———— ОРИГИНАЛЬНЫЕ СТАТЬИ ——

УДК 543.423.1

ПРОЦЕДУРА ОСАЖДЕНИЯ МАКРОКОМПОНЕНТОВ ПРИ ОПРЕДЕЛЕНИИ СЕЛЕНА И ТЕЛЛУРА В МЕТАЛЛУРГИЧЕСКИХ МАТЕРИАЛАХ МЕТОДОМ АТОМНО-ЭМИССИОННОЙ СПЕКТРОМЕТРИИ С ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМОЙ

© 2021 г. А. В. Майорова^{а, *}, А. А. Белозерова^а, М. Н. Бардина^{а, b}

^аИнститут металлургии Уральского отделения Российской академии наук ул. Амундсена, 101, Екатеринбург, 620016 Россия ^bУральский федеральный университет имени первого Президента России Б.Н. Ельцина ул. Мира, 19, Екатеринбург, 620002 Россия *e-mail: imeturoran@mail.ru Поступила в редакцию 26.02.2021 г. После доработки 11.03.2021 г. Принята к публикации 11.03.2021 г.

Проведены исследования по отделению микрокомпонентов Se и Te от макрокомпонентов Co, Ni, Cu, Fe, Cr, Mo и W для определения методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой. Установлено, что использование в качестве осадителей оксалата натрия и фторида натрия приводит к практически полному удалению из анализируемых растворов четырех макрокомпонентов Co, Ni, Cu и Fe. Показано, что введение фтороводородной кислоты в определенном количестве приводит к ингибированию процесса соосаждения Se и Te при отделении основы материала. Разработана методика одновременного определения содержания Se и Te в материалах с большим содержанием Co, Ni, Cu и Fe с применением атомно-эмиссионной спектрометрии с индуктивно связанной плазмой.

Ключевые слова: атомно-эмиссионная спектрометрия с индуктивно связанной плазмой, соосаждение, определение содержания Se и Te, отделение Fe, Ni, Co, Cu. **DOI:** 10.31857/S0044450221080107

В настоящее время содержание редких и рассеянных элементов Se и Te в рудном сырье, а также в сталях, жаропрочных никелевых сплавах и т.д., применяемых в качестве конструкционных материалов в машиностроении, аппаратостроении и приборостроении, строго регламентируется действующими ГОСТами [1-3]. Титриметрические, полярографические и фотометрические методики определения содержания Se и Te приведены в соответствующих ГОСТах [4-8]. Предложенные методики анализа занимают много времени и трудоемки. В некоторых случаях необходима процедура предварительного экстракционного отделения Se и Te от основных компонентов материала, а их одновременное определение указанными методами невозможно.

Следует отметить, что в литературе имеются сведения о методиках индивидуального/совместного определения Se и Te методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (АЭС-ИСП) [9–20]. Селен и теллур имеют высокие значения потенциалов возбуждения спектральных линий [21, 22], следовательно, компоненты, присутствующие в составе анализируемого материала и имеющие более низкие значения потенциала возбуждения, могут при АЭС-ИСП-определении Se и Te потенциально вызывать спектральные помехи. Так, например, в ГОСТ [9] указано, что при АЭС-ИСП-определении Se (Se I 196.026, 203.985 нм) и Te (Te I 214.281 нм) в воде наблюдаются спектральные помехи от Fe, Al, Ti.

В работе [10] предложена методика определения 38 элементов-примесей в высокочистом мышьяке, в том числе Se и Te. Установлено, что коэффициенты чувствительности для большинства аналитических линий примесных элементов снижаются примерно в 1.1–1.3 раза по сравнению с раствором без мышьяка. Для устранения матричных помех при АЭС-ИСП-определении примесных элементов использовали методом добавок.

Предложен [11] многоэлементный анализ примесей в Eu, Y и La методом АЭС-ИСП с предварительной оптимизацией мощности плазмы. Рассчитан предел обнаружения примесей, который для Se и Te составил 10^{-3} мас. %.

Причина редкого упоминания в литературе методик прямого АЭС-ИСП-определения Se и Te в металлургических объектах связана со спектральными помехами от присутствующих в составе материала макрокомпонентов, поэтому на практике, как правило, используют предварительное отделение аналитов от матрицы. Используют следующие способы отделения Se и Te:

– соосаждение Se и Te на гидроксидах металлов с использованием в качестве коллекторов Pd [12] или Fe, La, Mg [13]. Процедура отделения аналитов от матрицы с использованием Pd [12] дорогостоящая. Полнота соосаждения аналитов на гидроксиде магния достигает значений более 95%, при этом удается разделить аналиты и медную основу материала [13]. Однако процедура соосаждения неприменима при определении Se и Te в металлсодержащем сырье, поскольку гидроксиды металлов способны быть коллекторами, и проведение этой процедуры не приведет к разделению аналитов и металлсодержащей основы;

– сорбционное концентрирование Se и Te на N,S-содержащих сорбентах (полимерный тиоэфир и этилендиамин) [14]. Обнаружено, что сорбция меди на данном типе сорбентов соизмерима с сорбцией аналитов, что делает невозможным применение сорбции при АЭС-ИСП-определении Se и Te в медьсодержащем сырье;

— осаждение и отделение никелевой основы материала в виде $Ni(ClO_4)_2$ от Se и Te [15]. Процедура трудоемка, поскольку в процессе пробоподготовки требуется переохладить полученный раствор и использовать ультразвуковую обработку;

– генерация гидридов SeH₂, TeH₂ [16–19]. Для получения легколетучих гидридов требуется наличие гидридного генератора. Необходимо ингибировать интерференции (побочные реакции, протекающие между восстановителем NaBH₄ и матричными компонентами, в первую очередь переходными металлами);

– экстракция Те с использованием октадецилпривитого силикагеля [20]. Аналит отделяют вместе с 33 другими элементами, в том числе Fe, Al, Cu и др. Из-за спектральных помех от совместно экстрагируемых сопутствующих макроэлементов проведение точного АЭС-ИСП-анализа металлургического сырья невозможно.

Таким образом, с учетом требований экспрессности, минимизации материальных затрат, трудозатрат, простоты в исполнении необходима разработка новых методик одновременного определения содержания Se и Te с использованием современного оборудования.

Ранее мы имели успешный опыт разработки методик АЭС-ИСП-определения микрокомпонентов As и Sb в металлургических материалах с предварительным осаждением матрицы различными осадителями [23–25]. Ингибирования соосаждения аналитов в процессе осаждения матрицы удалость достичь при введении определенного количества комплексообразующего агента — фтороводородной кислоты. Предлагается использовать подобный подход при подготовке металлургического сырья к АЭС-ИСП-определению малых количеств Se и Te.

Цель настоящей работы — разработка процедуры осаждения и отделения макрокомпонентов, позволяющей проводить одновременное АЭС-ИСП-определение содержания Se и Te в металлургических образцах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Приготовление растворов. Растворы для нахождения минимальных концентраций Fe, Ni, Co, Cu, Cr, Mo и W, при которых наблюдаются матричные помехи на спектральных линиях Se и Te, готовили разбавлением государственных стандартных образцов состава растворов соответствующих ионов. Концентрация Cr(III), Fe(III), W(VI), Mo(VI), Ni(II), Cu(II), Co(II) в анализируемых растворах составляла 1, 2, 5, 10, 50, 100 и 200 мг/л, a Se(IV), Te(VI) – 1 мг/л.

Растворы для разработки процедуры осаждения и отделения макрокомпонентов готовили следующим образом: в термостойкие фторопластовые стаканы добавляли 15 мл раствора ионов Cr(III), Fe(III), W(VI), Mo(VI), Ni(II), Cu(II), Со(II) с концентрацией 10000 мг/л и 5 мл раствора Se(IV), Те (VI) с концентрацией 50 мг/л. Добавляли смесь конц. HCl (15 мл, 37 мас. %), HNO3 (5 мл, 95 мас. %) и HF (от 5 до 25 мл, 37.5 мас. %). Полученные растворы нагревали на электроплитке до начала кипения (75°С). Затем к полученному раствору порциями при постоянном перемешивании добавляли от 5 до 30 г Na₂C₂O₄ и от 0 до 10 г NaF, выдерживали при температуре кипения 10 мин. Далее выпавший осадок охлаждали до комнатной температуры, отфильтровывали через фильтр "белая лента" и промывали дистиллированной водой. Полученные таким образом осадки отбрасывали. Фильтрат переносили в мерную колбу из полипропилена емк. 250 мл, разбавляли дистиллированной водой до метки и перемешивали. Полученные растворы анализировали на содержание компонентов методом АЭС-ИСП.

Растворы государственных стандартных образцов готовили растворением при нагревании на электроплитке навесок материала массой 1 г (в пяти параллелях) в смеси 15, 5, 15 мл конц. HCl (37 мас. %), HNO₃ (95 мас. %) и HF (37.5 мас. %) соответственно. Затем к полученному раствору порциями при постоянном перемешивании до-

бавляли 15 г $Na_2C_2O_4$ и 5 г NaF, выдерживали при температуре кипения 10 мин. Далее выпавший осадок охлаждали до комнатной температуры, отфильтровывали через фильтр "белая лента" и промывали дистиллированной водой. Полученные осадки отбрасывали. Фильтрат переносили в мерную колбу из полипропилена емк. 250 мл, разбавляли дистиллированной водой до метки и перемешивали. Полученные растворы анализировали на содержание аналитов методом АЭС-ИСП.

Погрешность анализа рассчитывали по уравнению:

$$t_{(0.95;4)} = \frac{s}{\sqrt{n}},\tag{1}$$

где t — коэффициент Стьюдента (для двухстороннего распределения), равный 2.78 при числе измерений n = 5 и доверительной вероятности P = 0.95; s — стандартное отклонение.

Одновременно с исследуемыми растворами готовили холостые растворы, содержащие все компоненты, кроме ионов Se(IV), Te(VI), с концентрациями, аналогичными используемыми при приготовлении растворов.

Условия измерения атомной эмиссии Cr, Fe, W, Мо, Ni, Cu, Co, Se, Te. Использовали АЭС-ИСПспектрометр Optima 2100 DV (PerkinElmer, США) с кварцевой горелкой. Операционные параметры спектрометра: высокочастотная мощность - 1500 Вт, пробоподающий поток аргона – 0.75 дм³/мин, вспомогательный поток аргона – 0.2 дм³/мин, плазмообразующий поток аргона — 15.0 дм³/мин, способ наблюдения плазмы – радиальный, высота наблюдения — 15 мм, скорость подачи раствора — 0.9 мл/мин, время распыления образца – 40 с, число измерений прибором одной пробы – 2. Применяли распылительную систему, устойчивую к агрессивному воздействию фтороводородной кислоты. Аналитические спектральные линии: Se I 196.026, Se I 203.980, Se I 206.279, Se I 207.479, Te I 214.281, Te I 200.202, Te I 208.116, Te I 214.725, Te I 238.326, Fe I 302.107, Cr II 206.158, W II 207.912, Mo II 202.031, Ni II 231.604, Co II 228.616 и Cu I 327.393 нм.

Градуировка спектрометра. Растворы для градуировки спектрометра готовили разбавлением государственных стандартных образцов состава растворов ионов Cr(III), Fe(III), W(VI), Mo(VI), Ni(II), Cu(II), Co(II), Se(IV), Te(VI). При этом в них добавляли аликвоты холостого раствора так, чтобы концентрации кислот, которые содержатся в холостом растворе, соответствовали их концентрациям в анализируемых растворах.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Изучение матричных спектральных помех при АЭС-ИСП-определении селена и теллура. В качестве матричных элементов для исследований выбраны Fe, Ni, Cr, Mo, Co, Cu и W, так как эти элементы являются основными компонентами сталей, медных, медно-никелевых сплавов, рудного сырья и могут оказать негативное влияния на точность определения малых количеств Se и Te.

В табл. 1 представлены наиболее чувствительные спектральные линии Se и Te, зафиксированные на используемом АЭС-ИСП-спектрометре, а также сведения о мешающих элементах Fe, Ni, Cr, Mo, Co, Cu и W.

Критерием проявления спектральных помех и влияния других факторов (например, физических – изменения вязкости раствора и др.) считали увлечение более чем на 3% интенсивности спектральной линии аналитов в присутствии макрокомпонента (в используемом АЭС-ИСП-спектрометре приемлем разброс значений сигнала до 2%). Если оценка составляла меньше 3%, то она считалась незначительной. В табл. 2 представлены концентрации матричных элементов, при которых наблюдается увеличение интенсивности сигнала аналитических линий Se и Te (концентрация Se и Те в растворе составляла 1 мг/л). В качестве примера на рис. 1 представлены аналитические спектральные линии Se и Te в отсутствие и в присутствии Fe. В наименьшей степени величина интенсивности изменяется на линиях Se I 196.026 и Te I 214.281 нм (табл. 2), поэтому их выбрали для дальнейших исследований.

Процедура осаждения и отделения макрокомпонентов Fe, Ni, Cr, Mo, Co, Cu и W от Se, Te. В качестве осадителей использовали оксалат натрия (Na₂C₂O₄), позволяющий одновременно осаждать Co, Ni, Cu (см. уравнения (2)–(4)), и фторид натрия (NaF), осаждающий Fe, Cr в определенных условиях (уравнения (5), (6)) [23, 25]:

$$Na_2C_2O_4 + Ni^{2+} = NiC_2O_4 \downarrow + 2Na^+,$$
 (2)

$$Na_2C_2O_4 + Co^{2+} = CoC_2O_4 \downarrow + 2Na^+,$$
 (3)

$$Na_2C_2O_4 + Cu^{2+} = CuC_2O_4 \downarrow + 2Na^+,$$
 (4)

$$Fe^{3+} + 6NaF = Na_3FeF_6 \downarrow + 3Na^+, \qquad (5)$$

$$Cr^{3+} + 6NaF = Na_3CrF_6 \downarrow + 3Na^+.$$
 (6)

Предварительные исследования показали, что использование осадителя NaF позволяет частично осаждать W и Mo, вероятно, в результате образования следующих соединений [29, 30]:

$$W^{6+} + 8NaF = Na_2WF_8 \downarrow + 6Na^+,$$
 (7)

$$Mo^{6+} + 8NaF = Na_2MoF_8 \downarrow + 6Na^+.$$
 (8)

Исследовали осаждение макрокомпонентов Fe, Ni, Cr, Mo, Co, Cu и W оксалатом натрия без дополнительного использования и с использова-

аналита, нм	Относительная интенсивность	Коррекция фона (слева), нм	линия мешающего элемента (слева), нм	Коррекция фона (справа), нм	Аналитическая спектральная линия мешающего элемента (справа), нм	
Se 196.026* [26]	500 [26]	196.005	Fe I 196.014 [27]	196.050	Co I 196.040 [28]	
			Cr II 196.025 [27]			
Se 203.980 [26]	500 [26]	500 [26] 203.907		204.023	Cr II 203.990 [28]	
			Cr I 203.930 [28]			
			Te I 203.979 [28]			
Se 206.279 [27]	40 [27]	206.247	W I 206.277 [27]	206.314	W I 206.311 [27]	
			Cu II 206.249 [29]			
			Cr II 206.225 [26]			
Se 207.479 [26]	500 [26]	207.435	W II 207.463 [26]	207.523		
			Mo II 207.465 [26]			
			Ni I 207.458 [28]			
			Te I 207.474 [26]			
Te 214.281 [26]	7400000 [26]	214.268	Ta II 214.252 [26]	214.315		
			Te I 214.275 [26]			
			W II 214.251 [27]			
Te 200.202 [26]	530000 [26]	200.160	Ni I 200.182 [26]	200.227	Mo II 200.212 [26]	
Te 208.117 [26]	340000 [26]	208.073	Te I 208.103 [26]	208.159	W I 208.139 [26]	
			Fe II 208.091 [26]			
			Ni II 208.084 [26]			
			Co I 208.104 [27]			
Te 214.725 [26]	190000 [26]	214.649	W I 214.690 [26]	214.794	W II 214.731 [26]	
					Mo II 214.780 [28]	
			Fe II 214.704 [28]		Ni I 214.780 [28]	
			Co II 214.697 [28]		Fe II 214.772 [26]	
			Fe I 214.671 [28]		Mo II 214.766 [28]	
			Cu II 214.698 [27]		Co II 214.739 [26]	
			Cr II 214.719 [27]		Mo II 214.751 [27]	
Te 238.326 [26]	930000 [26]	238.276	W I 238.320 [26]	238.376	Cr I 238.333 [26]	
			Mo II 238.306 [27]		Co II 238.345 [27]	
			Fe II 238.305 [27]		Mo I 238.352 [27]	
			Fe II 238.289 [27]		W II 238.354 [27]	
			Fe II 238.324 [26]		Mo II 238.337 [26]	

Таблица 1. Сопоставление длин волн аналитических линий аналитов и линий мешающих элементов

Т

695

нием NaF. Рис. 2. иллюстрирует относительное содержание макрокомпонентов в жидкой фазе после процедуры осаждения. Как видно, при использовании только Na₂C₂O₄ (от 5 до 15 г) наблюдается практически полное осаждение Ni, Co и Си. По-видимому, в этих условиях для осаждения Fe и Cr недостаточно ионов Na⁺ и F⁻, присутствующих в растворе вследствие введения реагентов $Na_2C_2O_4$ и HF. При этом осаждение W и Mo происходит в незначительной степени (рис. 2а). Дополнительное введение при осаждении макрокомпонентов до 5 г NaF (мольное соотношение NaF : Na₂C₂O₄ \approx 1) приводит к полному удалению железа из раствора (одновременно с Со, Си и Ni). При этом наблюдается неполное осаждение хрома (в растворе остается до 40 отн. %), и практически отсутствует образование труднорастворимых соединений на основе W и Mo, о чем свидетельствует их высокое относительное содержание в растворе (рис. 2б). Введение при осаждении макрокомпонентов более 5 г NaF (мольное соотношение NaF/Na₂C₂O₄ > 1) ведет к увеличению концентраций в анализируемом растворе Co, Cu и Ni. Вероятно, это связано с протеканием конкурирующих реакций образования фторсодержащих осадков этих элементов, частичным их растворением (в кислой среде при pH \approx 1) и переходом в анализируемый раствор (см. уравнения (9)–(11)):

$$\operatorname{NiC}_{2}\operatorname{O}_{4}\downarrow + 2\operatorname{NaF} = \operatorname{NiF}_{2}\downarrow + \operatorname{Na}_{2}\operatorname{C}_{2}\operatorname{O}_{4}, \qquad (9)$$

$$\operatorname{CoC}_{2}\operatorname{O}_{4}\downarrow + 2\operatorname{NaF} = \operatorname{CoF}_{2}\downarrow + \operatorname{Na}_{2}\operatorname{C}_{2}\operatorname{O}_{4}, \quad (10)$$

$$\operatorname{CuC}_{2}\operatorname{O}_{4}\downarrow + 2\operatorname{NaF} = \operatorname{CuF}_{2}\downarrow + \operatorname{Na}_{2}\operatorname{C}_{2}\operatorname{O}_{4}.$$
 (11)

Таким образом, в оптимальных условиях (мольное соотношение NaF/Na₂C₂O₄ \approx 1) полное осаждение наблюдается только для Fe, Ni, Co, Cu, поэтому АЭС-ИСП-определение малых количеств Se и Te возможно в материалах, содержащих макроколичества Fe, Ni, Co, Cu и небольшие количества Cr, Mo, W (максимальные концентрации, при которых возможно точное определение аналитов, приведены в табл. 2).

Влияние фтороводородной кислоты на соосаждение Se, Те при отделении матричных элементов **Fe, Ni, Co, Cu.** Ранее установлено [23, 25], что для ингибирования соосаждения малых количеств As и Sb на осадках макрокомпонентов необходимо предотвращать пересыщение раствора и нивелировать процесс образования большого количества зародышей кристаллов во время формирования осадка, тем самым укрупняя их и уменьшая количество микропор и удельную поверхность. Эффективным способом понижения концентрации осаждаемого иона (предотвращение эффекта пересыщения раствора) является связывание его в комплексное соединение средней прочности. В нашем случае лигандом может быть фтороводородная кислота, успешно используемая в работах

Таблица 2. Минимальные концентрации (мг/л) Fe, Ni, Co, Cu, Cr, Mo и W в растворе, при которых наблюдается изменение интенсивности линий Se и Te

Аналитическая спектральная	Fe	Ni	Cr	Мо	Co	Cu	W
линия, нм							
Se 196.026	100	200	100	200	>200	200	100
Se 203.980	100	100	10	100	>200	100	100
Se 206.279	>200	200	100	200	200	100	>50
Se 207.479	200	100	100	50	200	100	50
Te 214.281	100	100	200	200	>200	200	200
Te 200.202	100	200	50	100	100	50	100
Te 208.116	100	200	100	100	200	100	100
Te 214.725	100	200	10	50	100	50	50
Te 238.326	10	100	10	10	10	50	10

[23, 25] для ингибирования соосаждения аналитов.

Исследовали ингибирование соосаждения Se, Те при осаждении и отделении труднорастворимых соединений Fe, Ni, Co и Cu (рис. 3). Увеличение в условиях эксперимента объема фтороводородной кислоты с 10 до 15 мл (мольное соотношение HF/(Na₂C₂O₄ + NaF) > 1) позволяет полностью осадить макрокомпоненты и существенно ингибировать потерю аналитов из анализируемого раствора. Относительное содержание Se и Te в растворе более 95%. При последующем увеличении в условиях эксперимента объема HF с 15 до 25 мл не приводит к существенным изменениям, растворения осадка не происходит.

На рис. 4 приведены аналитические линии Se I 196.026 и Te I 214.281 нм до и после отделения макрокомпонентов (Fe, Ni, Co и Cu) с помощью Na₂C₂O₄ и NaF в присутствии HF (мольное соотношение NaF/Na₂C₂O₄ \approx 1, HF/(Na₂C₂O₄ + + NaF) > 1).

Разработанная процедура осаждения больших количеств Fe, Ni, Co и Cu с помощью $Na_2C_2O_4$ и NaF в присутствии фтороводородной кислоты позволяет ингибировать соосаждение аналитов и в максимальной степени нивелировать спектральные помехи на их аналитических линиях (рис. 4).

Таким образом, при отделении макроколичеств Fe, Ni, Co и Cu с помощью 15 г Na₂C₂O₄ и 5 г NaF (NaF/Na₂C₂O₄ \approx 1) для максимального ингибирования соосаждения Se и Te в процессе необ-

Рис. 1. Аналитические спектральные линии Те I 214.281 (а), Se 196.026 нм (б): (*1*) градуировочный раствор Те, Se – 1.0 мг/л, в присутствии Fe с концентрацией 1 (*2*), 2 (*3*), 5 (*4*), 10 (*5*), 50 (*6*), 100 (*7*), 200 (*8*) мг/л.

ходимо введение от 15 до 25 мл HF с концентрацией 37.5 мас. % (HF/(Na₂C₂O₄ + NaF) > 1).

Одновременное АЭС-ИСП-определение Se и Te в металлургических материалах. Для экспериментальной проверки эффективности применения найденных условий ингибирования процесса соосаждения Se и Te при отделении от Fe, Ni, Co и Cu (мольное соотношение NaF/Na₂C₂O₄ \approx 1, HF/(Na₂C₂O₄ + NaF) > 1) использовали государственные стандартные образцы состава концентрата медного (A2371x), файнштейна медно-никелевого (ГСО 9315-2009 ФШТ-42), меди черновой (ГСО 7833-2000 МЧ-9), стали легированной

(ГСО 1193-93П СЗ9г) и стали углеродистой (ГСО 2035-84П С48а) (табл. 3). Процедура пробоподготовки стандартных образцов к АЭС-ИСП-определению Se и Te, включающая растворение в присутствии HF, осаждение и отделение мешающих элементов, описана выше в "Экспериментальной части".

Массовые доли Se и Te, найденные в стандартных образцах, практически во всех случаях совпадают в пределах случайной погрешности с аттестованными значениями. Разница между аттестованными и найденными содержаниями Se и Te не превышает нормативов, приведенных в соответ-

Рис. 2. Зависимости относительного содержания (относительно исходного) Fe, Ni, Cr, Mo, Co, Cu и W в жидкой фазе после отделения осадка от массы введенных осадителей: (a) $- Na_2C_2O_4$ без NaF; (б) - NaF, 15 г $Na_2C_2O_4$. Объем HF 15 мл (37.5 мас. %).

Таблица 3. Результаты определения содержания селена и теллура в стандартных образцах методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой

Стандартный образец	Se		Те	
	аттестовано	найдено	аттестовано	найдено
ГСО 7833-2000	0.061 ± 0.005	0.059 ± 0.009	0.0203 ± 0.0025	0.0197 ± 0.0034
МЧ-9				
ГСО 9315-2009 ФШТ-42 СОП 2371-94 A2371x	$\begin{array}{c} 0.0282 \pm 0.0007 \\ 0.038 \pm 0.001 \end{array}$	$\begin{array}{c} 0.0270 \pm 0.0045 \\ 0.039 \pm 0.004 \end{array}$	- 0.005 ± 0.001	- 0.005 ± 0.001
ГСО 1193-93П	0.213 ± 0.004	0.211 ± 0.011	_	_
С39г ГСО 2035-84П С48а	0.201 ± 0.003	0.196 ± 0.022	_	_

Рис. 3. Зависимости относительного содержания элементов в жидкой фазе (относительно исходного) от объема HF (37.5 мас. %) после отделения осадка реагентами Na₂C₂O₄ и NaF.

Рис. 4. Аналитические спектральные линии Te I 214.281 (а), Se I 196.026 нм (б) в растворах без отделения макрокомпонентов (*1*), после процедуры осаждения макрокомпонентов в присутствии фтороводородной кислоты (15 мл, 37.5 мас. %, 5 г NaF, 15 г Na₂C₂O₄) (*2*), (*3*) градуировочный раствор с концентрацией Se и Te 1 мг/л.

ствующих ГОСТах. Полученные результаты доказывают эффективность предложенной методики определения Se и Te. Предел обнаружения c_{min} аналитов при отделении от макроколичеств Fe, Ni, Co и Cu составил 1 × 10⁻³ мас. %. Точная оценка метрологических характеристик методики планируется при ее аттестации после набора необходимого количества статистических данных.

Работа выполнена в рамках Государственного задания ИМЕТ УрО РАН с использованием оборудования центра коллективного пользования "Урал-М".

СПИСОК ЛИТЕРАТУРЫ

- ГОСТ 5632-2014. Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки. М.: Стандартинформ, 2015. 48 с.
- ГОСТ Р 55375-2012. Алюминий первичный и сплавы на его основе. Марки. М.: Стандартинформ, 2013. 20 с.
- ГОСТ 1292-81. Сплавы свинцово-сурьмянистые. Технические условия. М.:Издательство стандартов, 1982. 37 с.
- 4. ГОСТ 13047.25-2002. Никель. Кобальт. Методы определения селена в никеле. М.: Издательство стандартов, 2002. 7 с.
- ГОСТ 13047.23-2014. Никель. Кобальт. Метод определения теллура в никеле. М.: Стандартинформ, 2015. 4 с.
- 6. ГОСТ 32221-2013. Концентраты медные. Методы анализа. М.: Стандартинформ, 2014. 9 с.
- ГОСТ 12363-79. Стали легированные и высоколегированные. Методы определения селена. М.: Издательство стандартов, 1979. 6 с.
- ГОСТ 1293.11-83. Сплавы свинцово-сурьмянистые. Метод определения теллура. М.: Издательство стандартов, 1984. 5 с.
- ГОСТ Р 51309-99. Вода питьевая. Определение содержания элементов методами атомной спектрометрии. М.: Стандартинформ, 2006. 20 с.
- Евдокимов И.И., Пименов В.Г., Фадеева Д.А. АЭС-ИСП анализ высокочистого мышьяка // Аналитика и контроль. 2015. Т. 19. № 1. С. 13.
- Цыганкова А.Р. Лундовская О.В. Сапрыкин А.И. Анализ соединений европия, иттрия и лантана методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой // Журн. аналит. химии. 2016. Т. 71. № 2. С. 185.
- 12. *Takada K., Ashino T.A., Itagaki T.* Determination of ultratrace amounts of elements in ultra-high-purity iron, steel, iron-chromium alloy and other alloys by spectrochemical analysis after chemical separation // Buneseki Kagaku. 2001. V. 50. № 6. P. 383.
- 13. Доронина М.С., Ширяева О.А., Филатова Д.Г., Барановская В.Б., Карпов Ю.А. Определение мышьяка,

кадмия, селена и теллура в техногенном сырье после сорбционного концентрирования на гидроксидах методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой // Заводск. лаборатория. Диагностика материалов. 2013. Т. 79. № 8. С. 3.

- 14. Доронина М.С., Ширяева О.А., Филатова Д.Г., Петров А.М., Дальнова О.А., Барановская В.Б., Карпов Ю.А. Сорбционно-атомно-эмиссионное определение As, Bi, Sb, Se и Те в возвратном металлсодержащем сырье // Заводск. лаборатория. Диагностика материалов. 2013. Т. 79. № 11. С. 3.
- Thangavel S., Dash K., Dhavile S.M., Sahayamn A.C. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES) // Talanta. 2015. V. 131. P. 505.
- Wiltsche H., Brenner I.B., Prattes K., Knapp G. Characterization of a multimode sample introduction system (MSIS) for multielement analysis of trace elements in high alloy steels and nickel alloys using axially viewed hydride generation ICP-AES // J. Anal. At. Spectrom. 2008. V. 23. P. 1253.
- Welna M., Szymczycha-Madeja A., Pohl P. Critical evaluation of strategies for single and simultaneous determinations of As, Bi, Sb and Se by hydride generation inductively coupled plasma optical emission spectrometry // Talanta. 2017. V. 167. P. 217.
- Wiltsche H., Brenner I.B., Knapp G., Prattes K. Simultaneous determination of As, Bi, Se, Sn and Te in high alloy steels—re-evaluation of hydride generation inductively coupled plasma atomic emission spectrometry // J. Anal. At. Spectrom. 2007. V. 22. P. 1083.
- 19. *Wickstrøm T., Lund W., Bye R.* Determination of arsenic and tellurium by hydride generation atomic spectrometry: minimizing interferences from nickel, cobalt and copper by using an alkaline sample solution // Analyst. 1995. V. 120. P. 2695.
- Karbasia M.-H., Jahanparast B., Shamsipur M., Hassan J. Simultaneous trace multielement determination by ICP-OES after solid phase extraction with modified octadecyl silica gel // J. Hazard. Mater. 2009. V. 170. P. 151.
- Sansonetti J.E., Martin W.C. Handbook of basic atomic spectroscopic data // J. Phys. Chem. Ref. Data. 2005. V. 34. P. 1559.
- 22. *Schierle C., Thorne A.P.* Inductively coupled plasma Fourier transform spectrometry: A study of element spectra and a table of inductively coupled plasma lines // Spectrochim. Acta B. 1995. V. 50. P. 27.
- 23. Майорова А.В., Мельчаков С.Ю., Окунева Т.Г., Воронцова К.А., Машковцев М.А. Изучение процесса соосаждения мышьяка и сурьмы при отделении макроколичеств железа, хрома в виде Na₃FeF₆, Na₃CrF₆ // Аналитика и контроль. 2017. Т. 21. № 3. С. 281.
- 24. Майорова А.В., Белозерова А.А., Мельчаков С.Ю., Машковцев М.А., Суворкина А.С. Шуняев К.Ю.

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 76 № 8 2021

Определение содержания мышьяка и сурьмы в ферровольфраме методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой // Журн. аналит. химии. 2019. Т. 74. № 7. Приложение. С. S24.

- 25. *Майорова А.В., Белозерова А.А., Окунева Т.Г., Шуня-ев К.Ю*. Процедура осаждения железа, хрома, молибдена, вольфрама при определении мышьяка и сурьмы в легированной стали // Журн. аналит. химии. 2020. Т. 75. № 5. С. 413.
- 26. *NIST Atomic Spectra Database Lines Form*: https://physics.nist.gov/PhysRefData/ASD/lines_form.html (23.02.2021).

- 27. Зайдель А.Н., Прокофьев В.К., Райский С.М., Шрейдер Е.Я. Таблицы спектральных линий. 4-е изд. М.: Наука, 1977. 800 с.
- 28. *ICP Guide*: https://chem.washington.edu/sites/chem/ files/documents/facilities/icptraining_000.pdf (23.02. 2021).
- 29. *Королев Ю.М., Тимофеев А.Н.* Короткий фторидный цикл в технологии вольфрама // Известия вузов. Цветная металлургия. 2020. № 3. С. 33.
- 30. *Амелина Г.Н.* Учебный курс. Химия редких элементов. Mo-W. https://portal.tpu.ru/SHARED/a/AME-LINA/rabota/Tab4/Tab/Tab/Mo_and_W.pdf (23.02. 2021).