УДК 548 82,546 824 547 65

ВЗАИМОДЕЙСТВИЕ В СИСТЕМЕ Ті(IV)–2,2',3,4-ТЕТРАГИДРОКСИ-3'-НИТРО-5'-СУЛЬФОАЗОБЕНЗОЛ-КАТИОННЫЕ ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА

© 2021 г. А. Дж. Рагимова^{*a*, *}, В. И. Марданова^{*b*}, Г. Р. Мугалова^{*b*}, А. М. Магеррамов^{*b*}, Х. Д. Нагиев^{*b*}, Ф. М. Чырагов^{*b*}

^аГазахский филиал Бакинского государственного университета ул. Гейдар Алиев, 208, Газах, Аz 3500 Азербайджан ^bБакинский государственный университет, химический факультет ул. 3. Халилова, 23, Баку, Az 1148 Азербайджан *e-mail: vusala_chem@mail.ru Поступила в редакцию 16.09.2020 г. После доработки 27.10.2020 г. Принята к публикации 20.11.2020 г.

Исследовано комплексообразование титана(IV) с 2,2',3,4-тетрагидрокси-3'-нитро-5'-сульфоазобензолом (R) в присутствии катионных поверхностно-активных веществ (**КПАВ**) хлорида цетилпиридиния (**ЦПСI**), бромида цетилпиридиния (**ЦПВг**) и бромида цетилтриметиламмония (**ЦТМАВг**). Установлено, что в присутствии катионных поверхностно-активных веществ образуются смешанолигандные комплексы с соотношением компонентов $Ti(OH)_2^{2+}: H_4R^-: KПАB = 1:2:2.$ Установлены оптимальные значения pH образования комплексов: 4.5 для $Ti(OH)_2^{2+}(H_3R^{2-})_2$ и 3.5 для смешанолигандных комплексов ($Ti(OH)_2^{2+}(H_3R^{2-})_2(ЦПСI)_2$, $Ti(OH)_2^{2+}(H_3R^{2-})_2(ЦПВг)_2$, $Ti(OH)_2^{2+}(H_3R^{2-})_2(ЦТМАВг)_2$). Исследовано также влияние времени, температуры и концентрации реагирующих компонентов на образование смешанолигандных комплексов. Закон Бера соблюдается в интервале концентраций $Ti(OH)_2^{2+}(H_3R^{2-})_2$, $Ti(OH)_2^{2+}(H_3R^{2-})_2(ЦПВг)_2$, $Ti(OH)_2^{2+}(H_3R^{2-})_2(ЦТМАВг)_2$ 0.10-1.8, 0.10-1.92, 0.10-1.92, 0.08-1.92 соответственно. Изучено влияние посторонних ионов и маскирующих веществ на определение титана(IV) в виде смешанолигандных комплексов. Разработана методика спектрофотометрического определения микроколичеств титана в морском песке, взятом на берегу Каспийского моря около поселка Туркан.

Ключевые слова: титан(IV), 2,2',3,4-тетрагидрокси-3'-нитро-5'-сульфоазобензол, катионные поверхностно-активные вещества, смешанолигандные комплексы, морской песок. DOI: 10.31857/S0044450221040113

Металлический титан хорошо известен своей превосходной коррозионной стойкостью, способной противостоять воздействию разбавленной серной кислоты и соляной кислоты или даже влажного хлора. Титан такой же прочный, как сталь, но намного легче; он тяжелее алюминия и вдвое прочнее его. Эти свойства делают титан высокоустойчивым к обычным видам усталости металла. Приблизительно 95% произведенного титана потребляется в виде диоксида титана. Титановые сплавы в основном используют в производстве самолетов и ракет, где важны легкость, прочность и способность выдерживать экстремальные температуры. Титан применяют в медицине для изготовления протезов тазобедренного и коленных суставов, зубных имплантатов и в челюстно-лицевой хирургии. Титан существует в природе в виде титана(IV) — наиболее стабильном и обычном состоянии окисления. Отсюда следует важность мониторинга концентрации титана(IV) в различных объектах. Атомная абсорбционная спектрометрия с атомизацией в пламени и в графитовой печи и спектрофотометрические методы обеспечивают точное и быстрое определение титана(IV) в различных естественных и искусственных объектах [1–9]. Известно, что в присутствии катионных поверхностно-активных веществ аналитические характеристики комплексов улучшаются [10, 11].

В представленной работе спектрофотометрическим методом исследовано комплексообразование титана(IV) с 2,2',3,4-тетрагидрокси-3'-нит-

Рис. 1. Спектры светопоглощения комплексов титана(IV): $1 - H_4 R^-$, $2 - Ti (OH)_2^{2+} (H_3 R^{2-})_2 (pH_{opt} 4.5)$, $3 - Ti (OH)_2^{2+} (H_3 R^{2-})_2 (ЦПСl)_2 (pH_{opt} 3.5)$, $4 - Ti (OH)_2^{2+} (H_3 R^{2-})_2 (ЦПВr)_2 (pH_{opt} 3.5)$, $5 - Ti (OH)_2^{2+} (H_3 R^{2-})_2 (ЦТМАВг)_2 (pH_{opt} 3.5)$. $c_{Ti} = 2.0 \times 10^{-5} M$, $c_R = 8.0 \times 10^{-5} M$, $c_{KПАB} = 4.0 \times 10^{-4} M$, спектрофотометр Lambda-40, l = 1.0 см.

ро-5'-сульфоазобензолом (H_5R) в присутствии и в отсутствие катионных поверхностно-активных веществ – хлорида цетилпиридиния (**ЦПСI**), бромида цетилпиридиния (**ЦПВг**), бромида цетилтриметиламмония (**ЦТМАВг**) и разработана высокоселективная методика определения микроколичеств титана в морском песке, взятом на берегу Каспийского моря около поселка Туркан.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Растворы и реагенты. 2,2',3,4-Тетрагидрокси-3'-нитро-5'-сульфоазобензол (H₅R) синтезировали по известной методике [12]. Для идентификации синтезированного реагента использовали элементный анализ, ИК- и ЯМР-спектроскопию. Структурная формула реагента представлена ниже:

Реагент представляет собой красное кристаллическое вещество, хорошо растворимое в воде. Использовали его 0.001 М водный раствор.

Стандартный 0.1 М раствор Ti(IV) готовили растворением рассчитанной навески металлического титана по методике [13]. Рабочие 5.0 × 10⁻⁴ М рас-

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 76 № 6 2021

творы получали разбавлением исходного дистиллированный водой перед употреблением.

В работе использовали 0.01 М растворы катионных поверхностно-активных веществ (**КПАВ**), которые готовили растворением 0.3395 г ЦПСІ, 0.3845 г ЦПВг и 0.3646 г ЦТМАВг в водно-этанольной смеси (7 : 3, по объему) в колбе емк. 100 мл. Растворы посторонних ионов и маскирующих веществ готовили по методике [13]. Все использованные реагенты имели квалификацию не ниже ч. д. а. Для создания необходимой кислотности использовали фиксанал HCl (pH 0–2) и ацетатно-аммиачные буферные растворы (pH 3–11).

Аппаратура. Спектрофотометрические измерения в УФ- и видимой областях спектра проводили на спектрофотометре Lambda-40 с компьютерным обеспечением и на фотоэлектроколориметре КФК-2 в кюветах толщиной 1.0 см. Кислотность растворов измеряли с помощь pH-метра pH-121 со стеклянным электродом.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Спектрофотометрическое исследование ком-

плексообразования в системе $Ti(OH)_2^{2+}-H_4R^--$ КПАВ. Ранее показано [10], что в кислой среде при рН 0–4.5 реагент в основном находится в форме H_4R^- , которая имеет максимальное светопоглощение при 405 нм. В этих условиях реагент с титаном(IV) образует окрашенный комплекс с максимальным светопоглощением при 465 нм. В присутствии КПАВ образуются смешанолигандные комплексы, при этом наблюдается батохромный сдвиг по сравнению со спектром бинарного комплекса. Максимальное светопоглощение комплексов $Ti(OH)_2^{2+}-H_4R^--U\PiCl$, $Ti(OH)_2^{2+}-H_4R^--$ UПВг и $Ti(OH)_2^{2+}-H_4R^--UTMABr$ наблюдается при 472, 476 и 480 нм соответственно (рис. 1).

Изучение зависимости оптической плотности от pH среды показало, что в системе $Ti(OH)_2^{2+}$ — H_4R^- —КПАВ максимальный выход смешанолигандных комплексов сдвигается в более кислую среду. Оптимальное значение pH (pH_{опт}) образования всех смешанолигандных комплексов составило 3.5 (рис. 2).

В дальнейшем для установления оптимальных условий образования смешанолигандных комплексов изучили влияние концентраций реагирующих веществ. Найдено, что выход всех смешанолигандных комплексов максимален при концентрациях 8.0×10^{-5} М реагента и 4.0×10^{-5} М КПАВ.

Влияние времени и температуры. Исследовали зависимости образования и устойчивости комплексов в растворе от времени и температуры. Установлено, что все комплексы образуются после смешивания растворов компонентов мгновенно, образующиеся комплексы отличаются устойчиво-

стью. Так, комплекс $Ti(OH)_2^{2+}-H_4R^-$ устойчив в течение менее двух часов и при нагревании до 50°C, а смешанолигандные комплексы устойчивы в течение более суток и при нагревании до 80°C.

Состав комплексов. Соотношение компонентов в составе образующихся окрашенных комплексов устанавливали методами изомолярных серий, относительного выхода Старика-Барбанеля и сдвига равновесия [14]. Результаты всех методов показали, что соотношение компонентов в комплексе $Ti(OH)_2^2 - H_4 R^-$ равно 1 : 2, а в смешакомплексах $Ti(OH)_2^{2+}-H_4R^-$ нолигандных КПАВ 1 : 2 : 2. Для выяснения химизма комплексообразования в системе $Ti(OH)_2^{2+}-H_4R^-$ в присутствии и в отсутствие КПАВ применили метод Астахова [15]. Установили, что реакционноспособной формой реагента в условиях комплексообразования Ti(IV) в присутствии и в отсутствие КПАВ являются H_4R^- и H_3R^{2-} соответственно. Учитывая константы гидролиза ионов Ti(IV) [16] и форму существования реагента в оптимальных условиях, можно предложить следующую схему комплексообразования.

$$\begin{aligned} \text{Ti}(\text{OH})_{4} + 2\text{H}_{4}\text{R}^{-} &\to \text{Ti}(\text{OH})_{2}^{2+}(\text{H}_{3}\text{R}^{2-})_{2} + 2\text{H}_{2}\text{O}, \\ \text{Ti}(\text{OH})_{2}^{2+}(\text{H}_{3}\text{R}^{2-})_{2} + 2\text{K}\Pi\text{AB} \to \\ &\to \text{Ti}(\text{OH})_{2}^{2+}(\text{H}_{3}\text{R}^{2-})_{2}(\text{K}\Pi\text{AB})_{2}. \end{aligned}$$

Методом пересечения кривых определили константы устойчивости комплексов титана [16]. Установили, что смешанолигандные комплексы более устойчивы по сравнению с бинарными: $\lg\beta[Ti(OH)_2^{2+}(H_3R^{2-})_2] = 8.52 \pm 0.04;$ $\lg\beta[Ti(OH)_2^{2+}(H_3R^{2-})_2(\Pi\Pi CI)_2] = 10.83 \pm 0.05;$ $\lg\beta[Ti(OH)_2^{2+}(H_3R^{2-})_2(\Pi\Pi Br)_2] = 10.92 \pm 0.04;$ $\lg\beta[Ti(OH)_2^{2+}(H_3R^{2-})_2(\Pi\Pi Br)_2] = 11.08 \pm 0.06.$ Зависимости оптической плотности от концентрации титана(IV) линейны в диапазонах 0.1– 1.8 мкг/мл Ti(IV) для комплекса Ti $(OH)_2^{2+}(H_3R^{2-})_2,$

Рис. 2. Влияние pH на светопоглощение комплексов титана(IV): $1 - \text{Ti}(\text{OH})_2^{2+}(\text{H}_3\text{R}^{2-})_2(\lambda_{\text{опт}} = 465 \text{ нм}), 2 - \text{Ti}(\text{OH})_2^{2+}(\text{H}_3\text{R}^{2-})_2(\Pi \text{ICl})_2 \quad (\lambda_{\text{опт}} = 472 \text{ нм}), 3 - \text{Ti}(\text{OH})_2^{2+}(\text{H}_3\text{R}^{2-})_2(\Pi \text{IBr})_2 \quad (\lambda_{\text{опт}} = 476 \text{ нм}), 4 - \text{Ti}(\text{OH})_2^{2+}(\text{H}_3\text{R}^{2-})_2(\Pi \text{TMABr})_2 \quad (\lambda_{\text{опт}} = 480 \text{ нм}). c_{\text{Ti}} = 2.0 \times 10^{-5} \text{ M}, c_{\text{R}} = 8.0 \times 10^{-5} \text{ M}, c_{\text{КПАВ}} = 4.0 \times 10^{-4} \text{ M},$ спектрофотометр Lambda-40, *l* = 1.0 см, относительно раствора контрольного опыта.

0.1–1.9 мкг/мл – $Ti(OH)_2^{2+}(H_3R^{2-})_2(\Pi\Pi CI)_2$ и $Ti(OH)_2^{2+}(H_3R^{2-})_2(\Pi\Pi Br)_2$, 0.08–1.92 мкг/мл – $Ti(OH)_2^{2+}(H_3R^{2-})_2(\PiTMABr)_2$ соответственно (табл. 1).

Молярные коэффициенты светопоглощения комплексов $Ti(OH)_2^{2+}(H_3R^{2-})_2$, $Ti(OH)_2^{2+}(H_3R^{2-})_2(\Pi\Pi CI)_2$, $Ti(OH)_2^{2+}(H_3R^{2-})_2(\Pi\Pi Br)_2$ и $Ti(OH)_2^{2+}(H_3R^{2-})_2(\PiTMABr)_2$ (при $\lambda_{onr} = 465, 472,$ 476, 480 нм соответственно) равны 2.80 × 10⁴, 3.10 × 10⁴, 3.28 × 10⁴ и 3.39 × 10⁴ соответственно.

Изучили влияние посторонних ионов и маскирующих веществ на определение Ti(IV) в виде би-

Комплекс	рН _{опт}	$\lambda_{\rm max}$, нм	Соотношение компонентов	$\epsilon_{\rm max} \times 10^{-4}$	Диапазон линейности, мкг/мл
$\operatorname{Ti}(\operatorname{OH})_{2}^{2+}(\operatorname{H}_{3}\operatorname{R}^{2-})_{2}$	4.5	465	1:2	2.80 ± 0.04	0.10-1.8
$ Γi(OH)_2^{2+}(H_3R^{2-})_2(ΠCl)_2 $	3.5	472	1:2:2	3.10 ± 0.03	0.10-1.92
$\Gamma i (OH)_2^{2+} (H_3 R^{2-})_2 (\Pi B r)_2$	3.5	476	1:2:2	3.28 ± 0.04	0.10-1.92
$\Gamma_{1}(OH)_{2}^{2+}(H_{3}R^{2-})_{2}(\amalg TMABr)_{2}$	3.5	480	1:2:2	3.39 ± 0.01	0.08-1.92

Таблица 1. Основные спектрофотометрические характеристики комплексов титана(IV)

Ион или вещество	H ₄ R ⁻	H ₄ R ⁻ –ЦПСІ	H₄R [−] –ЦПВr	H₄R [−] –ЦТМАВг	5-Бром-2-гидрокси-3- метоксибензальдегид- <i>n</i> - гидроксибензоил гидразин [8]
Na(I)	6000	Не мешает	Не мешает	Не мешает	
K(I)	10000	Не мешает	Не мешает	Не мешает	
Mg(II)	214	835	1030	1250	
Ca(II)	1000	1200	1200	1270	
Ba(II)	1220	1300	1310	1390	5842
Zn(II)	1000	1000	1100	1210	600
Cd(II)	100	110	115	170	82
Mn(II)	1000	1100	1100	1210	50
Ni(II)	1000	1120	1110	1215	5
Co(II)	530	825	840	890	12
Fe(III)	1	116	140	278	
Cr(III)	1500	1680	1705	1780	8
Mo(VI)	1	1	2	2.5	59
W(VI)	1	1	1.5	1.5	8
Pb(IV)	185	300	230	330	9
Bi(III)	200	315	310	355	18
Cu(II)	952	1050	1040	1080	63
V(V)	13	25	30	45	5
ЭДТА	20	30	35	40	50
Мочевина	535	500	520	540	
Тиомочевина	2000	2000	2000	2010	
Лимонная кислота	40	40	45	50	
Винная кислота	45	200	200	200	

Таблица 2. Допустимое соотношение по массе посторонних веществ к титану(IV) при его определении в виде $Ti(OH)_{2}^{2+}(H_{3}R^{2-})_{2}(K\Pi AB)_{2}$ (погрешность 5%)

нарного и смешанолигандного комплексов. Установлено, что в присутствии КПАВ избирательность реакции значительно увеличивается. Определению Ti(IV) в виде смешанолигандных комплексов не мешают более чем 1000-кратные избытки ионов Co(II), Mn(II), Ni(II), Cr(III), Cd(II) и др. (табл. 2).

Разработанная методика спектрофотометрического определения титана в виде смешанолигандного комплекса $Ti(OH)_2^{2+}(H_3R^{2-})_2(\amalg TMABr)_2$ апробирована при анализе морского песка, взятого на берегу Каспийского моря около поселка Туркан.

Методика анализа. Навеску образца песка массой 2.0 г помещают в графитовую чашку и при нагревании расплавляют в смеси 5.0 г тетрабората натрия и 10.0 мл конц. H_2SO_4 . Полученный остаток растворяют в 15 мл 9.0 М HCl и нерастворимую часть отделяют фильтрованием. Фильтрат помещают в колбу емк. 100 мл, разбавляют до метки дистиллированной водой и тщательно перемешивают. Аликвоту (1.0—4.0 мл) этого раствора переносят в мерную колбу емк. 25 мл, приливают 4.0 мл 0.001 М раствора реагента и 2.0 мл 0.01 М раствора бромида цетилтриметиламмония и разбавляют до метки ацетатно-аммиачным буферным раствором с рН 3.5. Измеряют оптическую плотность растворов на спектрофотометре КФК-2 при 490 нм в кюветах толщиной 1.0 см относительно аналогично приготовленного раствора контрольного опыта. Содержание титана находят по предварительно построенному градуировочному графику. Результаты анализа показали, что морской песок содержит 0.780 \pm 0.045% титана, что соответствует данным определения титана с хромотроповой кислотой [17].

СПИСОК ЛИТЕРАТУРЫ

1. *Madhavi D., Saritha B., Giri A., Sreenivasulu Reddy T.* Direct spectrophotometric determination of titanium(IV) with 5-bromo-2hydroxy-3-methoxybenzaldehyde-p-hydroxybenzoic hydrazine // J. Chem. Pharm. Res. 2008. V. 6. № 6. P. 1145.

- Mitsuru H., Shinichiro K., Shota M., Mamiko A., Takako Y., Yoshikazu F. Spectrophotometric determination of titanium with o-carboxyphenylfluorone in cationic micellar media, and its equilibrium and kinetic studies // Talanta. 2011. V. 85. P. 2339.
- 3. Lakshmi N.S., Young K.S., Sung O.B. Spectrophotometric determination of titanium(IV) by using 3,4-dihydroxybenzaldehydeisonicotinoylhydrazone (3,4-DHBINH) as a chromogenic agent // Chem. Sci. Trans. 2012. V. 1. № 1. P. 171.
- Rabin K.M., Tarafder P.K. Extractive spectrophotometric determination of titanium in silicate rocks, soils and columbite-tantalite minerals // Microchim. Acta. 2004. V. 148. № 3. P. 327.
- 5. Zavvar Mousavi H., Pourreza N. Catalytic spectrophotometric determination of titanium (IV) using methylene blue-ascorbic acid redox reaction // J. Chin. Chem. Soc. 2008. V. 55. № 4. P. 750.
- Mastoi G.M., Khuhawar M.Y, Kulsoom A., Moina A., Saba N., Humaira K., Arfana M., Zuhra M. Development of new spectrophotometric determination of titanium in homeopathic pharmacy using Ponceau S as a reagent // J. Pharm. Pharmacol. 2011. V. 5. № 8. P. 1179.
- Vinnakota S., Aluru Raghavendra G.P., Kakarla R.K., Vahi S., Lakshmana Rao K.R. A new spectrophotometric method for the determination of trace amounts of titanium(IV) // J. Phys. Chem. Technol. 2010. V. 8. № 1. P. 15.
- 8. *Madhavi D., Saritha B., Giri A., Sreenivasulu T.R.* Direct spectrophotometric determination of titanium(IV) with 5-bromo-2hydroxy-3-methoxybenzaldehyde-p-

hydroxybenzoic hydrazine // J. Chem. Pharm. Res. 2014. V. 6. No 6. P. 1145.

- 9. Xianfeng Du, Youlong Xu., Li Qin, Xiangfei Lu., Qiong L., Yang B. Simple and rapid spectrophotometric determination of titanium on etched aluminum foils // Am. J. Anal. Chem. 2014. № 5. P. 149.
- Нагиев Х.Д. Закономерности образования и аналитическое пременение разнолигандных комплексов азосоединений на основе пирогаллола и триарилметановых красителей с некоторыми металлами. Автореф. дис. ... докт. хим. наук. Баку, 2011. 56 с.
- Гаджиева С.Р., Махмудов К.Т., Чырагов Ф.М. Исследование взаимодействия в системе медь(II)-3-(2-гидрокси-3-сульфо-5-нитрофенилазо)пентадион-2,4-катионные поверхностно-активные вещества // Журн. аналит. химии. 2006. Т. 61. № 7. С. 690.
- 12. *Бородкин В.Ф*. Химия красителей. М.: Химия, 1981. 248 с.
- 13. *Коростелев П.П.* Приготовление растворов для химико-аналитических работ. М.: Наука, 1964. 261 с.
- Булатов М.И., Калинкин И.П. Практикум по фотометрическим и спектрофотометрическим методам анализа. Л: Химия, 1972. 407 с.
- 15. Астахов К.В., Вериницин В.Б., Зимин В.И., Зверкова А.А. Спектрофотометрическое изучение комплексооразования некоторых редкоземельных элементов с нитрилоуксусной кислотой // Журн. неорг. химии. 1961. Т. 6. С. 2069.
- Назаренко В.А., Антонович В.П., Невская Э.М. Гидролиз металлических ионов в разбавленных растворах. М.: Атомиздат, 1979. 192 с.
- Упор Э., Мохаи М., Новак Д. Фотометрические методы определения следов неорганических соединений. М.: Мир, 1985. 359 с.