ и ВЭЖХ при дифференциации растительных масел, содержащих изомеры октадекатриеновых кислот // Аналитика и контроль. 2016. Т. 20. № 4. С. 314.
- 11. Ань В.Н., Дейнека В.И., Хиен Ч.Т.Н., Дейнека Л.А., Рудаков О.Б. Установление подлинности сыров методом обращенно-фазовой ВЭЖХ // Сорбционные и хроматографические процессы. 2018. Т. 18. № 6. С. 816.
- 12. Ань Ван Нгуен, Дейнека В.И., Лонг Куок Фам, Фыонг Лан Доан, Дейнека Л.А., Ань Тхи Нгок Ву, Тхуи Тхи Тху Динь. Определение триацилглицеринов и жирнокислотного состава масла семян Momordica cochinchinensis и некоторых других растений данного рода // Химия растительного сырья. 2019. № 3. С. 53.
- 13. *Нгуен А.В., Попова А.А., Дейнека В.И., Дейнека Л.А.* Определение триацилглицеринов масла манкетти методом обращенно-фазовой ВЭЖХ // Журн. аналит. химии. 2017. Т. 72. № 9. С. 854. (*An Nguen Van, Popova A.A., Deineka V.I., Deineka L.A.* Determination of triacylglycerols of manketti oil by reversed-phase HPLC // J. Analyt. Chem. 2017. V. 72. № 9. Р. 1007.)

- Дейнека В.И., Дейнека Л.А., Анисимович И.П., Перистый В.А., Туртыгин А.В. Использование обращенно-фазовой ВЭЖХ в установлении подлинности жиров и масел // Заводск. лаборатория. 2008. Т. 74. № 3. С. 15.
- 15. Дейнека В.И., Староверов В.М., Фофанов Г.М., Балятинская Л.Н. Инкрементный подход при определении состава триглицеридов // Химико-фармацевтический журнал. 2002. Т. 36. № 7. С. 50. (Deineka V.I., Staroverov V.M., Fofanov G.M., Balyatinskaya L.N. An increment approach to the HPLC analysis of triglycerides // Pharm. Chem. J. 2002. V. 36. № 7. С. 392.)
- 16. Andrikopoulos N.K. Chromatographic and spectroscopic methods in the analysis of triacylglycerol species and regiospecific isomers of oils and fats // Crit. Rev. Food Sci. Nutr. 2002. V. 42. № 5. P. 473.
- 17. Jabeur H., Zribi A., Makni J., Rebai A., Abdelhedi R., Bouaziz M. Detection of chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC // J. Agric. Food Chem. 2014. V. 62. № 21. P. 4893.
- Podlaha O., Toregerd B. System for identification of triglycerides in reversed phase HPLC chromatograms based on equivalent carbon numbers // J. High Resolut. Chromatogr. Chromatogr. Commun. 1982. V. 5. P. 553.