

УДК 54.061

ОПРЕДЕЛЕНИЕ ПЕРФТОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ В ЦЕЛЬНОЙ КРОВИ И ТКАНЯХ ОРГАНОВ ЛАБОРАТОРНЫХ ЖИВОТНЫХ МЕТОДОМ ГАЗОЖИДКОСТНОЙ ХРОМАТО-МАСС-СПЕКТРОМЕТРИИ

© 2022 г. И. К. Журкович^{*a*}, В. А. Утсаль^{*a*}, Е. В. Островидова^{*a*}, *, В. А. Баринов^{*a*}, Н. В. Луговкина^{*a*}, Е. Ю. Бонитенко^{*a*}, Н. А. Белякова^{*a*}, В. В. Баринов^{*a*}

> ^а Научно-клинический центр токсикологии имени академика С.Н. Голикова Федерального медико-биологического агентства ул. Бехтерева, 1, Санкт-Петербург 192019 Россия *e-mail: yekaterina.ostrov@yandex.ru Поступила в редакцию 08.10.2021 г. После доработки 12.11.2021 г. Принята к публикации 15.11.2021 г.

В опытах *in vitro* разработана методика определения группы перфторорганических соединений, перспективных для медицинского применения, в цельной крови и тканях органов лабораторных животных методом газожидкостной хромато-масс-спектрометрии. Оптимизирована процедура подготовки проб, основанная на жидкостной экстракции целевых соединений из биоматериала гептаном, содержащим в качестве внутреннего стандарта перфторбензол. Валидация методики и апробация в опытах *in vivo* проведена на примере перфтордекалина. Установлено время присутствия ксенобиотика в кровотоке и в различных органах мелких лабораторных животных при эндотрахеальном пути введения.

Ключевые слова: газожидкостная хромато-масс-спектрометрия, жидкостное дыхание, перфторорганические соединения, цельная кровь, ткани органов лабораторных животных, фармакокинетика. **DOI:** 10.31857/S0044450222070143

Применение в современной медицинской перфторорганических практике соелинений (ПФОС) в качестве кровезаменителей или дыхательных жилкостей требует их тшательного изучения как ксенобиотиков. Относительно новым направлением является применение ПФОС для доставки лекарственных препаратов в легкие. Их высокая растворяющая способность по отношению к кислороду и диоксиду углерода, низкое поверхностное натяжение и способность проникать в отделы легких, находящиеся в состоянии коллапса, способствуют лучшему распределению лекарства в пораженном органе. Эффективность такого подхода уже показана на примере транспорта антибиотиков, анестетиков и вазоактивных веществ [1].

Кроме того, при терапии синдрома респираторного дистресса, который может возникать при дефиците или дисфункции легочного сурфактанта, в том числе у новорожденных, практикуют введение искусственных добавок (например, фосфолипидов) в виде композиции с ПФОС [2].

В медико-биологических исследованиях значительное внимание уделяется оценке периодов ширкуляции ксенобиотиков данного класса в кровотоке и удерживания в органах-депо. Эта информация особенно важна с точки зрения влияния на метаболические процессы, протекающие в крови, поскольку ПФОС могут служить сорбентом для некоторых биологически активных соединений, в том числе липидов и белков [3, 4]. Надежность полученных результатов в значительной степени определяется качеством химико-аналитического обеспечения. На сегодняшний день в научной литературе описан целый ряд методик, предназначенных для определения концентрации различных ПФОС в биологических образцах. Среди них перфтордекалин, соединения, содержащие третичную аминогруппу (например, перфтортрибутиламин и перфтор-N,Nдиэтилциклогексиламин) или фурановый цикл (перфторбутилперфтортетрагидрофуран), а также их производные [5-9].

Наиболее подробные описания определения перфтордекалина и других перфторорганических соединений методом ГЖХ в биологических опы-

тах in vivo представлены Центральной исследовательской лабораторией японской компании Green Corporation в 1975 году [5-7]. Исследования выполнены с использованием хроматографической системы Shimadzu простейшей конфигурации, включающей обычную насадочную колонку и пламенно-ионизационный детектор. Независимо аналогичные разработки проводились в Американском детском госпитальном медицинском центре штата Цинциннати [10–12]. Однако они описаны менее подробно. В дальнейшем по мере развития аналитического приборостроения и совершенствования хроматографических фаз появились различные модификации первых методик с применением капиллярных колонок и новых типов детекторов [13].

Полный перечень исследованных в данной работе ПФОС включает перфтордекалин (ПФД), перфтороктан (ПФО), Карбогал, 1-бромперфтор(4метил-3.6-диоксаоктан) (ПФБДО) и перфтор(5-метил-3,6-диоксанонан) (ПФДО). Их структурные формулы представлены на схеме 1. В перечень включены производные, которые оказались наиболее перспективными по результатам медико-биологического исследования технологий на основе жидкостного дыхания и целевого транспорта лекарственных средств в легкие при ряде бронхолегочных заболеваний. Важным аргументом выбора целевых соединений является относительная доступность, поскольку их синтез и производство осуществляются в России. Это способствует более оперативному внедрению новых подходов в лечебную практику. За рубежом в аналогичных исследованиях применяют перфлуброн C₈F₁₇Br (ПФБ).

Схема 1. Структурные формулы перфтордекалина (ПФД) (С₁₀F₁₈), перфтороктана (ПФО) (С₈F₁₈), Карбогала (С₈F₁₆), 1-бромперфтор(4-метилФД,6-диоксаоктана) (ПФБДО) (С₇F₁₅O₂Br), перфтор(5-метил-3,6-диоксанонана) (ПФДО) (С₈F₁₈O₂).

Цель настоящего исследования состояла в разработке общей методики количественного определения ПФОС в образцах биоматериалов методом газожидкостной хромато-масс-спектрометрии (ГЖХ-МС) и ее апробация в опытах *in vivo* на примере ПФД. Аналитическую процедуру оптимизировали с учетом групповой специфичности некоторых физико-химических свойств, представленных в табл. 1. Перфторгексан (т. кип. 57°С) исключили из рассмотрения в связи с интенсивным газообразованием в опытах *in vivo*.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Растворы и реагенты. Перфтордекалин (ФГБОУ ВО СибГМУ, Россия), перфторгексан, перфтороктан и карбогал (все ООО "ГалоПолимер", Россия), 1-бромперфтор(4-метил-3,6-диоксаоктан) и перфтор(5-метил-3,6-диоксанонан) (Р&М Invest, Россия), гептан (Вектон, Россия), перфторбензол (ГИПХ, Санкт-Петербург), 0.001%-ный раствор перфторбензола в гептане (раствор внутреннего стандарта) готовили мето-

ЖУРКОВИЧ и др.

Показатель	Диапазон	Сравнительная оценка
Молекулярная масса, Да	400-488	ПФБ > ПФДО > ПФБДО > ПФД > ПФО > Карбогал
Температура кипения, °С	102-180	ПФБДО > ПФБ > ПФД > ПФДО > ПФО > Карбогал
Давление пара (37°С), кПа	0.1-8.0	ПФО > ПФД > ПФБ > ПФДО > ПФБДО
Плотность, г/мл	1.6-1.95	ПФД > ПФБ > Карбогал > ПФБДО > ПФО > ПФДО
Кинематическая вязкость (25°С), сСт	0.59-2.90	ПФД > Карбогал > ПФБ > ПФО > ПФБДО > ПФДО
Поверхностное натяжение (25°С), дин/см	10.0-18.0	ПФБ > ПФБДО > ПФД > ПФДО > ПФО
Растворимость O ₂ (25°С), мл газа/100 мл	48-54	Карбогал > ПФБ > ПФД > ПФО
жидкости		
Растворимость CO ₂ (25°C), мл газа/100 мл	140-210	ПФБ > Карбогал > ПФО > ПФД
жидкости		

Таблица 1. Физико-химические свойства перфторорганических соединений

дом растворением точных навесок перфторбензола в экстрагенте в день проведения измерений. Градуировочные образцы цельной крови лабораторных животных с внесением ПФОС *in vitro* с концентрацией в диапазоне от 0.1 до 20 мкг/мл готовили добавлением к 1 мл крови аликвот 0.1 или 0.01%-ных растворов индивидуальных экспериментальных образцов ПФОС в гептане.

Оборудование. Использовали газожидкостный хромато-масс-спектрометр GCMS-QP2010 Plus (Shimadzu, Япония) и капиллярную хроматографическую колонку Ultra-2 (25 м × 0.2 мм). Экспериментальные данные регистрировали и обрабатывали с помощью программы GS-MS Solutions.

Для подготовки проб использовали: весы лабораторные электронные, модель Adventurer AR 2140 (Ohaus, США) с точностью взвешивания 0.0001 г, центрифугу лабораторную, ОПН-8УХЛ4 (Россия), аппарат для встряхивания образцов (Chirana, Чехия), ультразвуковую баню D-7824 Singen/HTW (Elma, Германия), смеситель лабораторный MS 3 basic (IKA, США).

В ходе исследования выбрали условия пробоподготовки биологических образцов крови и тканей органов и хроматографического анализа проб в режиме электронной ионизации и селективного мониторинга характеристичных ионов определяемых соединений.

Подготовка биопроб и анализ. Цельная кровь. 1 мл крови помещали в стеклянную пробирку с завинчивающейся крышкой объемом 5 мл, прибавляли 1 мл раствора внутреннего стандарта. Пробу выдерживали в УЗ-бане в течение 10 мин при температуре не выше +5°С, перемешивали в течение 2 мин на лабораторном смесителе и центрифугировали 5 мин при скорости 3000 об/мин. Аликвоту верхнего слоя переносили в стеклянную хроматографическую виалу с завинчивающейся крышкой объемом 4 мл и анализировали методом ГЖХ-МС. *Ткани органов.* Перед анализом температуру замороженных образцов поднимали до комнатной. Точные навески от 0.1 до 0.5 г переносили в стеклянные пробирки с завинчивающимися крышками и прибавляли 1 мл раствора внутреннего стандарта. Пробу выдерживали в УЗ-бане в течение 10 мин при температуре не выше +5°С, перемешивали в течение 2 мин на лабораторном смесителе и центрифугировали 5 мин при скорости 3000 об/мин. Аликвоту верхнего слоя переносили в стеклянную хроматографическую виалу с завинчивающейся крышкой объемом 4 мл и анализировали методом ГЖХ-МС.

Газожидкостный хромато-масс-спектрометрический анализ. Компоненты проб разделяли в условиях градиентного элюирования при температуре инжектора и детектора 280° С, начальной температуре колонки 80° С (2 мин), скорости нагрева 45° С/мин и конечной температуре колонки 280° С (15 мин), газ-носитель Не, скорость потока 1 мл/мин, деление потока 1 : 10.

МС-детектироание проводили в условиях электронной ионизации при потенциале 70 eV в режиме сканирования SIM при температуре источника ионов и интерфейса 280°С. Аналитические сигналы регистрировали в интервале от 1 до 2 мин при отсечении шумов на уровне 50 усл. ед.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Оптимизация процедуры подготовки биопроб. Для определения ПФОС в биоматериале использовали жидкостную экстракцию и метод внутреннего стандарта. Вследствие высокой гидрофобности и отсутствия межмолекулярного взаимодействия у перфторированных углеводородов в качестве экстрагента целесообразно использовать аполярный апротонный растворитель по классификации Паркера [14]. К их числу относятся жидкости с низкой диэлектрической проницаемостью и слабым дипольным моментом, не

ΠΦΟϹ	Линейный диапазон, мкг/мл	Уравнение 1 порядка	Коэффициент корреляции	Предел обнаружения, мкг/мл
Перфтордекалин	0.5-20.0	y = 0.0005x	0.9983	0.05
Перфтороктан	0.5-20.0	y = 0.0001x	0.9946	0.02
Карбогал	0.5-20.0	y = 0.0002x	0.9996	0.02
ПФБДО	0.1-20.0	y = 0.00006x	0.9997	0.01
ПФДО	0.1-20.0	y = 0.0001x	0.9998	0.01

Таблица 2. Метрологические характеристики определения перфторорганических соединений в цельной крови методом ГЖХ-МС

Таблица 3. Критерии идентификации перфторорганических соединений

Определяемое вещество	Время удерживания, мин	Детектируемый ион: <i>m/z</i> , Да
Перфтордекалин	1.60 ± 0.05 (<i>цис</i> -изомер) 1.63 ± 0.05 (<i>транс</i> -изомер)	$C_6F_9^+:243, C_7F_{11}+:293$
Перфтороктан	1.45 ± 0.05	CF_{3}^{+} :69
Карбогал	1.48 ± 0.05	CF ₃ ⁺ :69, C ₄ F ₇ :181
ПФБДО	1.50 ± 0.05	CF ₅ ⁺ :119
ПФДО	1.50 ± 0.05	CF ₅ ⁺ :119
Перфторбензол (внутренний стандарт)	1.82 ± 0.05	$C_{6}F_{6}^{+}$

склонные к образованию водородных связей, прежде всего, алифатические или ароматические углеводороды. Учитывая летучесть указанных углеводородов, в качестве оптимального экстрагента ПФОС из биоматериала выбрали *н*-гептан (т. кип. 98.4°С), а внутреннего стандарта – гексафторбензол (т. кип. 80.1°С).

Параметры жидкостной экстракции оптимизировали в опытах *in vitro*. Удалось подобрать оптимальные условия проведения процедуры: соотношение массы биологической пробы и объема экстрагента, температура УЗ-бани и время эксперимента. Однократная степень извлечения, установленная в опытах введено—найдено, составляет не менее 95% для всех исследуемых ПФОС. Подтверждением этих данных служат высокие значения коэффициентов корреляции линейных градуировочных графиков, представленных в табл. 2.

ПФОС в биообразцах идентифицировали по хроматографическим параметрам удерживания и значениям массовых чисел характеристических ионов. За результат идентификации принимали совпадение указанных характеристик на хроматограммах стандартного и испытуемого растворов. Соответствующие параметры для целевых соединений представлены на рис. 1 и в табл. 3.

Концентрацию (мкг/мл) ПФОС в пробах цельной крови определяли по градуировочной кривой как средний результат двух анализов. Массовые концентрации ПФОС в тканях органов (*c*) вычисляли по формуле (1) как средний результат параллельных определений:

$$=c_{\rm rp}/m,\qquad(1)$$

где $c_{\rm rp}$ — концентрация ПФОС, найденная по градуировочной характеристике, мкг/мл; *m* — навеска испытуемого образца, г.

с

Метрологические характеристики и апробация методики на примере перфтордекалина в опытах *in* vivo. Градуировочные графики строили для каждого ПФОС, используя соответствующие градуировочные образцы цельной крови крыс. Пробоподготовку, а также анализ градуировочных и тестируемых биообразцов проводили с соблюдением описанных выше процедур. Метрологические характеристики определения целевых аналитов представлены в табл. 2.

Пределы обнаружения ПФОС, установленные для соотношения сигнал/шум более 3, превышают аналогичные показатели, приведенные в литературе, примерно в 1000 раз.

При апробации методики *in vivo* в качестве тест-системы выбрали белых крыс-самцов Вистар. Перфтордекалин вводили животным натощак однократно в дозе 19.4 мг/кг (10 мл/кг) эндотрахеально (э/т) через полимерную интубационную трубку при общей анестезии.

Кровь и органы (головной мозг, легкие, печень, селезенка, почка) отбирали через опреде-

Рис. 1. Масс-спектры фрагментации ионов перфторорганических соединений, выбранных для их определения в режиме электронной ионизации.

ленные интервалы времени: 1 ч, 24 ч, 3 и 10 сут после введения перфтордекалина. Образцы крови лабораторных животных в объеме не менее 2 мл помещали в пробирки с Na-гепарином объемом 5.0–6.0 мл и хранили при температуре от -4до -6° С в течение не более 1 сут. Фрагменты органов гомогенизировали в присутствии хладоагента и хранили в морозильной камере при -45° С.

Концентрацию ПФД в каждой временной точке, определяли в пяти повторностях, используя биопробы, отобранные у пяти животных. Усредненные результаты анализа представлены в табл. 4. Демонстрационные хроматограммы приведены на рис. 2 и 3. Сигналы со временем удерживания в диапазоне 1.55–1.65 мин соответствуют *цис*и *транс*-изомерам ПФД, а сигнал со временем удерживания около 1.75–1.85 мин – внутреннему стандарту (перфтобензолу).

Полученные данные, свидетельствуют о крайне низкой биодоступности ПФД при эндотрахеальном пути введения, расчетные значения которой составляют не более 0.2%. Органом-депо для него являются легкие, где большая часть ксенобиотика содержится в альвеолярном пространстве при незначительном проникновении в легочную ткань. Более чем 200-кратное снижение

Тест-объект	Содержание ПФД, мкг/мл					
	через 1 ч	через 24 ч	через 72 ч	через 240 ч		
Цельная кровь	0.56	0.36	0.52	0.18		
Легкие	490.0	2.49	3.53	0.56		
Печень	0.88	0.49	0.49	0.29		
Почка	1.12	0.38	0.49	0.23		
Селезенка	1.04	0.65	0.77	0.49		
Головной мозг	0.53	0.43	0.42	0.25		

Таблица 4. Фармакокинетическое исследование перфтордекалина при эндотрахеальном способе введения крысам

Рис. 2. Определение перфтордекалина в цельной крови кролика через трое суток после введения.

концентрации ПФД в легких через сутки после эндотрахеального введения свидетельствует о его быстрой элиминации с выдыхаемым воздухом. Через 10 сут концентрация ПФД в легких сопоставима со значениями концентраций в других исследованных органах.

Представленные экспериментальные данные позволяют интерпретировать фармакокинетику ПФОС как длительный процесс их циркуляции в организме лабораторных животных при изученном способе введения. Это затрудняет применение стандартного набора кинетических параметров для классического описания абсорбции ксенобиотиков данного класса, а также особенностей распределения, метаболизма и элиминирования.

Важным результатом исследования *in vivo* является установление факта аккумулирования ПФД в тканях органов. Степень депонирования,

Рис. 3. Определение перфтордекалина в ткани мозга кролика через трое суток после введения.

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 77 № 9 2022

по-видимому, характеризуется соответствующими коэффициентами распределения, которые зависят от содержания липидов в крови и в различных органах.

Таким образом, разработана современная высокочувствительная методика определения ПФОС, используемых в биомедицинских технологиях, и показана возможность ее применения в доклинических исследованиях.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kaisers U.* British J. Liquid ventilation // Br. J. Anaesth. 2003. V. 91. P. 143.
- 2. Патент США № 5.853.003.
- Calderwood H., Ruiz B., Tham M. Residual levels and biochemical changes after ventilation with perfluorinated liquids // J. Appl. Physiol. 1975. V. 39. P. 603.
- Kollpara S., Gandhi R. Pharmacokinetic aspects and in vitro-in vivo correlation potential for lipid-based formulations // Acta Pharm. Sin. B. 2014. V. 4. № 5. P. 333.
- Yamanouchi K., Murashima R., Yokoyama K. Determination of perfluorochemicals in organ and body fluids by gas chromatography // Chem. Pharm. Bull. 1975. V. 23. № 6. P. 1363.
- 6. *Yokoyama K., Yamanouchi K., Murashima R.* Excretion of perfluorochemicals after intravenous injection of their emulsion // Chem. Pharm. Bull. 1975. V. 23. № 6. P. 1368.

- 7. Okamoto H., Yamanouchi K., Yokoyama K. Retention of perfluorochemicals in circulating blood and organs of animals after intravenous injection of their emulsions // Chem. Pharm. Bull. 1975. V. 23. № 7. P. 1452.
- Yokoyama K., Yamanouchi K., Ohyanagi H., Mitsuno T. Fate of perfluorochemicals after intravenous injection with their emulsions // Chem. Pharm. Bull. 1978. V. 26. № 6. P. 956.
- 9. *Holaday D., Fiserova-Bergerova V., Modell J.* Uptake, distribution and excretion of fluorocarbon FX-80 (per-fluorobutyl perfluorotetrahydrofuran) during liquid breathing in dog // Anesthesiology. 1972. V. 37. № 4. P. 387.
- 10. Shaffer T., Wolfson M., Greenspan J., Hoffman R., Davis S., Clark L. Liquid ventilation in premature lambs: Uptake, biodistribution and elimination of perfluorodecalin liquid // Reprod. Fertill. Dev. 1996. № 8. P. 409.
- 11. *Clark L., Gollan F.* Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure // Science. 1966. V. 152. P. 1755.
- 12. Gollan F., Clark L. Organ perfusion with fluorocarbon liquids // Physiologist. 1966. V. 9. P. 191 M.
- Audran M., Krafft M., Ceaurritz J., Maturin J.-C., Sicart M., Marion B., Bougard G., Bressolle F. Determination of perfluorodecalin and perfluoro-N-methylcyclohexylpiperidine in rat blood by gas chromatography-mass spectrometry // J. Chromatogr. B. 2000. V. 745. P. 333.
- 14. *Райхардт К.* Растворители и эффекты среды в органической химии. М.: Мир, 1991. С. 759.