———— ОРИГИНАЛЬНЫЕ СТАТЬИ ——

УДК 546.19:543.544.3

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ПРИМЕСЕЙ В АРСИНЕ ВЫСОКОЙ ЧИСТОТЫ МЕТОДОМ ХРОМАТО-МАСС-СПЕКТРОМЕТРИИ

© 2021 г. А. Ю. Созин^{*a*, *}, Т. Г. Сорочкина^{*a*}, О. Ю. Чернова^{*a*}, А. П. Котков^{*b*}, Н. Д. Гришнова^{*b*}, Д. М. Полежаев^{*b*}, Г. В. Пушкарев^{*b*}, С. В. Ермолаев^{*b*}

^аИнститут химии высокочистых веществ им. Г.Г. Девятых Российской академии наук ул. Тропинина, 49, Нижний Новгород, 603950 Россия ^bAO НПП "Салют" ул. Ларина, 7, Нижний Новгород, 603950 Россия *e-mail: Sozin@ihps-nnov.ru Поступила в редакцию 11.03.2020 г. После доработки 19.04.2020 г.

Принята к публикации 23.10.2020 г.

Методом хромато-масс-спектрометрии исследован примесный состав арсина. Определены примеси постоянных газов, диоксида углерода, гидридов, предельных, непредельных, ароматических углеводородов C₁–C₆, галогенсодержащих углеводородов, соединений серы, алкилпроизводных арсина и диарсина. Содержание примесей в высокочистом арсине находится на уровне 10^{-6} – 10^{-5} об. %. В арсине после синтеза и во фракциях, выделенных в процессе его ректификационной очистки, концентрации примесей достаточно высоки и лежат в интервале 10^{-6} –0.1 об. %. Пределы обнаружения примесей составили 2 × 10^{-7} –2 × 10^{-4} об. %.

Ключевые слова: арсин, хромато-масс-спектрометрия, примеси, предел обнаружения, правильность.

DOI: 10.31857/S0044450221030130

Высокочистый арсин находит широкое применение для получения полупроводниковых материалов (арсенидов галлия, индия, алюминия), применяющихся в микроэлектронике, лазерной технике, оптоэлектронике гелиоэнергетике, для производства мощных сверхвысокочастотных приборов [1–3], халькогенидных стекол для волоконной оптики [4].

Физико-химические свойства полупроводниковых и оптических материалов существенно зависят от чистоты исходных вешеств. Согласно современным требованиям, уровень чистоты арсина, применяемого в микроэлектронике, должен составлять не ниже 99.99994% (ТУ 2114-001-07611801-2010), а содержание в нем примесей, в первую очередь электрически активных, - не выше $10^{-6} - 10^{-5}$ об. %. Работ, посвященных исследованию примесного состава арсина, в литературе немного. В значительной степени это связано с его высокой токсичностью и в связи с этим предпочтительным анализом получаемых из арсина конечных менее токсичных материалов. Наибольшими аналитическими возможностями определения примесей в арсине обладают методы масс-спектрометрии, ИК-спектроскопии, газовой хроматографии и хромато-масс-спектрометметрии в арсине определили примеси толуола, фреонов, ксилола, фосфина с пределом обнаружения 1×10^{-5} об. %. Описано [8, 9] ИК-спектроскопическое исследование содержания воды в арсине с пределом обнаружения 7 \times 10⁻⁵ об. %. Основными методами анализа арсина, позволяющими определять широкий круг молекулярных примесей с низкими пределами обнаружения, являются газовая хроматография и хромато-массспектрометрия [5]. С использованием метода газовой хроматографии определены постоянные газы и диоксид углерода с пределами обнаружения $2 \times 10^{-6} - 1 \times 10^{-5}$ об. % [10, 11], летучие неорганические гидриды элементов 3-6 групп периодической системы с пределами обнаружения 2 × × 10^{-7} —1 × 10^{-4} об. % [12—14], углеводороды C₁—C₄ с пределами обнаружения $2 \times 10^{-6} - 1 \times 10^{-56}$ об. % [13–15]. Во всех работах по газохроматографическому анализу арсина примеси определяли с использованием насадочных колонок и различных селективных детекторов, позволяющих регистрировать с высокой чувствительностью только ограниченный набор примесей. Во многих случаях низкие пределы обнаружения достигнуты за счет концентрирования и использования проб боль-

рии [5]. В работах [6, 7] методом масс-спектро-

шого объема, что не всегда приемлемо в случае анализа высокочистых веществ.

Метод хромато-масс-спектрометрии использовали в основном для идентификации примесей. В работах [16, 17] в арсине установлены постоянные газы, некоторые углеводороды C_4-C_6 , дихлорметан, хлороформ, 1,2-дихлорэтан, гидриды. Пределы их обнаружения составили $2 \times 10^{-7}-2 \times 10^{-5}$ об. %. В работе [18] этим методом с применением капиллярных адсорбционных колонок идентифицировали более 50 примесных веществ, среди которых постоянные газы, летучие неорганические гидриды, углеводороды C_1-C_6 , хлор- и кислородсодержащие углеводороды, триметил-фторсилан, диметилсульфид, карбонилсульфид, толуол, хлорбензол, алкилпроизводные арсина и диарсина.

Хромато-масс-спектрометрический метод является наиболее перспективным для определения примесей в арсине. Его применение в сочетании с капиллярными колонками с различной селективностью даст возможность добиться высокоэффективного хроматографического разделения примесей с близкими свойствами и обеспечить их надежное высокочувствительное определение. Сведения по количественному определению в арсине большинства обнаруженных примесей в литературе отсутствуют.

Цель настоящей работы — разработка методики количественного хромато-масс-спектрометрического определения примесей в арсине высокой чистоты с использованием капиллярных адсорбционных колонок.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследовали примесный состав арсина, полученного электрохимическим восстановлением мышьяковой кислоты, синтезированной из мышьяксодержащего сырья [19]. Анализировали образцы арсина после синтеза, очищенные низкотемпературной ректификацией, и фракции, выделенные в процессе его очистки.

Для анализа арсина использовали хроматомасс-спектрометр Agilent 6890/MSD 5973N с квадрупольным масс-анализатором. Разработали специальную вакуумную систему дозирования арсина в хромато-масс-спектрометр, предусматривающую возможность применения независимых газовых линий для дозирования арсина разной степени чистоты. Схема установки приведена и подробно описана в работе [18].

Для разделения примесей с невысокими относительно арсина температурами кипения и молекулярными массами использовали капиллярную адсорбционную колонку GS-GasPro 60 м × 0.32 мм с сорбентом модифицированным силикагелем (Agilent Technologies, Inc., США). Для разделения менее летучих примесей использовали колонку с сорбентом политриметилсилилпропином 25 м × $\times 0.26$ мм, $d_f = 0.25$ мкм [20]. Условия проведения анализа и разделения примесей, их идентификация описаны в работе [18].

Количественное определение примесей проводили методом внешнего стандарта по площадям хроматографических пиков в режиме селективного ионного детектирования (SIM) по регистрации их единичных ионов, характеризующихся максимальным соотношением сигнал/шум. Значения m/z этих ионов приведены в табл. 1.

В качестве образцов сравнения использовали аттестованные газовые смеси постоянных газов и углеводородов C_1-C_6 (соответствуют ТУ 6-16-2956-92). В случае гидридов и ряда хлорсодержащих веществ аттестованные газовые смеси отсутствовали, поэтому соответствующие образцы сравнения готовили самостоятельно [29] статическим разбавлением индивидуальных веществ. Газом-разбавителем служил гелий марки 60 (ТУ 0271-011-45905715-02). Градуировочные смеси готовили в диапазоне парциальных давлений $10^{-7}-10^{-3}$ атм ($10^{-5}-0.1$ об. %). Погрешность их приготовления не превышала 15%.

Концентрацию примеси $i(c_i)$ в образцах арсина находили по уравнению:

$$c_i = p_i / P_{\text{FWADD}} \times 100\%, \tag{1}$$

где p_i — установленное парциальное давление примеси, $P_{\text{гидр}}$ — давление пробы арсина.

Концентрации веществ, для которых отсутствовали образцы сравнения (алкилпроизводные арсина, диарсин, серосодержащие вещества, некоторые хлорсодержащие углеводороды, ряд изомеров углеводородов C_4-C_6), определяли с использованием коэффициентов чувствительности детектирования, установленных с использованием их полных сечений ионизации [30–33].

Контрольный опыт проводили дозированием в колонку промывочного газа системы напуска — гелия марки 7.0 (ТУ 0271-001-45905715-02).

Пределы обнаружения примесей по парциальному давлению *p*_{min} рассчитывали для режима SIM по утроенному стандартному отклонению сигнала контрольного опыта [34]:

$$p_{\min} = 3s/A,\tag{2}$$

где s (ед. счета) — стандартное отклонение аналитического сигнала контрольного опыта, A (ед. счета/атм) — коэффициент чувствительности детектора к определяемому веществу.

Стандартное отклонение сигнала контрольного опыта рассчитывали по колебаниям площади пи-ка, относящегося к времени выхода определяемой примеси:

in
а с _п
ни
уже
Iap'
обн
IBI (
цел
пре
И
<u>u/z</u>)
a (<i>r</i>
АСЛ
Б
Bbl
000
Ma
Ible
yew
ди
стр
еги
x p
а, и
НΗ
apc
ax
a 311
обр
XI
ЧНЬ
ЯЛИ
pac
й в
ece
ШМ
di
иит
pai
ент
ΉH
Ko
1.
ица
ЮЛI
La

		Концентр	ация, об. %				c _{min} , oб. %
Примесь	"исходный"	"легкая" фракция	"тяжелая" фракция	"ректификат"	<i>z/m</i>	наши данные	литературные данные
N ₂ (азот)	$(9 \pm 1) \times 10^{-4}$	$(2.3 \pm 0.2) \times 10^{-5}$	$(2.6 \pm 0.3) \times 10^{-2}$	$(1.2 \pm 0.2) \times 10^{-5}$	28	5×10^{-6}	5×10^{-6} [21, 22]
О ₂ (кислород)	$< 2 \times 10^{-5}$	$(1.3 \pm 0.1) \times 10^{-4}$	$<2 \times 10^{-5}$	$(1.0 \pm 0.2) \times 10^{-5}$	32	5×10^{-6}	1×10^{-6} [21] 2×10^{-6} [21]
							2.5×10^{-6} [22]
Ar (apron)	$(1.0 \pm 0.1) \times 10^{-2}$	$(3.0\pm0.3)\times10^{-5}$	$(3.0 \pm 0.3) \times 10^{-4}$	$(2.0 \pm 0.9) \times 10^{-6}$	40	9×10^{-7}	$2 \times 10^{-6} [24]$
СО (угарный газ)	$<2 \times 10^{-4}$	$< 2 \times 10^{-4}$	$<2 \times 10^{-4}$	$<2 \times 10^{-4}$	12	2×10^{-4}	$1 \times 10^{-6} [24]$
							5×10^{-6} [22, 25]
							1×10^{-6} [21]
СО ₂ (углекислый газ)	$(2.7 \pm 0.2) \times 10^{-2}$	2.14	$(8.8 \pm 0.9) \times 10^{-4}$	$(8 \pm 2) \times 10^{-6}$	44	1×10^{-6}	1×10^{-6} [24]
							5×10^{-6} [23]
							1×10^{-6} [21]
							2.5×10^{-6} [22]
N ₂ O (оксид азота(I))	$(1.0 \pm 0.2) \times 10^{-5}$	$(2.1 \pm 0.3) \times 10^{-3}$	$<2 \times 10^{-6}$	$<2 \times 10^{-6}$	44	2×10^{-6}	2×10^{-6} [21]
СН4 (метан)	$<1 \times 10^{-5}$	$(2.7 \pm 0.3) \times 10^{-4}$	$<1 \times 10^{-5}$	$<1 \times 10^{-5}$	15	1×10^{-5}	5.5×10^{-4} [24]
							5×10^{-6} [22, 25]
							1×10^{-5} [26]
C_2H_2 (ацетилен)	$(1.0 \pm 0.1) \times 10^{-5}$	$(5.7 \pm 0.6) \times 10^{-4}$	$<1 \times 10^{-6}$	$< 1 \times 10^{-6}$	26	1×10^{-6}	**
C_2H_4 (этилен)	$(7.3 \pm 0.7) \times 10^{-1}$	10.9	$(2.8 \pm 0.3) \times 10^{-3}$	$<1 \times 10^{-5}$	27	1×10^{-5}	$3 \times 10^{-6} [24]$
							2×10^{-5} [26]
							4×10^{-6} [14]
С ₂ Н ₆ (этан)	$(7.7 \pm 0.8) \times 10^{-4}$	$(2.1 \pm 0.2) \times 10^{-1}$	$(8.0 \pm 0.8) \times 10^{-5}$	$< 2 \times 10^{-6}$	27	1×10^{-6}	5×10^{-6} [22, 27]
							2.5×10^{-5} [26]
							7×10^{-6} [14]
С ₃ Н ₆ (пропилен)	$(1.2 \pm 0.1) \times 10^{-2}$	$(7.0 \pm 0.7) \times 10^{-5}$	$(6.3 \pm 0.6) \times 10^{-1}$	$(1.5 \pm 0.2) \times 10^{-5}$	41	2×10^{-6}	5×10^{-6} [24]
							5×10^{-5} [26]
С ₃ Н ₈ (пропан)	$(4.0 \pm 0.4) \times 10^{-5}$	$<2 \times 10^{-6}$	$(3.3 \pm 0.3) \times 10^{-3}$	$<2 \times 10^{-6}$	29	2×10^{-6}	2×10^{-6} [24]
							5×10^{-5} [26]
							3×10^{-6} [14]
С ₄ Н ₆ * (бутадиен-1,3)	$(9 \pm 3) \times 10^{-6}$	$<1 \times 10^{-6}$	$(5 \pm 2) \times 10^{-6}$	$<1 \times 10^{-6}$	54	1×10^{-6}	I
С ₄ Н ₈ * (2-метилпропен-1)	$(9 \pm 3) \times 10^{-5}$	$< 3 \times 10^{-6}$	$(9 \pm 2) \times 10^{-2}$	$< 3 \times 10^{-6}$	41	3×10^{-6}	I

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ ПРИМЕСЕЙ В АРСИНЕ ВЫСОКОЙ ЧИСТОТЫ

255

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 76 № 3 2021

			Концентр	ация, об. %				c _{min} , oб. %
	Примесь	"исходный"	"легкая" фракция	"тяжелая" фракция	"ректификат"	2/m	наши данные	литературные данные
	<i>изо</i> -С ₄ Н ₁₀ (изобутан)	$(1.0 \pm 0.1) \times 10^{-4}$	$(1.0 \pm 0.1) \times 10^{-5}$	$(8.0 \pm 0.8) \times 10^{-5}$	$< 3 \times 10^{-6}$	43	3×10^{-6}	1×10^{-6} [24]
								2×10^{-6} [14]
	<i>н</i> -С ₄ Н ₁₀ (<i>н</i> -бутан)	$(1.0\pm0.1) imes 10^{-4}$	$(1.0 \pm 0.1) \times 10^{-5}$	$(2.3 \pm 0.2) \times 10^{-4}$	$< 2 \times 10^{-6}$	43	2×10^{-6}	1×10^{-6} [24]
								4×10^{-5} [26]
								2×10^{-6} [14]
	<i>н</i> -С ₅ Н ₁₂ (<i>н</i> -пентан)	$(1.9 \pm 0.5) \times 10^{-5}$	$<2 \times 10^{-6}$	$<2 \times 10^{-6}$	$< 2 \times 10^{-6}$	43	2×10^{-6}	I
	С ₅ Н ₁₂ * (2-метилбутан)	$< 2 \times 10^{-6}$	$< 2 \times 10^{-6}$	$(1.0 \pm 0.3) \times 10^{-5}$	$< 2 \times 10^{-6}$	43	2×10^{-6}	I
	$C_6 H_{12}^*$ (2-метиллентен-1)	$< 3 \times 10^{-6}$	$< 3 \times 10^{-6}$	$(9 \pm 3) \times 10^{-6}$	$< 3 \times 10^{-6}$	56	3×10^{-6}	I
	С ₆ Н ₁₄ * (2-метилпентан)	$< 3 \times 10^{-6}$	$< 3 \times 10^{-6}$	$(9 \pm 3) \times 10^{-6}$	$< 3 \times 10^{-6}$	43	3×10^{-6}	I
	<i>n</i> -С ₆ Н ₁₄ (<i>н</i> -гексан)	$< 3 \times 10^{-6}$	$< 3 \times 10^{-6}$	$(1.0 \pm 0.2) \times 10^{-5}$	$< 3 \times 10^{-6}$	57	3×10^{-6}	Ι
2	С ₇ Н ₁₆ * (триметилгексан)	$<4 \times 10^{-6}$	$< 4 \times 10^{-6}$	$(3 \pm 1) \times 10^{-5}$	$<4 \times 10^{-6}$	43	4×10^{-6}	Ι
жу	С ₆ Н ₆ (бензол)	$< 1 \times 10^{-6}$	$< 1 \times 10^{-6}$	$(9 \pm 3) \times 10^{-6}$	$<1 \times 10^{-6}$	78	1×10^{-6}	1×10^{-5} [24]
PH/	C_7H_8 (ToriyoJI)	$< 3 \times 10^{-6}$	$< 3 \times 10^{-6}$	$(1.7 \pm 0.5) \times 10^{-5}$	$< 3 \times 10^{-6}$	91	3×10^{-6}	2×10^{-5} [24]
АЛ Д	SiH ₄ (силан)	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	30	1×10^{-6}	1×10^{-4} [14, 24]
AH/								1×10^{-6} [22, 28]
٩ЛИ	GeH ₄ (repman)	$(1.0 \pm 0.1) \times 10^{-5}$	$(7.0\pm 0.7) imes 10^{-4}$	$<5 \times 10^{-7}$	$< 5 \times 10^{-7}$	76	5×10^{-7}	1×10^{-4} [14, 24]
1T <i>V</i>								1×10^{-6} [22, 28]
14E	РН ₃ (фосфин)	$<1 \times 10^{-5}$	$<1 \times 10^{-5}$	$(7 \pm 2) \times 10^{-5}$	$<1 \times 10^{-5}$	34	1×10^{-5}	5×10^{-7} [24]
СК								1×10^{-4} [23]
ОЙ								1×10^{-5} [22]
XI								2.5×10^{-6} [21]
1M								$1 \times 10^{-6} [14]$
ии	H ₂ S (сероводород)	$(4.0\pm0.4) imes10^{-5}$	$(1.0 \pm 0.3) \times 10^{-5}$	$(4.0 \pm 0.4) \times 10^{-5}$	$< 5 \times 10^{-6}$	36	5×10^{-6}	1×10^{-5} [24]
								5×10^{-6} [22, 28]
том	CH ₂ Cl ₂ (метиленхлорид)	$(5\pm2) imes10^{-6}$	$<1 \times 10^{-6}$	$(1.5\pm 0.5) imes 10^{-1}$	$<1 \times 10^{-6}$	49	1×10^{-6}	6×10^{-5} [24]
t 76	CCl ₂ F ₂ * (дифтордихлорметан)	$<7 \times 10^{-7}$	$<7 \times 10^{-7}$	$(6 \pm 2) \times 10^{-6}$	$<7 \times 10^{-7}$	85	7×10^{-7}	I
	CH ₃ Cl (хлорметан)	$(1.1 \pm 0.3) \times 10^{-4}$	$<1 \times 10^{-6}$	$(1.7 \pm 0.5) imes 10^{-2}$	$<1 \times 10^{-6}$	50	1×10^{-6}	I
N⁰	CHCl ₃ (xropoфopm)	$(2.3 \pm 0.7) \times 10^{-5}$	$< 8 \times 10^{-7}$	$(8 \pm 2) \times 10^{-2}$	$< 8 \times 10^{-7}$	83	8×10^{-7}	3×10^{-5} [24]
3	С ₂ H ₂ Cl ₂ (<i>транс</i> -1,2-дихлорэтилен)	$<4 \times 10^{-7}$	$< 4 \times 10^{-7}$	$(1.5\pm0.5) imes 10^{-6}$	$< 4 \times 10^{-7}$	61	4×10^{-7}	I
202	С ₂ HCl ₃ (трихлорэтилен)	$(1.0 \pm 0.3) \times 10^{-6}$	$< 4 \times 10^{-7}$	$(4\pm1) imes10^{-1}$	$< 4 \times 10^{-7}$	130	4×10^{-7}	I
21	C ₂ H ₂ Cl ₂ (цис-1,2-дихлорэтилен)	$<4 \times 10^{-7}$	$<4 \times 10^{-7}$	$(1.0 \pm 0.3) \times 10^{-6}$	$<4 \times 10^{-7}$	61	4×10^{-7}	I

256

Таблица 1. Продолжение

СОЗИН и др.

		Концентр	ация, об. %				c _{min} , oб. %
Примесь	"исходный"	"легкая" фракция	"тяжелая" фракция	"ректификат"	2/m	наши данные	литературные данные
С ₂ H ₃ Cl (хлорэтилен)	$(3.0 \pm 0.9) \times 10^{-5}$	$< 6 \times 10^{-7}$	$(7.1 \pm 2.1) \times 10^{-3}$	$< 6 \times 10^{-7}$	62	6×10^{-7}	I
$C_2H_4Cl_2$ (1,2-дихлорэтан)	$< 3 \times 10^{-7}$	$< 3 \times 10^{-7}$	$(3 \pm 1) \times 10^{-6}$	$< 3 \times 10^{-7}$	62	3×10^{-7}	$1 \times 10^{-5} [24]$
С ₂ Н ₅ Сl (хлорэтан)	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	$(9 \pm 2) \times 10^{-6}$	$<1 \times 10^{-6}$	64	1×10^{-6}	I
$C_2H_3Cl_3$ (1,1,2-трихлорэтан)	$<2 \times 10^{-6}$	$< 2 \times 10^{-6}$	$(1.0 \pm 0.3) \times 10^{-5}$	$< 2 \times 10^{-6}$	97	2×10^{-6}	I
$C_2 Cl_4$ (тетрахлорэтилен)	$<2 \times 10^{-7}$	$< 2 \times 10^{-7}$	$(3 \pm 1) \times 10^{-6}$	$< 2 \times 10^{-7}$	166	2×10^{-7}	I
C ₃ H ₅ Cl* (3-хлорпропен-1)	$(4 \pm 2) \times 10^{-6}$	$< 1 \times 10^{-6}$	$(4 \pm 2) \times 10^{-2}$	$<1 \times 10^{-6}$	41	1×10^{-6}	I
$C_3H_7Cl^*$ (2-хлорпропан)	$<1 \times 10^{-6}$	$< 1 \times 10^{-6}$	$<1 \times 10^{-6}$	$< 1 \times 10^{-6}$	43	1×10^{-6}	I
С ₆ Н ₅ СІ (хлорбензол)	$< 6 \times 10^{-7}$	$< 6 \times 10^{-7}$	$(7 \pm 2) \times 10^{-6}$	$< 6 \times 10^{-7}$	112	6×10^{-7}	I
СН ₃ СНО (ацетальдегид)	$(1.0 \pm 0.3) \times 10^{-4}$	$<1 \times 10^{-6}$	$(2.6\pm0.8) imes10^{-2}$	$<1 \times 10^{-6}$	29	1×10^{-6}	I
(СН ₃) ₂ О (ацетон)	$(8 \pm 2) \times 10^{-4}$	$< 8 \times 10^{-6}$	$(8 \pm 2) \times 10^{-1}$	$< 8 \times 10^{-6}$	43	8×10^{-6}	I
С ₄ Н ₈ О* (2-бутанон)	$< 8 \times 10^{-6}$	$< 8 \times 10^{-6}$	$(3 \pm 1) \times 10^{-5}$	$< 8 \times 10^{-6}$	43	8×10^{-6}	I
СН ₃ АsH ₂ * (метиларсин)	$(2.3 \pm 0.7) \times 10^{-2}$	$< 5 \times 10^{-7}$	47 ± 15	$<5 \times 10^{-7}$	90	5×10^{-7}	I
$C_2H_3AsH_2^*$	$(3 \pm 1) \times 10^{-4}$	$< 1 \times 10^{-6}$	1.2 ± 0.3	$< 1 \times 10^{-6}$	102	1×10^{-6}	I
(CH ₃) ₂ AsH* (диметиларсин)	$(6 \pm 2) \times 10^{-5}$	$<1 \times 10^{-6}$	$(3 \pm 1) \times 10^{-6}$	$<1 \times 10^{-6}$	90	1×10^{-6}	I
$C_2H_5AsH_2^*$ (этиларсин)	$(2.8 \pm 0.8) \times 10^{-3}$	$< 6 \times 10^{-7}$	14 ± 4	$< 6 \times 10^{-7}$	106	6×10^{-7}	I
$C_3H_5AsH_2^*$ (пропенарсин)	$< 8 \times 10^{-7}$	$< 8 \times 10^{-7}$	$(2.0 \pm 0.6) \times 10^{-5}$	$< 8 \times 10^{-7}$	90	8×10^{-7}	I
$C_3H_7AsH_2^*$ (пропиларсин)	$(5 \pm 1) \times 10^{-5}$	$< 8 \times 10^{-7}$	$(1.1 \pm 0.3) \times 10^{-1}$	$< 8 \times 10^{-7}$	120	8×10^{-7}	I
$CH_3AsHC_2H_3*$	$(1.3 \pm 0.4) \times 10^{-5}$	$<1 \times 10^{-6}$	$(9 \pm 2) \times 10^{-2}$	$< 1 \times 10^{-6}$	90	1×10^{-6}	I
CH ₃ AsHC ₂ H ₅ *	$(6 \pm 2) \times 10^{-5}$	$<1 \times 10^{-6}$	$(3 \pm 1) \times 10^{-1}$	$<1 \times 10^{-6}$	90	1×10^{-6}	I
As ₂ H ₄ * (диарсин)	$(1.5 \pm 0.5) \times 10^{-4}$	$< 8 \times 10^{-7}$	$(2.2 \pm 0.7) \times 10^{-5}$	$(3 \pm 1) \times 10^{-5}$	150	8×10^{-7}	I
$CH_3As_2H_3^*$ (метилдиарсин)	$(1.7 \pm 0.5) \times 10^{-5}$	$<9 \times 10^{-7}$	$(3 \pm 1) \times 10^{-2}$	$<9 \times 10^{-7}$	150	9×10^{-7}	I
С ₂ Н ₅ Аs ₂ H ₃ * (этилдиарсин)	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	$(9 \pm 3) \times 10^{-5}$	$<1 \times 10^{-6}$	103	1×10^{-6}	I
$(CH_3)_2SiF_2^*$ (диметилдифторсилан)	$(1.4 \pm 0.4) \times 10^{-4}$	$<7 \times 10^{-7}$	$(4 \pm 1) \times 10^{-4}$	$<7 \times 10^{-7}$	81	7×10^{-7}	I
(СН ₃) ₃ SiF * (триметилфторсилан)	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	77	1×10^{-6}	I
CH ₃ SH* (метантиол)	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	$(7 \pm 2) \times 10^{-6}$	$<1 \times 10^{-6}$	47	1×10^{-6}	I
COS* (серооксид углерода)	$(8 \pm 1) \times 10^{-7}$	$<5 \times 10^{-7}$	$(4.0 \pm 1.2) \times 10^{-5}$	$(1.0 \pm 0.3) \times 10^{-6}$	60	5×10^{-7}	2.5×10^{-6} [21]
							5×10^{-6} [22]
(CH ₃) ₂ S* (диметилсульфид)	$< 3 \times 10^{-6}$	$< 3 \times 10^{-6}$	$(2.0 \pm 0.7) \times 10^{-5}$	$< 3 \times 10^{-6}$	62	3×10^{-6}	I
С ₄ Н ₄ S* (тиофен)	$<1 \times 10^{-6}$	$<1 \times 10^{-6}$	$(9 \pm 3) \times 10^{-6}$	$<1 \times 10^{-6}$	84	1×10^{-6}	Ι
*Рассчитаны через полные сечения ис	онизации [30-33], **	данные не обнаружен	lbl.				

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 76 № 3 2021

Таблица 1. Окончание

Рис. 1. Зависимость логарифма площади хроматографического пика *B* (ед. счета) от логарифма парциального давления p_i (атм) примеси: $C_2H_3Cl(1)$, $GeH_4(2)$, $h-C_6H_{14}(3)$, $CH_2Cl_2(4)$. Уравнения регрессии: (1) $lgB = 0.998 lgp_i + 11.840$, $R^2 = 0.991$; (2) $lgB = 1.011 lgp_i + 11.237$, $R^2 = 0.999$; (3) $lgB = 1.010 lgp_i + 10.977$, $R^2 = 0.999$; (4) $lgB = 0.992 lgp_i + 10.272$, $R^2 = 0.999$.

$$s = \sqrt{\frac{\sum_{i=1}^{n} \left(B_i - \overline{B}\right)^2}{n-1}},$$
(3)

где B_i (ед. счета) — единичное значение площади пика примеси, \overline{B} (ед. счета) — среднее значение площади пика примеси; n — число измерений.

Коэффициенты чувствительности детектирования *А* определяли экспериментально с применением образцов сравнения, а также рассчитывали с использованием полных сечений ионизации.

Пределы обнаружения примесей c_{\min} рассчитывали из соотношения P_{\min} и максимального давления анализируемого газа в системе дозирования $P_{\max} = 1.0$ атм:

$$c_{\min} = \frac{P_{\min}}{P_{\max}} \times 100\%.$$
 (4)

Пределы обнаружения примесей рассчитывали в режиме SIM по ионам, выбранным из их массспектров, для которых значение сигнал/шум является максимальным (табл. 1).

Правильность результатов определения подтверждали способом варьирования величины пробы. Для этого сравнивали модуль разности средних значений результатов определения концентраций $|\overline{c_1} - \overline{c_2}|$ с максимальной погрешностью этой разности є [35]. Максимальную погрешность разницы результатов є рассчитывали по формуле:

$$\varepsilon = t_{P_{f}} s_{{}_{\mathrm{B3B}}} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}},$$
 (5)

где t_{Pf} — коэффициент Стьюдента для доверительной вероятности P = 0.95 и числа степеней свободы $f = n_1 + n_2 - 2$.

Средневзвешенное стандартных отклонений *s*_{взв} рассчитывали по формуле:

$$s_{\rm B3B} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}.(6)$$

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены примеры градуировочных зависимостей для ряда примесных веществ. Видно, что полученные зависимости линейны в исследованной области парциальных давлений примесей.

В табл. 1 приведены концентрации примесей в некоторых исследованных образцах арсина, которые в работе [18] отнесены к следующим группам: "исходные" после синтеза, "легкая" и "тяжелая" фракции, отобранные в верхней и нижней частях ректификационной колонны, а также очищенный образец – "ректификат". Как видно, в исходном образце концентрации примесей находятся на уровне 10^{-6} —0.1 об. %. В ходе очистки в "легкой" фракции концентрируются примеси предельных и непредельных углеводородов C₁-C₂, оксида азота(I), германа, сероводорода. Их концентрации могут отличаться до трех порядков величины по сравнению с "исходным" образцом. В "тяжелой" фракции концентрируются примеси с более высокими температурами кипения, чем у арсина – предельные, непредельные, ароматические углеводороды С₃-С₇, хлорсодержащие углеводороды, алкилпроизводные арсина и диарсина. Содержание последних достаточно велико и достигает единиц процентов.

Во всех образцах установлены примеси постоянных газов. Их присутствие во многом связано с возможностью проникновения в систему очистки и перегрузки арсина через полимерные уплотняющие материалы за счет диффузии [36]. Аргон и азот, кроме того, являлись промывочными газами технологического оборудования. Диоксид углерода в ходе очистки концентрируется в "легкой" фракции, несмотря на то, что в соответствии с его температурой кипения он должен переходить в "тяжелую" фракцию. Такое нетипичное поведение этой примеси, вероятно, связано с тем, что при давлении, при котором ведется ректификация, диоксид углерода не сжижается.

Присутствие примесей остальных веществ связано с их поступлением из исходного мышьяксодержащего сырья. Алкилпроизводные арсина и диарсина, а также диарсин могут образовываться в процессе синтеза арсина с участием углеводородов, содержание которых в получаемом арсине велико и достигает 0.1 об. %.

		Давление і	тробы, атм				
Примесь	1.	.0	0.	.5	S _{B3B}	$ c_1 - \overline{c}_2 $	3
	$\overline{c_1}$	<i>s</i> ₁	\overline{c}_2	<i>s</i> ₂			
N ₂	6.2×10^{-5}	0.5×10^{-5}	5.7×10^{-5}	0.4×10^{-5}	0.4×10^{-5}	0.5×10^{-5}	9.1×10^{-6}
Ar	7.4×10^{-6}	0.8×10^{-6}	8.3×10^{-6}	0.9×10^{-6}	0.9×10^{-6}	0.9×10^{-6}	1.3×10^{-6}
CO ₂	1.9×10^{-5}	0.3×10^{-5}	1.7×10^{-5}	0.3×10^{-5}	0.3×10^{-5}	0.3×10^{-5}	0.5×10^{-5}
COS	5.6×10^{-6}	0.7×10^{-6}	6.2×10^{-6}	0.7×10^{-6}	0.7×10^{-6}	0.6×10^{-6}	1.0×10^{-6}
H_2S	1.5×10^{-5}	0.2×10^{-5}	1.7×10^{-5}	0.2×10^{-5}	0.2×10^{-5}	0.2×10^{-5}	0.3×10^{-5}
C_3H_6	2.5×10^{-5}	0.4×10^{-5}	2.2×10^{-5}	0.3×10^{-5}	0.4×10^{-5}	0.3×10^{-5}	0.6×10^{-5}
CH ₃ AsH ₂	5.0×10^{-5}	1.0×10^{-5}	6.1×10^{-5}	1.2×10^{-5}	1.1×10^{-5}	1.1×10^{-5}	5.6×10^{-5}
As_2H_4	5.7×10^{-5}	0.4×10^{-5}	6.2×10^{-5}	0.5×10^{-5}	0.4×10^{-5}	0.5×10^{-5}	9.1×10^{-5}

Таблица 2. Подтверждение правильности результатов (об. %) анализа арсина методом варьирования величины пробы ($n_1 = n_2 = 5$, P = 0.95)

В очищенном образце установлены примеси постоянных газов, серооксида углерода, пропилена, диарсина. Концентрации их не превышают 10^{-5} об. %. Содержания остальных веществ не превышают пределов обнаружения.

В табл. 1 приведены достигнутые пределы обнаружения примесей. Они рассчитаны для максимального давления пробы арсина 1.0 атм и составили $2 \times 10^{-7} - 2 \times 10^{-4}$ об. %. Из табл. 1 видно. что пределы обнаружения находятся на уровне наиболее низких, известных из литературы, а для примесей GeH₄, C_2H_6 , C_3H_6 , N_2O , COS, H_2S , CH₂Cl₂, СНСl₃, C₂H₄Cl₂, C₆H₆, C₇H₈ они ниже в 2–100 раз. Для ряда углеводородов C₃-C₇, галогенсодержащих углеводородов, алкилпроизводных арсина и диарсина пределы обнаружения определены впервые. Достаточно высокие их значения для некоторых кислородсодержащих веществ объясняются размыванием хроматографических пиков, как это показано в работе [18]. Пределы обнаружения этилена и фосфина также достаточно высоки. Это связано с их определением из пробы в 10 раз ниже по величине, чем для остальных веществ, для исключения наложения пика основного компонента [18].

Правильность анализа арсина оценивали методом варьирования величины пробы на примере ряда примесей (табл. 2). Как видно из табл. 2, изменение давления арсина в системе дозирования в 2 раза не приводит к статистически значимым различиям определения концентраций примесей. Различие в результатах определения не превышает максимальной погрешности этой разницы є [34, 37]. Косвенным подтверждением правильности полученных результатов является соответствие направления концентрирования веществ их летучести при ректификационной очистке арсина.

* * *

Таким образом, методом хромато-масс-спектрометрии исследован примесный состав арсина, в том числе высокочистого. Установлены и определены содержания примесей постоянных газов, диоксида углерода, гидридов, предельных, непредельных, ароматических углеводородов C_1-C_6 , галогенсодержащих углеводородов, соединений серы, алкилпроизводных арсина и диарсина. Достигнутые пределы обнаружения примесей составляют $2 \times 10^{-7}-2 \times 10^{-4}$ об. %. Большинство из них в настоящее время является наиболее низкими. Установлено, что концентрации примесей в высокочистом арсине не превышают $10^{-7}-10^{-5}$ об. %. В неочищенных образцах они достаточно высоки и лежат в интервале $10^{-6}-0.1$ об. %.

Работа выполнена в соответствии с Программой фундаментальных научных исследований государственных академий наук на 2019—2021 годы, № темы 0095-2019-0001.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бузынин Ю.Н., Гусев С.А., Данильцев В.М., Дроздов М.Н., Дроздов Ю.Н., Мурель А.В., Хрыкин О.И., Шашкин В.И. Монокристаллические слои GaAs, AlGaAs и InGaAs, полученные методом газофазной эпитаксии их металлоорганических соединений арсенида галлия // Письма в журн. техн. физики. 2000. Т. 26. № 7. С. 64.
- Черняев В.Н., Кожитов Л.В. Технология эпитаксиальных слоев арсенида галлия и приборы на их основе. М.: Энергия, 1974. 231 с.
- 3. *Бланк Т.В., Гольдберг Ю.А.* Полупроводниковые фотоэлектропреобразователи для ультрафиолетовой области спектра // Физика и техника полупроводников. 2003. Т. 37. № 9. С. 1025.

- Чурбанов М.Ф., Карпов Ю.А., Зломанов П.В., Федоров В.А. Высокочистые вещества. М.: Научный мир, 2018. 994 с.
- Крылов В.А. Анализ высокочистых летучих веществ // Журн. аналит. химии. 2002. Т. 57. № 8. С. 790.
- 6. Зайков А.А., Зырянов С.М., Пульников И.И., Скорынин Г.М., Власов В.А. Определение содержания газообразных примесей в высокочистом арсине при его очистке на газовых центрифугах // Изв. Томского политехн. ун-та. 2006. Т. 309. № 3. С. 81.
- 7. Зайков А.А., Зырянов С.М., Кулинич Ю.А., Пульников И.И., Скорынин Г.М., Власов В.А. Исследование загрязнений, вносимых резиновыми уплотнителями, в очищаемый на газовых центрифугах арсин // Изв. Томского политехн. ун-та. 2007. Т. 310. № 1. С. 137.
- Радугин Д.А., Сенников П.Г., Шкрунин В.Е., Яньков С.В. Молекулярное состояние и растворимость воды в арсине // Высокочистые вещества. 1993. № 1. С. 67.
- 9. Девятых Г.Г., Сенников П.Г. Спектроскопическое определение и изучение молекулярного состояния примеси воды в высокочистых летучих неорганических веществах // Успехи химии. 1995. Т. 64. № 9. С. 872.
- 10. Иванова Н.Т., Вислых Н.А., Воеводина В.В. Аналитический контроль производства гидридов As, P, Si и смесей на их основе // Высокочистые вещества. 1989. № 6. С. 102.
- 11. Крылов В.А., Красотский С.Г., Малышев В.М., Салганский Ю.М. Криогенный метод концентрирования примесей водорода, аргона, кислорода и азота при их газохроматографическом определении в летучих неорганических гидридах // Журн. аналит. химии. 2001. Т. 56. № 9. С. 1137.
- Ежелева А.Е., Снопатин Г.Е., Малыгина Л.С. Применение пламенно-фотометрического детектора при хроматографическом анализе летучих неорганических гидридов особой чистоты // /Журн. аналит. химии. 1979. Т. 34. № 7. С. 2308.
- Ежелева А.Е., Малыгина Л.С., Крылов В.А. Применение фотоионизационного детектора при газохроматографическом определении летучих неорганических гидридов и некоторых органических веществ // Высокочистые вещества. 1987. № 3. С. 214.
- Воротынцев В.М., Балабанов В.В., Абдрахманов Р.Р., Малыгина Л.С. Электрохимический синтез особо чистого арсина // Высокочистые вещества. 1993. № 5. С. 22.
- Крылов В.А., Чернова О.Ю., Салганский Ю.М., Малыгина Л.С., Котков А.П. Высокочувствительное определение примесей углеводородов в арсине методом реакционной газовой хроматографии /// Журн. аналит. химии. 2003. Т. 58. № 8. С. 841.
- Иванова Н.Т., Вислых Н.А., Воеводина В.В. Источник примесей при получении арсина и фосфина // Высокочистые вещества. 1990. № 5. С. 198.
- 17. *Крылов В.А., Чернова О.Ю., Созин А.Ю., Котков А.П.* Хромато-масс-спектрометрический анализ арсина высокой чистоты // Заводск. лаборатория. Диагностика материалов. 2010. Т. 76. № 3. С. 13.
- Созин А.Ю., Чернова О.Ю., Сорочкина Т.Г., Котков А.П., Гришнова Н.Д., Полежаев Д.М., Пушкарев Г.В., Буланова А.А. Идентификация примесей в высокочистом арсине методом хромато-массспектрометрии // Журн. аналит. химии. 2020. Т. 75. № 5. С. 422.

- Турыгин В.В., Смирнов М.К., Березкин М.Ю., Сохадзе Л.А., Степнова Н.П., Томилов А.П., Федоров В.А., Потолоков Н.А. Физико-химические основы получения высокочистых соединений мышьяка из продуктов детоксикации люизита // Неорганические материалы. 2017. Т. 53. № 4. С. 392.
- Березкин В.Г., Королев А.А., Хотимский В.С. Политриметилсилилпропин как адсорбент в капиллярной газовой хроматографии // Доклады АН. 2000. Т. 370. С. 200.
- 21. http://www.mathesongas.com. (27.02.2020)
- 22. https://www.versummaterials.com (27.02.2020)
- 23. https://www.praxair.com (27.02.2020)
- Девятых Г.Г., Карпов Ю.А., Осипова Л.И. Выставкаколлекция веществ особой чистоты. М.: Наука, 2003. 236 с.
- Девятых Г.Г. Гидридный метод получения элементов особой чистоты. Получение и анализ веществ особой чистоты. Горький: ИХ АН СССР, 1974. С. 15.
- 26. Девятых Г.Г., Зорин А.Д. Летучие неорганические гидриды особой чистоты. М.: Наука, 1974. 206 с.
- 27. *Жигач А.Ф., Стасиневич Д.С.* Химия гидридов. Л.: Химия, 1969. 676 с.
- Девятых Г.Г. О гидридном методе получения элементов особой чистоты // Труды по химии и химической технологии ИХ АН СССР. 1962. Вып. 2. С. 221.
- 29. Крылов В.А., Чернова О.Ю., Созин А.Ю. Высокочувствительное хромато-масс-спектрометрическое определение примесей в моногермане высокой чистоты с применением адсорбционной капиллярной колонки с углеродным сорбентом // Заводск. лаборатория. Диагностика материалов. 2016. Т. 82. № 2. С. 23.
- Крылов В.А., Созин А.Ю., Зорин В.А., Березкин В.Г., Крылов А.В. Хроматомасс – спектрометрическое определение примесей в изотопно-обогащенном силане высокой чистоты // Масс-спектрометрия. 2008. Т. 4. С. 225.
- Fitch W.L. Calculation of relative electron impact total ionization cross sections for organic molecules // Anal. Chem. 1983. V. 55. P. 832.
- Mann J. B. Ionization cross sections of the elements calculated from mean-square radii of atomic orbitals // J. Chem. Phys. 1967. V. 46. P. 1646.
- Beran J. A., Kevan L. Molecular electron ionization cross sections at 70 eV // J. Phys. Chem. 1959. V. 73. P. 3866.
- 34. Золотов Ю.А. Основы аналитической химии. Изд. 2-е.: в 2-х тт. М.: Высшая школа, 2000. Т. 1. 351 с.
- Чарыков А.К. Математическая обработка результатов химического анализа. Методы обнаружения и оценки ошибок. Л.: Химия, 1984. 168 с.
- 36. Девятых Г.Г., Крылов В.А., Красотский С.Г., Саркисов А.В., Батурина Н.М., Колесников А.Н., Яньков С.В. Влияние газопроницаемости политетрафторэтилена на правильность газохроматографического определения постоянных газов в высокочистых летучих веществах // Высокочистые вещества. 1988. № 6. С. 173.
- ГОСТ Р 8.736-2011 Измерения прямые многократные. Методы обработки результатов измерений. Основные положения. М.: Стандартинформ, 2013. 20 с.