УДК 543.422.8

ФАКТОРЫ, ВЛИЯЮЩИЕ НА РЕЗУЛЬТАТЫ ОПРЕДЕЛЕНИЯ ФТОРА В ГОРНЫХ ПОРОДАХ РЕНТГЕНОФЛУОРЕСЦЕНТНЫМ МЕТОДОМ С ИСПОЛЬЗОВАНИЕМ ПРЕССОВАННЫХ ТАБЛЕТОК

© 2022 г. Т. Г. Кузьмина^{*a*, *}, М. А. Тронева^{*a*}, Т. В. Ромашова^{*a*}

^{*а*}Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук ул. Косыгина, 19, Москва, 119991 Россия **e-mail: kuzminatg@inbox.ru* Поступила в редакцию 05.07.2021 г. После доработки 24.11.2021 г. Принята к публикации 24.11.2021 г.

Изучена возможность определения фтора в горных породах рентгенофлуоресцентным методом с использованием в качестве излучателей прессованных таблеток. Рассмотрены наиболее важные факторы, влияющие на результаты определения фтора: эффект обволакивания; систематические и случайные погрешности, связанные с измерением интенсивности линии фтора и пробоподготовкой; зависимость интенсивности $FK\alpha$ -линии от матричного состава пробы и от соединения, в состав которого входит этот элемент. Полученные результаты оценили с точки зрения допустимых погрешностей. Показано, что для прессованных таблеток невозможно использование единого градуировочного уравнения для горных пород с различными фторсодержащими минералами.

Ключевые слова: рентгенофлуоресцентный анализ, определение фтора, эффект обволакивания, матричные эффекты.

DOI: 10.31857/S0044450222060093

Фтор является носителем важной информации о процессах, происходящих в магматических системах. Летучие компоненты, в состав которых входит фтор, находятся в подчиненных количествах по отношению к петрогенным элементам. Однако "их химическая активность вызывает целый ряд существенных изменений в физико-химических свойствах магматического расплава, например, рост кристаллизационной способности минералов, понижение вязкости, снижение температуры кристаллизации, уменьшение по-верхностного натяжения и т.д." [1]. Среднее содержание фтора по Виноградову [2] в земной коре составляет 660 × 10^{-4} мас. %, при этом оно колеблется от 100×10^{-4} мас. % в ультраосновных породах до 1400×10^{-4} мас. % в агпаитовых нефелиновых сиенитах и может достигать 3.5% и более во фторапатитах. Основными минералами, содержащими фтор, которые встречаются в значительных количествах в горных породах, являются: флюорит CaF₂, фторапатит Ca₁₀(PO₄)₆F₂ и криолит Na₃AlF₆.

Для определения фтора используют преимущественно потенциометрию и ионную хроматографию, но при этом требуется разложение пробы. Ведутся поиски методов, позволяющих определять содержание фтора непосредственно в исходном образце без трудоемкой операции пробоподготовки. Одним из них является метод рентгенофлуоресцентного анализа (РФА), который давно занял прочное место среди других физико-химических методов определения химического состава вещества. В большинстве геологических институтов применение РФА лля определения содержания петрогенных элементов стало традиционным. Вместе с тем выпускаемые в настоящее время спектрометры, благодаря появлению кристалл-анализаторов, эффективно работающих в длинноволновой области спектра, позволяют определять и более легкие элементы, включая фтор. Однако практика использования РФА для определения фтора в горных породах, судя по литературным данным, не получила широкого распространения. Следует упомянуть некоторые работы, в которых при определении фтора использовали способ сплавления пробы с тетраборатом лития. В работе [3] определяли фтор в шлаках сталелитейной промышленности. Диссертация [4] посвящена определению петрогенных элементов и фтора в рудах. В работе [5] получена градуировочная зависимость для определения фтора с использованием таких горных пород, как гранит, цеолит, сиенит и пр.

В работах [6–9] авторы использовали для РФА прессованные таблетки из порошкового материала. Этот способ привлекает своей простотой и низкой стоимостью. Положительные результаты определения фтора, входящего в состав криолита в алюминиевой матрице, получены в работе Джехта [6]. Фтор в фонолитах с помощью РФА определяли Шефер и Медуна [7]. Образцы готовили в виде прессованных таблеток с добавления 20% воска. Иорданис и соавт. [8] сообщили об определении фтора в буром угле. Однако Газулла с соавт. [9] на основе РФА полевых шпатов, полевошпатоидов, колеманитов и улекситов сделали вывод, что более точные результаты определения бора и фтора в геологических образцах достигаются методами атомно-эмиссионной спектрометрии с индуктивно связанной плазмой или потенциометрии.

В наиболее подробном обзоре работ в рассматриваемой области [10] также отмечено, что РФА редко используется на практике для определения фтора в горных породах и почвах.

Сложившуюся ситуацию можно объяснить рядом факторов, влияющих на погрешность определения фтора: эффектами микроабсорбционной неоднородности, одним из которых является обволакивание; проблемами, связанными с измерением интенсивности F $K\alpha$ -линии; и матричными эффектами, в том числе особенностями возбуждения рентгеновской флуоресценции фтора.

Смагунова и соавт. отмечали [11], что при истирании пробы может происходить обволакивание зерен, содержащих атомы фтора, другими компонентами смеси, которые истираются быстрее зерен, содержащих фтор, и это приводит к снижению интенсивности флуоресцентного излучения фтора. Влияние этого эффекта можно снизить, отмывая пробу этанолом. В более ранней работе [12] на примере Zn, Pb, Mn установлено, что даже при "мокром" истирании порошка с добавлением этанола не удается полностью освободиться от агрегирования и обволакивания крупных частиц более мелкими.

Проблемы, связанные с измерением интенсивности флуоресцентного излучения фтора, подробно рассмотрены в работе Плесова [10]. Автор на примере многочисленных экспериментов с использованием различных фторсодержащих соединений показал, что интенсивность флуоресценции фтора в почвах, горных породах, минералах и синтетических химикатах может меняться при повторных измерениях. Это относится как к сплавленным образцам, так и к спрессованным таблеткам. Сплавленный апатит, спрессованный грунт и сплавленный флюорит демонстрируют отчетливое увеличение интенсивности фтора; прессованный апатит, K₂TiF₆, топаз и грейзен – умеренное увеличение; сплавленный топаз и прессованный флюорит – стабильную интенсивность флуоресценции; и, наконец, интенсивность $FK\alpha$ -линии прессованного криолита резко уменьшается. После анализа целого ряда факторов, которые могут вызывать подобные тренды, в том числе влияние загрязнений поверхности образца, уровня вакуума в спектральной камере, величины тока рентгеновской трубки и т.д., автор работы [10] пришел к заключению, что изменение интенсивности линии *FK*α связано с эффектом радиолиза. Сделан вывод о том, что этот эффект является решающим препятствием в рентгенофлуоресцентной спектрометрии фтора в горных породах и почвах при использовании как сплавленных, так и прессованных излучателей.

Влияние матричных эффектов на интенсивность рентгеновской флуоресценции фтора исследовано в работе [13]. Измерения проводили с использованием таблеток с добавлением воска в качестве связующего вещества. Установлено, что измеренные интенсивности линии $FK\alpha$ при сопоставимом содержании фтора в системах Na₃AlF₆–NaCl и K₂TaF₇–K₂ZrF₆–NaCl отличаются в пять раз. После попыток объяснить это различие авторы пришли к выводу, что чем больше "тяжелых" элементов содержится в пробе, тем труднее оценить степень влияния эффектов ослабления и усиления на интенсивность флуоресцентного излучения фтора.

Нами ранее [14] экспериментально изучены особенности возбуждения флуоресценции линии $FK\alpha$ в присутствии петрогенных элементов (Na, Mg, Al, Si, Ca, Ti, Mn, Fe). Использовали смеси NaF и CaF₂ с оксидами петрогенных элементов в соотношении 1:1. Установлено, что наибольший вклад в интенсивность линии FKα за счет дополнительного возбуждения флуоресцентным излучением вносит натрий. Изучено суммарное влияние фото- и Оже-электронов перечисленных выше элементов на интенсивность линии $FK\alpha$. Зависимость полученного в этом случае прироста интенсивности флуоресцентного излучения фтора в пересчете на один процент содержания соответствующего петрогенного элемента от его атомного номера показала, что максимум приходится на область $Z \approx 20-22$. Так как в работе отсутствовали данные по P, S и K, нельзя исключить вероятности того, что реальный максимум может быть смещен в сторону более легких элементов. Следует отметить, что этот эффект оказывает более значительное влияние на интенсивность флуоресценции фтора по сравнению с эффектом ослабления.

Экспериментально также установлено [14], что интенсивность линий $FK\alpha$ в смесях NaF с оксидами петрогенных элементов примерно в 2–2.5 раза превосходит интенсивность линий $FK\alpha$ для смесей флюорита (CaF₂) с этими же оксидами. В смесях NaF + CaCO₃ и CaF₂ + Na₂CO₃ выявлена та же закономерность, хотя элементный состав (мас. %) и коэффициенты ослабления линии $FK\alpha$ в этих двух случаях практически совпадают. Сделан вывод, что отличительной особенностью фтора является зависимость выхода флуоресценции от вида химического соединения, в состав которого входит этот элемент.

Авторы работ [5, 10, 13] экспериментально также установили, что предпочтительнее строить отдельные градуировки для каждого фторсодержащего минерала.

Очевидно, что фтор является весьма проблемным элементом в РФА, особенно при использовании прессованных таблеток. Однако преимущества этого метода анализа настолько привлекательны, что целесообразно продолжать поиск вариантов решения этой задачи. В любом случае новые и неожиданные проблемы, возникающие при определении легких элементов рентгенофлуресцентным методом, должны стимулировать как попытки их теоретических интерпретаций на основе дальнейшего развития теории взаимодействия рентгеновского излучения с веществом, так и поиск оригинальных экспериментальных подходов к их решению.

Цель данной работы заключалась в экспериментальной оценке влияния на интенсивность линии *FK* α при использовании прессованных таблеток эффекта обволакивания, погрешностей, связанных с измерением интенсивности флуоресцентного излучения фтора и пробоподготовки, а также матричного состава пробы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали рентгеновский спектрометр Axios Advanced (PANalytical B.V., Нидерланды), оснащенный рентгеновской трубкой с Rh-анодом и толщиной окна 75 мкм, системой регистрации по Соллеру, кристаллами-анализаторами LiF200, LiF220 PE002-C, Ge111-C, PX1, коллиматорами, пропорциональными газоразрядными детекторами в проточном и отпаянном вариантах и сцинтилляционным счетчиком. Условия измерения интенсивности линии FKα приведены ниже. Фон измеряли с длинноволновой стороны линии.

Линия	Режим рентгеновской трубки	Кристалл	Коллиматор	Пик линии, град	Фон, град
F <i>Κ</i> α	30 мА/100 кВ	PX1	550 мкм	43.1050	+1.9824

Применяли стандартные образцы (**CO**) горных пород с содержанием фтора от 0.03 до 3.5%, а также природный флюорит и химические реактивы NaF, CaF₂, Na₃AlF₆. В качестве вмещающих матриц использовали базальт с содержанием фтора ниже предела обнаружения и химический реактив SiO₂. Пробы для анализа готовили путем прессования таблеток как с полистиролом (0.3 г пробы и 0.06 г C₈H₈), так и без добавления связующего вещества на подложке из борной кислоты. В последнем случае использовали 0.3 г материала пробы. Диаметр излучателя составлял 20 мм.

Распределение фтора по срезу таблетки получали с помощью сканирующего электронного микроскопа MIRA3 фирмы "TESCAN" (Чехия) с детектором EDS OXFORD instruments X-MAS-80.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Эффекты микроабсорбционной неоднородности. Для снижения влияния эффекта обволакивания на интенсивность линии фтора необходимо оценить и по возможности устранить причины, его вызывающие. Изучили влияние на интенсивность линии $FK\alpha$ связующего вещества, часто применяемого при прессовании излучателей для РФА. В качестве такого компонента мы использовали полистирол (C₈H₈). Соотношение по массе пробы к полистиролу составляло 5 : 1. Использовали пробы с высоким содержанием фтора: NaF и CaF₂. В табл. 1 приведены средние значе-

ния интенсивностей линии FKα, полученные на таблетках после "сухого" истирания пробы с полистиролом (I_{cvx}) и промывания пробы после "сухого" истирания (Іпр). В последнем варианте в растертую пробу добавляли этанол, пробу перемешивали в течение 5 мин стеклянной палочкой без приложения усилий, высушивали, собирали со стенок ступки и прессовали в таблетку. Так как в первых двух образцах отсутствуют другие компоненты, кроме фторсодержащих соединений, можно утверждать, что эффект обволакивания приводит к потере как минимум 10% интенсивности и обусловлен именно полистиролом. Вероятнее всего, это относится и к другим связующим, в частности к воску, который также широко применяют при прессовании таблеток [7, 10]. Аналогичные измерения для пробы горной породы с небольшим содержанием фтора (<1%) показали, что после промывания интенсивность увеличивается на 16%. Хотя в данном случае обволакивание фторсодержащих частиц может вызывать не только полистирол, но и компоненты, входящие в состав самой пробы, можно утверждать, что влияние эффекта обволакивания, обусловленного связующим веществом, значительно.

Смагунова и соавт. [11] использовали двухслойные таблетки на подложке из борной кислоты без применения связующего материала. Нами рассмотрены четыре способа приготовления двухслойных таблеток. В первом способе использовали "сухое" истирание порошковых проб; во

КУЗЬМИНА и др.

Вещество	I _{cyx.}	I _{np.}	$I_{\rm np}/I_{\rm cyx}$
NaF	4.09 ± 0.13	4.64 ± 0.12	1.13
CaF ₂	1.35 ± 0.06	1.46 ± 0.05	1.08
Горная порода	0.028 ± 0.002	0.033 ± 0.002	1.16

Таблица 1. Интенсивности (тыс. имп/с) линии FKα после "сухого" истирания с добавлением полистирола и промывания этанолом после "сухого" истирания

Таблица 2. Интенсивности (тыс. имп/с) линии F*K*α при различных способах пробоподготовки и их отношение к интенсивности линии при "сухом" истирании пробы

Проба	"Сухое" и	стирание	Промыван "сухого" и	ние после стирания	"Мокрое" истирание		Промывание после "мокрого" истирания	
	I _{cyx}	$I_{\rm cyx}/I_{\rm cyx}$	I _{сух пр}	$I_{\rm cyx np}/I_{\rm cyx}$	I _{мокр}	$I_{\rm mokp}/I_{\rm cyx}$	I _{мокр пр}	$I_{\rm мокр\ пp}/I_{\rm cyx}$
1	0.035 ± 0.003	1.0	0.037 ± 0.003	1.06	0.035 ± 0.002	1.0	0.038 ± 0.003	1.08
2	0.057 ± 0.004	1.0	0.064 ± 0.003	1.12	0.046 ± 0.003	0.81	0.064 ± 0.004	1.12

втором – промывание пробы этанолом после ее "сухого" истирания; в третьем способе использовали "мокрое" истирание, в четвертом – промывание пробы после "мокрого" истирания. Оценили вклад, обусловленный эффектом обволакивав кажлом из способов. ния. Результаты сопоставления интенсивности FKα-линии, полученные для двух проб горных пород с различным содержанием фтора, представлены в табл. 2. Измерение для каждой пробы проводили три раза и использовали средние значения. Из табл. 2 следует, что изменение значений интенсивности линии фтора составляет от 0 до 12% (в зависимости от выбранного способа подготовки). Наименьшее влияние эффекта обволакивания соответствует второму и четвертому способам, т.е. промыванию этанолом после "сухого" или "мокрого" истирания. Следует отметить, что и в этих случаях нет гарантии полного отсутствия эффекта обволакивания, но снижение его влияния является бесспорным.

Таким образом, в данной работе экспериментально подтверждено наличие эффекта обволакивания при РФА фтора, который может приволить к уменьшению значения интенсивности линии FKα на 10% и более. Вклад эффекта можно снизить путем исключения связующего вещества и применения промывания пробы этанолом после ее истирания. Однако излучатели с использованием связующего вещества – более прочные и долговечные по сравнению с двухслойными таблетками, приготовленными на борной кислоте. В связи с этим мы использовали связующее вещество, но с промыванием пробы этанолом после ее "сухого" истирания. В этом случае отмечена наибольшая стабильность значений интенсивности флуоресцентного излучения фтора.

Погрешности измерения интенсивности и пробоподготовки. Для оценки влияния эффекта, связанного с изменением интенсивности линии FK α при многократном повторении измерений на прессованных таблетках, использовали схему экспериментов, предложенную в работе [10]. Выполнили по 10 измерений на прессованных таблетках из флюорита CaF₂ (чистый природный с полистиролом), криолита Na₃AlF₆ (с полистиролом и без полистирола на борной кислоте) и СО апатитового концентрата (АК) (с полистиролом). Зависимости нормированных значений интенсивности FKα-линии (отношения к результату первого измерения) от порядкового номера измерения (измерения проведены в течение одного рабочего дня) приведены на рис. 1. Как и в работе [10], флюорит показывает стабильное значение интенсивности флуоресцентного излучения линии FKα; на апатите интенсивность увеличивается. На криолите интенсивность фтора не уменьшается, как в работе [10], а увеличивается со временем как на таблетках, спрессованных с полистиролом, так и без связующего вещества на борной кислоте.

Распределение фтора в поперечном разрезе таблетки после многократных экспозиций в рентгеновском спектрометре исследовали с помощью сканирующего электронного микроскопа. Использовали образец апатитового концентрата, содержащий 3.14% F, после увеличения интенсивности линии FK α на 20%. Съемку проводили в центре таблетки, на периферии и в средней точке. Все изображения оказались идентичными. Одно из них (в центре таблетки) приведено на рис. 2. Как видно, градиент распределения фтора от центра к поверхностям таблетки отсутствует, распределение фтора равномерно.

Проведенные исследования не позволяют сделать окончательный вывод о природе эффекта, связанного с изменением значений интенсивности при повторяющихся измерениях флуоресценции фтора. Однако его вклад в некоторых случаях составляет более 10%, что может приводить к систематическим погрешностям анализа. Использование первоначальных значений интенсивно-

648

Рис. 1. Интенсивность линии $FK\alpha$ для десяти последовательных измерений апатита (*I*), криолита с полистиролом (*2*), криолита на борной кислоте (*3*) и флюорита (*4*).

сти, как показали наши эксперименты, позволяет добиться минимальной погрешности измерений. Кроме того, чтобы не подвергать пробу длительному облучению, сократили программу определения фтора (включены только "мешающие" петрогенные элементы), и ее продолжительность составила 6 мин.

В дальнейшем для оценки погрешности измерений использовали три первых значения измеренной интенсивности линии F*K*α (с учетом фона).

В общем случае случайная погрешность РФА определяется погрешностями пробоподготовки и измерения интенсивности на данном приборе при выбранных условиях анализа. Для расчета погрешностей, обусловленных действием этих факторов, и определения оптимального времени счета импульсов ни линии FKα нами выполнены измерения по схеме однофакторного дисперсионного анализа. Использовали прессованные таблетки с полистиролом (с промыванием). Так как в горных породах содержание фтора может меняться в довольно широких пределах, выбрали четыре диапазона, для каждого из которых подобрали соответствующий СО: 1) <0.05% (Му-3), 2) от 0.05 до 0.1% (ООКО-201), 3) от 0.1 до 1% (AP), 4) >1% (Mica-Mg). Из каждой пробы изготовили по три излучателя, и интенсивность линии FKα на каждом из них измеряли по три раза. Для проб первого и второго диапазонов измерения проводили при четырех временах экспозиции: 10, 20, 30 и 60 с, а для третьего и четвертого – при трех: 20, 30, 60 с. Выполнили расчеты для каждой экспозиции. Рассеяние значений интенсивности линии FKα вокруг ее среднего значения для каждой пробы определяет повторяемость (сходимость) измерений, связанную со статистической природой процесса и стабильностью работы аппаратуры, и характеризуется дисперсией $(s_{_{\rm ИЗM}}^2)$ или коэффициентом вариации $V_{_{\rm ИЗM}}$. Рассеяние средних значений интенсивностей, рассчитанных по трем измерениям каждой из трех параллельных проб, по отношению к их общему

товки и также характеризуется дисперсией (s_{nn}^2) и коэффициентом вариации (V_{nn}) (табл. 3).

среднему определяет погрешность пробоподго-

Так как число степеней свободы, для которых рассчитывали дисперсии пробоподготовки для проб с различным содержанием фтора, при разных временах экспозиции одинаково (f = 2), то

Рис. 2. Изображение распределения фтора в поперечном сечении таблетки, полученное на сканирующем электронном микроскопе.

Диапазон содержания фтора	Время, с	$s_{\mu_{3M}cp}^2 \times 10^6$	G _{max}	V _{изм} , %	$s^2_{\Pi\Pi} \times 10^7$	V ₁₁₁ ,%	$V_{\Sigma}, \%$
<0.05%	10	2.93	0.48	29.15	3.37	19.96	35.34
	20	1.54	0.81	19.64	2.31	24.75	31.59
	30	1.07	0.49	17.98	0.225	20.81	27.52
	60	0.37	0.55	10.5	3.75	20.42	22.96
0.05-0.1%	10	0.846	0.65	10.86	1.41	14.34	17.99
	20	0.435	0.58	7.5	1.69	12.43	14.52
	30	0.406	0.6	6.89	0.544	12.95	14.67
	60	0.398	0.57	6.0	0.609	12.63	13.68
0.1-1%	20	3.30	0.74	4.49	6.34	2.98	5.39
	30	1.85	0.5	3.34	2.86	2.94	4.45
	60	0.537	0.66	1.81	7.03	2.96	3.48
>1%	20	9.05	0.40	2.96	65.2	1.18	3.19
	30	1.96	0.66	1.42	38.7	1.22	1.87
	60	1.51	0.66	1.29	61.7	1.25	1.79

Таблица 3. Результаты дисперсионного анализа

для оценки однородности этих дисперсий можно воспользоваться критерием Кохрена, который основан на законе распределения отношения максимальной выборочной дисперсии G_{max} к сумме сравниваемых дисперсий:

$$G_{\max} = s_{\max}^2 / (s_1^2 + s_2^2 + s_3^2 + s_4^2 + \dots + s_m^2)$$

где *m* –число сравниваемых дисперсий (*m* = 14).

Расчетное значение G_{max} с учетом всех дисперсий выявило их однородность, так как $G_{\text{max}} =$ $= 0.32 < G_{\text{max}} (0.05, 2, 14) = 0.34$. В этом случае для расчета коэффициента вариации, характеризующего погрешность пробоподготовки в каждом конкретном случае, можно использовать общее среднее значение дисперсий для данных измерений $s_{\text{ср}}^2 = 1.563 \times 10^{-6}$. Очевидно, что эта погрешность, выраженная в относительных единицах (коэффициент вариации), значительна для проб первого и второго диапазонов. Это объясняется низкой скоростью счета интенсивности при содержании фтора менее 0.1%, которая составляет единицы и десятки импульсов в секунду.

Однородность дисперсий, характеризующих погрешность измерения интенсивности, оценивали для всех СО в отдельности для каждой из экспозиций. По критерию Кохрена сравнивали дисперсии, получение для каждой из трех параллельных проб. Полученные расчетные значения G_{max} представлены в табл. 4. Так как все $G_{max} < G_{max}$ (0.05, 2, 3) = 0.87, то сравниваемые дисперсии однородны, т.е. можно использовать среднее значение дисперсии для всех интервала содержания и всех экспозиций. В табл. 4 представлены средние значения дисперсий и коэффициентов вариации, характеризующие погрешность измерения интенсивности при различных временах измерений для всех СО. На рис. 3 показана зависимость коэффициента вариации ($V_{\rm изм}$) от времени экспозиции для проб с различным содержанием фтора. Очевидно, что для проб с содержанием фтора более 0.1% можно ограничиться экспозицией 40 с, так как погрешность измерения интенсивности принимает постоянное значение. Для более низких содержаний: <0.1% и в особенности <0.05% время измерения должно составлять не менее 60 с. Эту экспозицию выбрали для программы определения фтора в образцах горных пород.

Общая случайная погрешность анализа определяется как сумма дисперсий:

$$s_{\rm cymm}^2 = s_{\rm H3M}^2 + s_{\rm fiff}^2$$
.

или в относительных единицах:

$$V_{\rm cymm}^2 = V_{\rm M3M}^2 + V_{\rm MIT}^2.$$

В табл. 4 приведены значения суммарных и допустимых (V_{100}), регламентируемых для анализов третьей категории классификации [15], коэффициентов вариации. Видно, что при содержании фтора >0.1% случайные погрешности анализа, обусловленные пробоподготовкой и статистической природой интенсивности рентгеновского излучения, не превосходят допустимые. Следует еще раз заметить, что высокие погрешности измерений и пробоподготовки для низких содержаний фтора обусловлены низкими значениями скорости счета и связаны со статистическим характером излучения. Чтобы снизить эти погрешности, можно увеличить диаметр излучателя. Но это, в свою очередь, потребует более значительного количества материала как стандартных образцов, так и проб.

Содержание фтора, %	СО	V _{изм} , %	<i>V</i> _{ΠΠ} , %	$V_{\Sigma}, \%$	$V_{ m don},\%$
< 0.05	My-3	10.5	20.42	22.96	20
0.05-0.1	OOKO-201	6.0	12.63	13.68	17
0.1-1.0	AP-1	1.81	2.96	3.48	14-8
>1.0	MICA-MG	1.29	1.25	1.79	8-6.5

Таблица 4. Случайные погрешности анализа и их суммы для фтора при экспозиции 60 с

Погрешности анализа, связанные с градуировкой. Погрешность определения элементов рентгенофлуоресцентным методом, которая зависит от качества полученной градуировочной зависимости, определяется отклонением средних результатов анализа от их истинного значения. Для учета влияния матрицы можно использовать способ α-коррекции, алгоритм которого входит в пакет программ SUPER Q. Содержания компонентов рассчитывают по формулам:

$$c_i = b_i + d_i I_{i \mu c \pi p},$$

где $I_{i \text{ испр}} = I_i(1 + \sum_{i=1}^{\infty} \alpha_{im} I_m); c_i$ – содержание *i*-го элемента в пробе; I_i – измеренная интенсивность характеристического излучения *i*-го элемента (за вычетом фона); I_m – измеренные интенсивности "мешающих" элементов, входящих в состав пробы; b_i , d_i и α_{im} – коэффициенты, определяемые с помощью стандартов. Программа SUPER Q позволяет также учитывать наложение линий.

Интенсивность линии FKα существенно зависит от присутствующих в пробе петрогенных элементов и их содержания. Матричный эффект в этом случае, в первую очередь, связан с возбуждением линии фтора как флуоресцентным излучением этих элементов, так и их фото- и Оже-электронами. Этот эффект играет более значительную роль по сравнению с эффектом ослабления излучения. Влияние этих двух разнонаправленных факторов можно учесть с помощью уравнения αкоррекции. Способ же фундаментальных параметров не учитывает особенности возбуждения флуоресцентного излучения фтора и не может быть использован при его определении как в прессованных таблеток, так и в сплавленных образцах.

И, наконец, как отмечено выше, выход флуоресценции фтора зависит от вида соединения, в состав которого он входит, т.е. от фторсодержащего минерала в горной породе. И этот фактор невозможно учесть с помощью единого градуировочного уравнения. Тем не менее, используя имеющиеся СО с известным содержанием фтора, мы получили градуировочную зависимость, погрешность которой оценивается средним стандартным отклонением (s) 0.02%. Предел обнаружения составил 0.05%. Надо признать, что при определении фтора в горных породах с применением полученной градуировки не может быть полной уверенности в достоверности полученных результатов. Использовали стандартные образцы различной природы, но, к сожалению, их минеральный состав, включая фторсодержащие минералы, как правило, неизвестен.

Выше отмечено, что многие авторы приходили к выводу о необходимости построения отдельных градуировок для каждого фторсодержащего минерала при использовании прессованных таблеток. Нами получены градуировки для основных фторсодержащих соединений: природного флюорита, стандартного образца апатита (АК) и синтетического криолита. В качестве матриц использовали базальт (с содержанием фтора ниже пределов обнаружения) и кремнезем. Содержание фтора в пробах менялось от 0.1 до 5%. С помощью уравнения α-коррекции для флюорита и апатита получили единое градуировочное уравнение для двух вмещающих матриц. Использовали поправки на Mg, Si, P, S и учли наложение линии Fe $L\alpha$. Погрешность градуировки составила 0.18%. Градуировка для криолита, входящего в состав также двух матриц, характеризуется значением s 0.11%. Использовали поправку на натрий и учли наложение линии FeL α . Полученные графики представлены на рис. 4.

Получить общую градуировочную зависимость для всех трех соединений оказалось невозможным. Чтобы воспользоваться градуировками

Рис. 3. Зависимость погрешности измерения интенсивности ($V_{\mu_{3M}}$, %) от времени экспозиции. 1 - My-3, 2 - OOKO-201, 3 - AP, 4 - Mica-Mg.

Рис. 4. Градуировочные зависимости для определения фтора, полученные на образцах криолита (*1*) и флюорита с апатитом (*2*).

для этих основных фторсодержащих минералов, необходима информация о том, какой из них входит в состав пробы. Кроме того, помимо этих основных фторсодержащих минералов имеется достаточно большое количество других.

* * *

Таким образом, определение фтора в горных породах из прессованных таблеток с помощью РФА на данный момент является трудной задачей. Значительна погрешность, связанная с эффектом обволакивания. Наличие этого эффекта нельзя заранее предсказать и невозможно от него полностью освободиться, но можно снизить его влияние, промывая перед прессованием пробы в этаноле. Погрешности анализа, связанные с низким выходом флуоресценции в длинноволновой области спектра, а также влияние возможных трендов в изменении значений интенсивности при повторных измерениях линии FKα могут быть в какой-то степени минимизированы. Однако получение единого градуировочного уравнения для всех типов горных пород, в состав которых входят разные фторсодержащие минералы, невозможно. Это связано с необходимостью учета вида химического соединения, в состав которого входит фтор, так как этим определяется выход его флуоресценции. Этот эффект невозможно учесть, используя существующие способы расчета содержаний по данным РФА, в том числе эмпирическую αкоррекцию и способ фундаментальных параметров. Для каждого соединения фтора требуется построение отдельной градуировочной зависимости. Для этого необходимо располагать соответствующими наборами СО, а при определении фтора в пробе горной породы — информацией о ее минеральном составе, что не всегда представляется возможным. Кроме того, если в состав пробы входят различные фторсодержащие минералы, то задача определения

фтора из прессованных таблеток становится еще более сложной.

СПИСОК ЛИТЕРАТУРЫ

- 1. Когарко Л.Н., Кригман Л.Д. Фтор в силикатных расплавах и магмах. М.: Наука, 1984. 125 с.
- 2. Виноградов А.П. Среднее содержание химических элементов в горных породах // Геохимия. 1962. № 7. С. 555.
- 3. Sato K., Tanaka I., Otssuki T. X-ray fluorescence analysis in the X-ray region of 0.4 to 7 nm: Application to determination of fluorine in slags // X-Ray Spectrom. 1979. V. 8. № 9. P. 68.
- 4. Симаков В.А. Рентгенофлуоресцентный аналих руд и продуктов их переработки при разведке месторождений. Дис. ... докт. техн. наук. Москва, ВИМС, 2000. 252 с.
- Gazulla F., Rodrigo M., Orduña M., Ventura M.J. Fluorine determination in glasses and glazes by WD-XRF // Eur. J. Glass Sci. Technol. A: Glass Technol. 2015. V. 56. № 3. P. 95.
- Jecht U. Quantitative fluorine determination by X-ray fluorescence analysis // Chemiker-Zeitung. 1972. V. 96. № 2. P. 104.
- Schäfer H.P., Meduna J.U. Routine determination of fluorine by XRF-analysis // Fresenius Z. Anal. Chem. 1987. V. 326. № 6. P. 558.
- Iordanis A., Georgakopoulos A., Fillippidis A., Kassoli– Fournraki A. A correlation study of elements in lignite and fly ash generated in a power station // Int. J. Environ. Anal. Chem. 2001. V. 79. № 2. P. 133.
- 9. *Gazulla M.F., Gomez M.P., Barba A., Orduña M.* Chemical characterisation of geological raw materials used in traditional ceramic // Geostand. Geoanal. Res. 2004. V. 28. № 2. P. 203.
- 10. *Pleβow A*. X-ray-induced alteration of specimens as crucial obstacle in XRF spectrometry of fluorine in rocks and soils // X-ray Spertrom. 2013. V. 42. № 1. P. 19.
- Смагунова А.Н., Широколобова И.С., Козлов В.А., Коржова Е.Н., Кривченко О.С., Шаулина Л.П., Финкельштейн А.Л. Разработка стандартного образца предприятия состава цементной сырьевой смеси // Стандартные образцы. 2014. № 3. С. 92.
- Коржова Е.Н., Ставицкая М.В., Белозерова О.Ю. Хаптагаева Е.А., Смагунова А.Н. Изучение эффекта микроабсорбционной неоднородности при рентгенофлуоресцентном анализе ультрамелких частиц // Журн. аналит. химии. 2011. Т. 66. № 2. С. 175. (Korzhova E.N., Stavitskaya M.V., Belozerova O.Yu., Khaptagaeva E.A., Smagunova A.N. Effect of microabsorption heterogeneity in the X-ray fluorescence analysis of ultrafine particles // J. Anal. Chem. 2011. V. 66. № 2. Р. 171.)
- Boča M. Gurišová V., Šimko F. Some aspects of the wavelength dispersive X-ray determination of fluorine content in various matrices // J. Appl. Spectrosc. 2017. V. 84. №. 2. Р. 324.
 Кузьмина Т.Г., Тронева М.А., Ромашова Т.В. Роль
- 14. *Кузьмина Т.Г., Тронева М.А., Ромашова Т.В.* Роль петрогенных элементов в возбуждении рентгеновской флуоресценции фтора // Журн. аналит. химии. 2020. Т. 75. № 7. С. 636. (*Kuz'mina T.G., Troneva М.А., Romashova T.V.* role of petrogenic elements in the excitation of X-Ray fluorescence of fluorine // J. Anal. Chem. 2020. V. 75. № 7. Р. 896.)
- ОСТ 41-08-205-99. Стандарт отрасли. Методики количественного химического анализа. М.: ВИМС, 1999. 96 с.

652