УДК 543.544.43

ИДЕНТИФИКАЦИЯ ПОРОДЫ АРХЕОЛОГИЧЕСКОЙ ДРЕВЕСИНЫ МЕТОДОМ ИК-СПЕКТРОСКОПИИ

© 2021 г. В. М. Пожидаев^{а, *}, Я. Э. Сергеева^а, С. Н. Малахов^а, Е. Б. Яцишина^а

^аНациональный исследовательский центр "Курчатовский институт" пл. Академика Курчатова, 1, Москва, 123182 Россия *e-mail: pojidaev2006@yandex.ru

Поступила в редакцию 09.04.2020 г. После доработки 16.11.2020 г. Принята к публикации 02.12.2020 г.

Представлены результаты апробации предложенного ранее способа идентификации породы археологических древесных материалов методом ИК-спектроскопии однократного нарушенного полного внутреннего отражения. Показано, что для идентификации породы образцов археологической древесины наиболее перспективен диапазон 1270–1220 см⁻¹, в котором обнаружены две полосы разной интенсивности. В спектрах хвойной древесины более интенсивная полоса расположена около 1265 см⁻¹, а в спектрах лиственных пород – около 1230 см⁻¹.

Ключевые слова: ИК-спектроскопия, нарушенное полное внутреннее отражение (НПВО), породы древесины, идентификация, археологические материалы. **DOI:** 10.31857/S0044450221050157

Древесные останки являются частыми находками при археологических раскопках. Определение породы археологических древесных материалов позволит провести достоверную атрибуцию музейных экспонатов и обеспечить современный

уровень хранения и реставрации.

Остатки древних предметов обычно имеют небольшие размеры и представляют большую историческую ценность, что делает предпочтительным использование неразрушающих методов анализа. Одним из таких методов является ИК-Фурье спектроскопия. Основные преимущества этого метода: небольшое количество исследуемого образца, необходимое для записи спектра, отсутствие пробоподготовки и экспрессность [1–5].

ИК-Фурье спектроскопия используется для исследования структуры и природы древесины, качественного и количественного анализа благодаря возможности получения информации о функциональных группах и других специфических структурных особенностях [6–15]. Большой вклад в изучение ИК-спектров современной древесины и ее основных компонентов был сделан коллективом авторов под руководством Карклинь В.Б. [16–21], которые отметили характерные особенности в спектрах поглощения разных пород современной древесины. Сведения об использовании ИК-спектроскопии для идентификации породы археологической древесины на данный момент весьма ограничены [11, 22]. Для более широкого применения ИК-Фурье спектроскопии при идентификации породы древней древесины ранее нами были исследованы около 130 образцов древесины хвойных и лиственных пород деревьев средней полосы России и установлены основные спектральные различия [23].

Цель настоящего исследования — апробация предложенного нами метода для идентификации породы археологических древесных материалов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы археологической древесины были предоставлены Институтом Археологии РАН, там же проведена предварительная идентификация породы древесины методом оптической микроскопии. Описание образцов приведено в табл. 1. Размер исследованных образцов археологической древесины составлял 1–2 мм.

Аппаратура и вспомогательное оборудование. ИК-спектры записывали при помощи ИК-Фурье спектрометра Nicolet iS5 (Thermo Fisher Scientific, США) с использованием приставки нарушенного полного внутреннего отражения iD5 ATR (кристалл – алмаз). Спектральный диапазон 4000– 550 см⁻¹, спектральное разрешение 4 см⁻¹, число сканов – 32. Регистрацию и обработку спектров проводили с использованием штатного программного обеспечения прибора (Omnic 8.2).

№ образца	Описание образцов		Возраст
1	Лала мостовой, ПРАЭ-2018*, пл. 5, кв. 73	Дуб	16-17 век
2	Лала мостовой, ПРАЭ-2018, пл. 5, кв. 83	Дуб	16—17 век
3	Лала мостовой, ПРАЭ-2018, пл. 5, кв. 85	Дуб	16—17 век
4	Юго-восточная стена сооружения №6 ПРАЭ-2018, пл. 5, кв. 76	Сосна	16—17 век
5	Северо-восточная стена сооружения №6 ПРАЭ-2018, пл. 5, кв. 70	Сосна	16-17 век
6	Плаха мостовой, ПРАЭ-2018, пл. 5, кв. 87	Ясень	16—17 век
7	Плаха мостовой ПРАЭ-2018, пл. 4, кв. 85	Береза	16—17 век
8	Плаха мостовой ПРАЭ-2018, пл. 5, кв. 73	Ива	16-17 век
9	Доска от гроба ПРАЭ-2018, пл. 5, кв. 73	Дуб	16—17 век
10	Церковь Ильи Пророка в Цыпинском погосте (восточный переруб алтаря)	Сосна	17 век
11	Церковь Ильи Пророка в Цыпинском погосте (восточная стена южной клети галереи)	Сосна	17 век
12	Новгород 1959 г., Неревский раскоп (плаха мостовой на улице Великой)	Сосна	14—15 век
13	Новгород 1959 г., Неревский раскоп (плаха мостовой на улице Козьмодемьянской)	Сосна	13—14 век
14	Новгород 1970 г., Михайловский раскоп (плаха мостовой)	Сосна	12—13 век

Таблица 1. Описание образцов археологической древесины

* ПРАЭ-2018 – Переяславль-Рязанская археологическая экспедиция ИА РАН, 2018 г.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При анализе ИК-спектров основное внимание уделяли исследованию поглощения древесины в пяти характеристичных областях, которые были предложены нами ранее для идентификации породы: 1665–1593, 1515–1505, 1270–1220, 875–830 и 815–805 см⁻¹ [1].

Ранее нами отмечено [1], что в спектрах образцов современных хвойных пород в области 1665— 1593 см⁻¹ присутствуют три полосы средней интенсивности: около 1652, 1637 и 1600 см⁻¹. В спектрах лиственных пород в этой области имеются две полосы средней интенсивности: около 1644 и 1594 см⁻¹. В области 1515—1505 см⁻¹ в спектрах современной хвойной древесины появляется поло-

No 05032113*	Порода древесины	Область поглощения, см $^{-1}$			
ле образца		1515-1504	1270-1220	815-805	
1	Дуб	1506	1268<1225	_	
2	Дуб	1504	1266<1225	—	
3	Дуб	1505	1268<1227	—	
4	Сосна	1508	1268>1231	811	
5	Сосна	1509	1267>1230	810	
6	Ясень	1506	1267<1221	—	
7	Береза	1504	1266<1222	_	
8	Ива	1506	1268<1225	—	
9	Дуб	1504	1266<1225	—	
10	Сосна	1508	1267>1230	810	
11	Сосна	1509	1266>1231	810	
12	Сосна	1509	1266>1222	810	
13	Сосна	1509	1265>1231	809	
14	Сосна	1508	1265>1231	809	
15	Хвойная	1508	1268>1233	811	

Таблица 2. Результаты спектрального исследования археологической древесины

* Обозначение образцов приведено в соответствии с табл. 1.

Рис. 1. ИК-спектры древесины: (а) – лиственная порода (образец № 1); (б) – хвойная порода (образец № 4).

са поглощения ~1509 см⁻¹. В спектрах лиственной древесины имеется полоса поглощения ~1505 см⁻¹. В спектрах современной древесины хвойных пород в области 1270-1220 см⁻¹ присутствуют две полосы средней интенсивности: более интенсивная в области ~1265 см⁻¹ и примерно вдвое менее интенсивная в области ~1230 см⁻¹. В спектрах лиственных пород в этой области спектра также имеются две полосы средней интенсивности. Соотношение интенсивностей максимумов поглощения для древесины лиственных пород обратное: интенсивная полоса ~1230 см⁻¹ и примерно вдвое менее интенсивная ~1265 см⁻¹. В области 900-830 см⁻¹ ИК-спектра современных хвойных пород имеются достаточно хорошо выраженные две полосы слабой интенсивности: около 896 и 872 см^{-1} . При этом интенсивность полосы 896 см^{-1} ,

как правило, больше, чем полосы 872 см⁻¹. В спектрах лиственных пород в этой области спектра также имеются две полосы слабой интенсивности: около 897 и 830 см⁻¹. Интенсивность полосы при 897 см⁻¹ больше, чем полосы при 830 см⁻¹. В спектрах хвойных пород в области 815–805 см⁻¹ имеется полоса слабой интенсивности около 808 см⁻¹. В спектрах лиственных пород в этой области полоса поглощения отсутствует. Основные результаты спектрального исследования археологической древесины приведены в табл. 2.

Достоверность идентификации породы археологической древесины по предложенным критериям в областях 1665—1593 и 875—830 см⁻¹ оказалась недостаточной.

Исследования образцов древесины в трех других областях ИК-спектра: 1515–1505, 1270–1220,

и 815-805 см⁻¹ (табл. 2) показали хорошую воспроизводимость результатов и пригодность для идентификации породы археологической древесины. Во всех спектрах археологической древесины хвойных пород присутствовала полоса слабой интенсивности 811-809 см⁻¹, а в спектрах лиственных пород в этой области полоса поглощения отсутствовала. В ИК-спектрах хвойной археологической древесины в области 1515-1505 см⁻¹ присутствовала полоса поглощения 1509-1508 см⁻¹. В спектрах лиственной древесины обнаруживается полоса поглошения 1506–1504 см⁻¹. Наиболее перспективной для идентификации породы образцов археологической древесины представляется область 1270-1220 см⁻¹, в которой имеются две полосы средней интенсивности. При этом в хвойной древесине полоса поглощения в области 1270-1265 см⁻¹ более интенсивная, а полоса в области 1235-1220 см⁻¹ примерно вдвое меньшей интенсивности. В спектрах лиственных пород в этой области спектра соотношение интенсивностей полос обратное: более интенсивная полоса 1235-1220 см⁻¹ и примерно вдвое менее интенсивная 1270—1265 см⁻¹.

Составной частью древесины является лигнин. Мономерными звеньями лигнина являются фенилпропановые структурные единицы (ФПЕ), которые подразделяются на три вида: *n*-гидроксифенилпропановые (Н), гваяцилпропановые (G) и сирингилпропановые (S). Лигнин хвойных пород в основном состоит из гваяцилпропановых структурных единиц. В лиственной древесине преобладают сирингилпропановые структурные единицы. Эти различия в структуре лигнинов хвойных и лиственных пород древесины определяют характерные различия в ИК-спектрах.

Так, в спектрах хвойной древесины обнаружена полоса поглощения около 1509 см⁻¹ (скелетные колебания С–С-связей ароматического гваяцильного кольца). В спектрах лиственной древесины — полоса поглощения около 1505 см⁻¹ (скелетные колебания С–С-связей ароматического сирингильного кольца).

В спектрах древесины в области $1270-1220 \text{ см}^{-1}$ присутствуют две полосы около 1265 см^{-1} (скелетные колебания гваяцильного кольца) и около 1230 см^{-1} (скелетные колебания сирингильного кольца), поэтому в ИК-спектре хвойной древесины более интенсивная полоса 1265 см^{-1} , а в спектрах лиственных пород более интенсивная полоса 1230 см^{-1} .

Примеры спектров образцов археологической древесины хвойной и лиственной пород представлены на рис. 1. Различие в спектрах поглощения образцов археологической древесины хвойной и лиственной пород в области 1270—1220 см⁻¹ представлены на рис. 2. Как видно из приведенных

Рис. 2. Область 1500–1200 см⁻¹ ИК-спектров древесины: (а) – лиственные породы; (б) – хвойные породы. Обозначение образцов приведено в соответствии с данными табл. 1.

примеров, использование спектра поглощения в этой области представляется наиболее перспективным для идентификации породы археологической древесины.

Работа выполнена при поддержке гранта РФФИ 17-29-04100 офи-м.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Faix O., Bottcher J.H.* The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood // Holz. Roh. Werkst. 1992. V. 50. P. 221.
- Popescu C.M., Popescu M.C., Singurel G., Vasile C., Argyropoulos D.S., Willfor S. Spectral characterization of eucalyptus wood // Appl. Spectrosc. 2007. V. 61. P. 1168.
- Banks W.B., Owen N.L. FTIR studies of hydrophobic layers on wood // Spectrochim. Acta A. 1987. V. 43. P. 1527.
- Moore A.K., Owen N.L. Infrared spectroscopic studies of solid wood // Appl. Spectrosc. Rev. 2001. V. 36. P. 65.
- 5. *Higuchi T.* Biochemistry and Molecular Biology of Wood. Berlin: Springer-Verlag, 1997. 362 p.
- 6. Хвиюзов С.С., Боголицын К.Г., Гусакова М.А., Зубов И.Н. Оценка содержания лигнина в древесине методом ИК-Фурье спектроскопии // Фундаментальные исследования. 2015. № 9 (часть 1). С. 87.
- 7. Пустынная М.А., Гусакова М.А., Боголицын К.Г. Региональные и возрастные изменения химического состава лигноуглеводной матрицы лиственной древесины (на примере осины Populus tremula) // Лесной журн. 2015. № 1. С. 133.
- 8. *Хабаров Ю.Г., Песьякова Л.А.* Аналитическая химия лигнина. Архангельск: АГТУ, 2008. 172 с.
- Derkacheva O., Sukhov D. Investigation of lignins by FTIR spectroscopy // Macromol. Symp. 2008. V. 265. P. 61.
- 10. *Lin S.Y., Dence C.W.* Methods in Lignin Chemistry. Berlin: Springer-Verlag, 1992. 578 p.
- 11. *Monnier G., Frahm E., Luo B., Missal K.* Developing FTIR microspectroscopy for analysis of plant residues on stone tools // J. Arch. Sci. 2017. V. 78. P. 158.
- Bodirlau R., Teaca C.A. Fourier transforminfrared spectroscopy and thermal analysis of lignocelluloses fillers treated with organic anhydrides // Rom. J. Phys. 2009. V. 54. P. 93.
- Chen H., Ferrari C., Angiuli M., Yao J., Raspi C., Bramanti E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis // Carbohydr. Polym. 2010. V. 82. P. 772.

- Esteves B., Marques A.V., Domingos I., Pereira H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR // Maderas. Cienc. Tecnol. 2013. V. 15. P. 245.
- Popescu C.M., Popescu M.C., Singurel G., Vasile C. Structural changes in biodegraded lime wood // Carbohydr. Polym. 2010. V. 79. P. 362.
- 16. Карклинь В.Б., Трейманис А.П., Громов В.С. ИКспектроскопия древесины и ее основных компонентов // Химия древесины. 1975. № 2. С. 45.
- Карклинь В.Б., Якобсон М.К., Столдере И.А. ИКспектроскопия древесины и ее основных компонентов // Химия древесины. 1975. № 3. С. 100.
- Карклинь В.Б., Охерина Е.Э. ИК-спектроскопия древесины и ее основных компонентов // Химия древесины. 1975. № 4. С. 49.
- Карклинь В.Б., Эйдус Я.А., Крейцбере З.Н. ИК-спектроскопия древесины и ее основных компонентов // Химия древесины. 1977. № 4. С. 86.
- Карклинь В.Д. ИК-спектроскопия древесины и ее основных компонентов. V. количественное сравнение ИК-спектров древесины на основе внешнего стандарта – гексаферрицианида калия // Химия древесины. 1975. № 1. С. 56.
- 21. Карклинь В.Б., Крейцбере З.Н., Екабсоне М.Я. ИКспектроскопия древесины и ее основных компонентов. VII. Определение по ИК-спектрам содержания лигнина в препаратах березовой древесины, разрушенной грибом Fomitopsis pinicola // Химия древесины. 1975. № 2. С. 53.
- Traoré M., Kaal J., Martínez Cortizas A. Application of FTIR spectroscopy to the characterization of archeological wood // Spectrochim. Acta A: Molecular and Biomolecular Spectroscopy. 2016. V. 153. P. 63.
- Пожидаев В.М., Ретивов В.М., Панарина Е.И., Сергеева Я.Э., Жданович О.А., Яцишина Е.Б. Разработка метода идентификации породы древесины в археологических материалах методом ИК-спектроскопии // Журн. аналит. химии. 2019. Т. 74. № 12. С. 911. (Pozhidaev V.M., Retivov V.M., Panarina E.I., Sergeeva Ya.E., Zhdanovich O.A., Yatsishina E.B. Development of a Method for Identifying Wood Species in Archaeological Materials by IR Spectroscopy // J. Anal. Chem, 2019. V. 74. № 12. Р. 1192.)