——— ОРИГИНАЛЬНЫЕ СТАТЬИ ——

УДК 661.725.7:543.544.43

СРАВНЕНИЕ ГАЗОХРОМАТОГРАФИЧЕСКИХ ПАРАМЕТРОВ УДЕРЖИВАНИЯ АЛИФАТИЧЕСКИХ ЕНИНОВЫХ СПИРТОВ С ДАННЫМИ ДЛЯ ИХ СТРУКТУРНЫХ АНАЛОГОВ

© 2023 г. И. А. Савина^{*a*}, Д. М. Гусев^{*a*}, Т. В. Зимина^{*a*}, А. А. Голованов^{*a*}, И. Г. Зенкевич^{*b*}, *

^а Тольяттинский государственный университет, Научно-аналитический центр физико-химических и экологических исследований Белорусская ул., 14, Тольятти 445020, Россия ^bCанкт-Петербургский государственный университет, Институт химии Университетский просп, 26, Санкт-Петербург 198504, Россия *e-mail: izenkevich@yandex.ru Поступила в редакцию 20.03.2022 г.

После доработки 03.04.2022 г.

Принята к публикации 03.04.2022 г.

Проанализированы закономерности газохроматографических индексов удерживания на стандартных неполярных полидиметилсилоксановых неподвижных фазах совокупности ранее недостаточно подробно охарактеризованных алифатических ениновых спиртов. содержащих связи С=С и С≡С в молекуле (14 вторичных и два третичных гомолога). Показано, что использование гомологических инкрементов индексов удерживания $i_{RI} = RI - 100x$, где x = int(M/14), M – молекулярное массовое число, 14 – массовое число гомологической разности CH₂, обеспечивает возможность сравнения данных для структурных аналогов (в том числе с алканолами, алкенолами и алкинолами). Обсуждаются особенности сопоставления значений i_{RI} для соединений, относящихся к разным гомологическим группам $y \equiv M \pmod{14}$, например $C_n H_{2n+2}O(y = 4)$, $C_n H_{2n}O(y = 2)$, $C_n H_{2n-2}O(y = 0)$ и $C_n H_{2n-4}O(y = 2)$ = 12). Главная особенность состоит в том, что при переходе граничной величины y = 0 за счет увеличения формальной непредельности изменяется соотношение, связывающее значения параметра х и число атомов углерода в молекуле (условие n = x - 1 заменяется условием n = x). Следовательно, в последнем случае для обеспечения возможности сравнения гомологических инкрементов $i_{\rm RI}$ с данными для структурных аналогов других рядов из них следует вычитать 100. С учетом этой поправки установлено, что значения $i_{\rm RI}$ для вторичных ениновых спиртов (12 ± 16) и ранее охарактеризованных *втор*-алкинолов (23 ± 21) практически совпадают, а для третичных ениновых спиртов – согласуются с данными для всех рассмотренных групп структурных аналогов (алканолов, алкенолов и алкинолов).

Ключевые слова: алифатические ениновые спирты, газохроматографические индексы удерживания, гомологические инкременты индексов удерживания, сравнение со структурными аналогами. **DOI:** 10.31857/S0044450222120155. **EDN:** KKPXUS

Хромато-масс-спектрометрию в настоящее время относят к самым эффективным методам идентификации и количественного определения следов аналитов в сложных смесях. В значительной мере возможности метода определяются наличием и доступностью информационного обеспечения (базы данных), содержащего как масс-спектры, так и хроматографические параметры удерживания. Однако объем таких массивов справочных данных несопоставимо меньше количества известных органических соединений, а число объектов, охарактеризованных газохроматографическими индексами удерживания, заметно уступает количеству масс-спектров. Так, последняя версия (2020 г.) базы Национального института стандартов и технологии (США) [1] содержит массспектры более 300 тыс. соединений, тогда как индексы удерживания на стандартных фазах известны всего для приблизительно 140 тыс. С другой стороны, подобные базы данных служат источниками информации не только о представленных в них соединениях, но и об отсутствующих или недостаточно подробно охарактеризованных объектах (как об отдельных соединениях, так и о классах веществ). Такое несоответствие можно считать объективной предпосылкой необходимости хроматографической характеристики ранее не рассмотренных классов соединений. Если ограничиться лишь несколькими примерами, то к ним относится характеристика α-алкинолов [2], монозамещенных гидразонов этилового эфира глиоксалевой кислоты [3], ди- и триалкилфосфитов [4], диэтилацеталей алифатических карбонильных соединений [5], алкилдихлорфосфатов, диалкилхлорфосфатов и их тиоаналогов [6], алкилзамещенных 1,3-диоксоланов, 1,3-диоксанов [7], соответствующих им арильных производных [8] и др. При этом важно отметить следующие моменты:

 В число недостаточно подробно охарактеризованных попадают даже сравнительно несложные органические соединения;

- Простейший (описательный) уровень рассмотрения хроматографических данных, еще встречавшийся в работах последней трети XX века (см., например, [9]), в настоящее время используют редко. В первую очередь интерес представляет выявление закономерностей, применимых не только к выбранной группе аналитов, но и к соединениям иной химической природы, прежде всего, к структурным аналогам, а иногда даже более общие аналитические проблемы. Так, например, данные для α-алкинолов позволили уточнить хроматографические индексы удерживания продуктов их дегидратации – соединений плохо охарактеризованного класса алифатических енинов [2]. Если проследить степень изученности алифатических спиртов в зависимости от числа кратных связей в молекуле, то для алканолов ($\Phi H = 0$)¹ она закономерно максимальна. Алкенолы ($\Phi H = 1$), диеновые [1] и ацетиленовые [2] ($\Phi H = 2$) спирты охарактеризованы менее подробно, а для более ненасыщенных аналогов известны лишь единичные данные. Так, если рассматривать алифатические ениновые спирты (одна двойная и одна тройная связи в молекуле) с общей молекулярной формулой $C_n H_{2n-4} O$ ($\Phi H =$ = 3), то база NIST [1] в диапазоне молекулярных масс от 82 до 194 ($5 \le n \le 11$) содержит стандартные масс-спектры ионизации электронами 16 гомологов этого ряда. Однако индексы удерживания на стандартных неполярных полидиметилсилоксановых неподвижных фазах (RI) определены для всего двух из них: 6-метил-6-гептен-4-ин-6-ола (RI 972) [10] и известного природного соединения – дегидролиналоола (RI 1091 [11] и 1116 [12]), среднее значение RI по результатам анализов различных образцов 1124 \pm 9. Масс-спектрометрические данные для известных представителей этого ряда [1] подтверждают заметную интенсивность сигналов молекулярных ионов, обусловленную высокой формальной непредельностью алифатических ениновых спиртов. Это гарантирует надежное

определение их молекулярных масс в ходе хромато-масс-спектрометрического анализа.

Задача настоящей работы — характеристика алифатических ениновых спиртов газохроматографическими индексами удерживания на стандартной неполярной полидиметилсилоксановой фазе с целью сравнения с данными для их структурных аналогов и установления особенностей такого сравнения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Краткая характеристика способов синтеза и свойств ениновых спиртов. Соединения (I) и (II) получены путем взаимодействия ацетиленида лития с акролеином и соответственно с кротоновым альдегидом в жидком аммиаке [13, 14]. Спирты (III)-(XI) и (XIII)-(XVI) получали аналогичным способом взаимодействием замещенных ацетиленидов лития с α,β-непредельными карбонильными соединениями в тетрагидрофуране по описанной ранее [15] общей методике; спирт (XII) получали, исходя из этинилмагнийбромида и коричного альдегида [16]. Спирты (XVII) и (XVIII) в виде смесей цис- и транс-изомеров (с преобладанием *транс*-изомеров) получали кислотно-катализируемой перегруппировкой спиртов (II) и (IV) по методике [17].

Охарактеризованные алифатические ениновые спирты (иначе — винилэтинилкарбинолы) представляют собой бесцветные или слабо окрашенные вязкие жидкости, за исключением спирта (**XI**), который выделен в виде игольчатых кристаллов с T_{nn} 64—66°С (из петролейного эфира); спирты (**I**)—(**VI**), согласно данным газохроматографического (детектор по теплопроводности) и элементного анализа, содержали до 2—3% воды. Препаративные выходы, значения некоторых физико-химических свойств, а также аналитические и спектральные характеристики спиртов (**IV**)—(**XXIII**) приведены в табл. 1 и 2.

Спектры ЯМР ¹Н и ¹³С растворов спиртов в CDCl₃ записывали на спектрометре Bruker AVANCE III 400 (400.13 и 101.61 МГц соответственно). ИК-спектры записывали для образцов в тонком слое между пластинами КВг на приборе Shimadzu IR 100 с преобразованием Фурье. Элементный микроанализ проводили на стандартной аппаратуре в соответствии с методиками, приведенными в руководстве [18].

Условия газохроматографического анализа алифатических ениновых спиртов: газовый хроматограф Кристалл-люкс 4000М с пламенно-ионизационным детектором и капиллярной колонкой из плавленого кварца длиной 25 м, внутренним диаметром 0.20 мм и толщиной пленки полидиметилсилоксановой неподвижной фазы 0.33 мкм. Использовали режим программирования темпе-

¹ ФН – формальная непредельность – принятое обозначение суммарного числа кратных связей (в пересчете на двойные) и циклов в молекуле, ФН = $(2n_{IV} + n_{III} - n_I + 2)/2$, где n_{IV} , n_{III} и n_I – число четырех, трех и одновалентных атомов в молекуле соответственно.

No	Выход, %*	$T_{\rm кип}$, °C	Найдено, %			Молекулярная	Вычислено, %		
JNg		(мм рт. ст.)	Н	С	Si	формула	Н	С	Si
IV	76	78-80 (8)	76.63	9.43		C ₇ H ₁₀ O	76.33	9.15	
V	42	75–76 (9)	78.25	10.47		$C_9H_{14}O$	78.21	10.21	
VI	32	80-81 (15)	77.30	10.99		C ₈ H ₁₂ O	77.38	9.74	
VII	79	75-77 (10)	62.03	9.40	17.98	C ₈ H ₁₄ OSi	62.28	9.15	18.20
VIII	60	98-99 (9)	78.56	10.45		$C_9H_{14}O$	78.21	10.21	
IX	48	97-98 (15)	78.01	11.00		$C_9H_{14}O$	78.21	10.21	
Х	66	111-112 (9)	78.87	10.86		C ₁₀ H ₁₆ O	78.90	10.59	
XIII	47	136-137 (7)	80.50	11.77		C ₁₃ H ₂₂ O	80.35	11.41	
XIV	88	**	65.15	7.54	12.39	$C_{12}H_{16}O_2Si$	65.41	7.32	12.75
XV	82	176–177 (11)	72.68	8.03	11.83	C ₁₄ H ₁₈ OSi	72.99	7.88	12.19
XVI	63	**	74.88	8.97	9.98	C ₁₇ H ₂₄ OSi	74.94	8.88	10.31
XVII	81	68-74 (8)	74.65	8.37		C ₆ H ₈ O	74.97	8.39	
XVIII	84	78-85 (8)	76.59	9.46		$C_7H_{10}O$	76.33	9.15	

Таблица 1. Препаративные выходы, температуры кипения и данные элементного анализа для впервые синтезированных алифатических ениновых спиртов

* Методики синтеза соединений (IV)–(X), (XIII)–(XVIII) описаны в работах [15, 17]; ** термически лабильные вещества использовали без перегонки; по данным газохроматографического анализа содержание основных компонентов составляло 92– 95%.

ратуры от 60 до 220°С со скоростью 6 град/мин (общее время программирования температуры 26.7 мин) с заключительным изотермическим участком. Температура испарителя и детектора 220°С, газ-носитель гелий, объемный расход 10 мл/мин, дозируемые количества 0.1–0.2 мкл, деление потока при вводе проб 1 : 6.

Характеризуемые соединения дозировали в виде растворов в ацетоне (концентрация 1–3%) с добавками сопоставимых количеств 3–4 реперных *н*-алканов, так чтобы 1–2 из них имели меньшие по сравнению с целевым аналитом времена удерживания, а два остальных – большие. Кратность измерений 2–5 с последующим усреднением времен удерживания реперных *н*-алканов. Хроматограммы обрабатывали и хранили в ПО NetChrom.

Обработка результатов. Все ениновые спирты характеризовали линейно-логарифмическими индексами удерживания RI [19], вычисленными для всех значений их времен удерживания для характеристики воспроизводимости:

$$\mathbf{RI}_{x} = \mathbf{RI}_{n} + (\mathbf{RI}_{n+k} - \mathbf{RI}_{n}) \times \\ \times [f(t_{\mathbf{R},x}) - f(t_{\mathbf{R},n})] / [f(t_{\mathbf{R},n+k}) - f(t_{\mathbf{R},n})],$$
(1)

где $t_{\rm R}$, $t_{{\rm R},n}$ и $t_{{\rm R},n+k}$ — времена удерживания целевого аналита (x) и ближайших к нему по параметрам удерживания реперных компонентов с присвоенными им значениями индексов удерживания RI_n и RI_{n+k} (RI_n = 100n_C, где n_C — число атомов углерода в молекуле). Вид функции $f(t_R)$ определен режимом разделения: $f(t_R) = \lg(t_R - t_0)$ – логарифмические индексы удерживания (изотермические условия), t_0 – время удерживания несорбируемого компонента; $f(t_R) = t_R$ – линейные индексы (программирование температуры); $f(t_R) = t_R$ + $+ q \lg(t_R) (q$ – переменный коэффициент) – линейно-логарифмические индексы (любой температурный режим). В двух последних случаях не требуется измерение или оценка параметра t_0 .

Для вычислений индексов удерживания использовали программу QBasic. Заметим, что в выбранном режиме программирования абсолютные значения коэффициента *q* невелики, так что значения линейно-логарифмических индексов близки к линейным индексам, вычисление которых проще. Для усреднения результатов использовали ПО Microsoft Excel 2010 и Origin (версии 4.1 и 8.1).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Гомологические инкременты газохроматографических индексов удерживания алифатических ениновых спиртов. В табл. 3 приведены индексы удерживания 16 алифатических ениновых спиртов, расположенных в порядке увеличения их молекулярных массовых чисел от 82 до 194 ($5 \le n_C \le 13$), и (во второй части таблицы) шести спиртов, содержащих иные структурные фрагменты (фенильный, триалкилсилильные и 2-фурильный заместители). В таблицу дополнительно включены

САВИНА и др.

N⁰	Спектр ЯМР ¹ Н, б, м.д.	Спектр ЯМР ¹³ С, б, м.д.	ИК спектр, v, см ⁻¹
IV	1.65—1.76 м (3Н), 1.86 дд (4Н, <i>J</i> _{HH} 2.2, 0.8 Гц), 4.73—4.81 м (1Н), 5.60 дд (1Н, <i>J</i> _{HH} 15.2, 1.2 Гц), 5.86 дд (1Н, <i>J</i> _{HH} 15.2, 1.2 Гц)	3.6, 17.5, 63.1, 79.0, 82.2, 128.3, 130.9	3350, 2237, 1674
V	0.97 т (3H, <i>J</i> _{HH} 7.4 Гц), 1.52 с (4H), 1.44–1.62 м (2H), 2.20 т (2H, <i>J</i> _{HH} 7.1 Гц), 5.08 дд (1H, <i>J</i> _{HH} 10.2, 1.2 Гц), 5.48 дд (1H, <i>J</i> _{HH} 17.0, 1.2 Гц), 5.96 дд (1H, <i>J</i> _{HH} 17.0, 10.2 Гц)	13.5, 20.7, 22.1, 30.4, 68.4, 82.5, 85.3, 113.1, 142.7	3348, 2240, 1677
VI	0.98 т (3H, <i>J</i> _{HH} 7.4 Гц), 1.46–1.60 м (2H), 2.14–2.26 м (2H), 2.38 с (1H), 4.85 к (1H, <i>J</i> _{HH} 1.7 Гц), 5.17 дд (1H, <i>J</i> _{HH} 10.1, 1.5 Гц), 5.43 дд (1H, <i>J</i> _{HH} 17.0, 1.5 Гц), 5.96 ддд (1H, 1H, <i>J</i> _{HH} 17.1, 10.1, 5.4 Гц)	13.4, 20.7, 22.0, 63.3, 79.2, 86.9, 115.8, 137.7	3350, 2245, 1643
VII	0.20 с (9H), 0.29 с (1H), 4.86–4.89 м (1H), 5.24 дд (1H, <i>J</i> _{HH} 10.0, 1.4 Гц), 5.49 дд (1H, <i>J</i> _{HH} 17.0, 1.4 Гц), 5.92–6.05 м (1H)	-0.48, 63.6, 91.2, 104.1, 136.7	3337, 2174, 1643
VIII	0.88 т (3H, <i>J</i> _{HH} 7.3 Гц), 1.31–1.56 м (4H), 2.13–2.29 м (3H), 4.77–4.89 м (1H), 5.16 дт (1H, <i>J</i> _{HH} 10.1, 1.4 Гц), 5.40 дт (1H, <i>J</i> _{HH} 17.0, 1.4 Гц), 5.86 – 6.01 м (1H)	13.5, 17.4, 18.6, 22.0, 30.3, 63.2, 79.1, 86.7, 128.1, 131.0	3348, 2245, 1643
IX	0.97 т (<i>J</i> _{HH} 7.4 Гц, 3H), 1.46–1.59 м (2H), 1.67–1.74 м (3H), 2.13–2.23 м (2H), 2.29 с (1H), 4.79 д (1H, <i>J</i> _{HH} 6.1 Гц), 5.53–5.65 м (1H), 5.78–5.92 м (1H)	13.5, 17.4, 20.7, 22.0, 63.0, 79.9, 86.4, 128.0, 130.9	3348, 2234, 1674
X	0.82—0.98 м (3H), 1.32—1.62 м (5H), 1.65—1.77 м (3H), 2.14— 2.30 м (2H), 4.76—4.83 м (1H), 5.60 дд (1H, <i>J</i> _{HH} 15.2, 1.2 Гц), 5.86 дд (1H, <i>J</i> _{HH} 15.2, 1.2 Гц)	13.6, 17.4, 18.5, 22.0, 30.7, 63.0, 79.8, 86.7, 128.2, 131.0	3348, 2245, 1672
XIII	0.79–0.95 м (3H), 1.19–1.30 м (9H), 1.26–1.37 м (1H), 1.33– 1.42 м (1H), 1.42–1.58 м (2H), 2.21 тд (2H, <i>J</i> _{HH} 7.1, 2.0 Гц), 4.79–4.88 м (1H), 5.17 дт (1H, <i>J</i> _{HH} 10.1, 1.4 Гц), 5.42 дт (1H, <i>J</i> _{HH} 17.0, 1.4 Гц), 5.89–6.01 м (1H)	14.1, 19.0, 22.7, 28.7, 28.9, 29.1, 29.2, 31.8, 63.4, 87.2, 96.0, 115.9, 137.8	3399, 2241, 1643
XIV	0.22 с (9H), 0.31 с (1H), 5.04 д (1H, <i>J</i> _{HH} 5.8), 6.25 дд (1H, <i>J</i> _{HH} 15.6, 5.8 Гц), 6.33 д (1H, <i>J</i> _{HH} 3.4 Гц), 6.40 дд (1H, <i>J</i> _{HH} 3.4, 1.8 Гц), 6.60 д (1H, <i>J</i> _{HH} 15.6 Гц), 7.39 д (1H, <i>J</i> _{HH} 1.8 Гц)	-0.45, 63.0, 91.4, 104.0, 109.2, 113.0, 120.1, 125.8, 142.5, 151.8	3421, 2173, 1626
XV	0.24 с (9H), 0.35 с (1H), 5.08 д (1H, J _{HH} 6.0 Гц), 6.32 дд (1H, J _{HH} 15.8, 6.0 Гц), 6.82 д (1H, J _{HH} 15.8 Гц), 7.25–7.51 м (5H)	0.14, 63.4, 91.4, 104.3, 126.8, 127.9, 126.8, 132.1, 136.1, 149.0	3391, 2245, 1645
XVI	0.54—0.81 м(6H), 0.89—1.13 м (10H), 5.06 дд (1H, <i>J</i> _{HH} 5.8, 1.4 Гц), 6.30 дд (1H, <i>J</i> _{HH} 15.8, 5.8 Гц), 6.67—6.87 м (1H), 7.19—7.61 м (5H)	4.4, 7.4, 63.3, 88.7, 94.2, 126.9, 128.1, 128.6, 128.7, 129.2, 131.4	3375, 2169, 1670
XVII	1.23–1.28 м (Н ^{цис-, транс-}), 2.88 с (Н ^{транс-}), 3.07 с (ОН ^{цис-, транс-}), 3.15 с (Н ^{цис-}), 4.32 квинтет (<i>J</i> _{HH} 12.65, 6.42, 6.24 Гц, Н ^{транс-}), 4.82 квинтет (<i>J</i> _{HH} 13.76, 7.15, 6.60 Гц, Н ^{цис-}), 5.45 д (<i>J</i> _{HH} 11.00 Гц, Н ^{цис-}), 5.62 д (<i>J</i> _{HH} 16.05 Гц, Н ^{транс-}), 5.99 дд (<i>J</i> _{HH} 11.00, 8.25 Гц, Н ^{цис-}), 6.24 дд (<i>J</i> _{HH} 16.05, 5.59 Гц, Н ^{транс-})	22.4, 22.8,66.1,67.8, 77.9,79.3, 81.7,83.0, 107.9, 148.6	3368, 3294, 2102, 1632
XVIII	4.27—4.37 м (Н ^{транс-}), 4.76—4.87 м (Н ^{цис-}), 5.46 дд (Н ^{цис-} , J _{HH} 10.8, 1.1 Гц), 5.64 дд (Н ^{транс-} , J _{HH} 15.9, 1.4 Гц), 5.83 дд (Н ^{цис-} , J _{HH} 8.0, 0.7 Гц), 6.06 дд (Н ^{транс-} , J _{HH} 15.8, 0.7 Гц)	4.2, 4.3, 22.5, 22.9, 66.1, 68.1, 75.6, 77.7, 86.5, 91.6, 109.4, 109.6, 145.2, 145.4	3370, 2101, 1633

Таблица 2. Спектральные характеристики впервые синтезированных алифатических ениновых спиртов

*							
Молекулярная формула (№ в табл. 1 и 2)	М	Соединение	RI	i _{RI}			
		Алифатические ениновые спирты					
$C_5H_6O(I)$	82	1-Пентен-4-ин-3-ол	680 ± 1	180			
$C_6H_8O(II)$	96	(Е)-2-Гексен-5-ин-4-ол	802 ± 2	202			
C ₆ H ₈ O (III)	96	1-Гексен-4-ин-3-ол	836 ± 1	236			
C ₆ H ₈ O (Z-XVII)	96	(<i>Z</i>)-3-Гексен-5-ин-2-ол*	782 ± 2	182			
C_6H_8O (<i>E</i> -XVII)	96	(Е)-3-Гексен-5-ин-2-ол*	823 ± 1	223			
C ₇ H ₁₀ O (IV)	110	(Е)-2-Гептен-5-ин-4-ол	956 ± 2	256			
C ₇ H ₁₀ O (Z-XVIII)	110	(<i>Z</i>)-3-Гептен-5-ин-2-ол*	933 ± 2	233			
$C_7H_{10}O(E-XVIII)$	110	(Е)-3-Гептен-5-ин-2-ол*	988 ± 1	288			
C ₈ H ₁₂ O (VI)	124	1-Октен-4-ин-3-ол	1004 ± 1	204			
C ₈ H ₁₂ O (–)	124	6-Метил-6-гептен-4-ин-3-ол*	<i>972</i> **	172			
C ₉ H ₁₄ O (IX)	138	(Е)-2-Нонен-5-ин-4-ол	1123 ± 1	223			
C ₉ H ₁₄ O (VIII)	138	1-Нонен-4-ин-3-ол	1106 ± 1	206			
C ₉ H ₁₄ O (V)	138	3-Метил-1-октен-4-ин-3-ол (+1)***	1001 ± 1	101			
C ₁₀ H ₁₆ O (X)	152	(Е)-2-Децен-5-ин-4-ол	1228 ± 1	228			
C ₁₀ H ₁₆ O (-)	152	3,7-Диметил-6-октен-1-ин-3-ол (дегидролиналоол) (+1)***	1124 ± 9	124			
C ₁₃ H ₂₂ O (XIII)	194	1-Тридецен-4-ин-3-ол	1488 ± 3	188			
Среднее значение дл	я <i>втор-</i>	алкенинолов, $N = 14$:	1	216 ± 32			
Среднее значение для <i>трет</i> -алкенинолов $(Z + 1), N = 2$: 11							
Ениновые спирты, содержащие иные структурные фрагменты							
$C_{11}H_{10}O(XII)$	158	5-Фенил-1-пентен-4-ин-3-ол	1380 ± 3	280			
$C_{11}H_{10}O(XI)$	158	(<i>E</i>)-1-Фенил-1-пентен-4-ин-3-ол	1402 ± 2	302			
C ₈ H ₁₄ OSi (VIII)	154	5-Триметилсилил-1-пентен-4-ин-3-ол	1007 ± 2	-93			
C ₁₄ H ₁₈ OSi (XI)	218	(Е)-1-Фенил-5-триметилсилил-1-пентен-4-ин-3-ол	1712 ± 3	212			
C ₁₂ H ₁₆ O ₂ Si (XIV)	220	(Е)-1-(2-Фурил)-5-триметилсилил-1-пентен-4-ин-3-ол	1553 ± 3	53			
C ₁₇ H ₂₄ OSi (XVI)	272	(Е)-5-Триэтилсилил-1-фенил-1-пентен-4-ин-3-ол	2036 ± 4	136			

Таблица	3.	Индексы	удерживания	ениновых	спиртов	$RC \equiv C - CR'(OH)CH = CHR''$	И
RC≡C−CH	=CH-	-CH(OH)CH ₃	на неполярной по	олидиметилсил	юксановой н	еподвижной фазе и их гомоло	гиче-
ские инкре	менты	I					

* Соединения, содержащие сопряженные двойную и тройную связи; ** курсивом набраны значения RI, известные из литературы; *** символ (+1) – третичные спирты, имеющие дополнительное разветвление *sp*³-углеродного скелета.

два соединения, для которых известны значения RI: 6-метил-6-гептен-5-ин-2-ол и 3,7-диметил-6октен-1-ин-3-ол (дегидролиналоол). Бо́льшая часть соединений, перечисленных в первой части табл. 3 (14 из 16), представляют собой вторичные спирты, содержащие фрагмент >CH-OH; исключениями являются только 3-метил-1-октен-4-ин-3-ол и дегидролиналоол с гидроксильными группами при третичных атомах углерода (или, иначе, имеющих дополнительные разветвления sp^3 -углеродного скелета молекул, далее обозначаемые символом Z). Принимая во внимание закономерности газохроматографического удерживания соединений других классов (прежде всего, первичных, вторичных и третичных алканолов), такие изомеры имеют меньшие индексы удерживания и должны быть отнесены в самостоятельные группы. Разветвления углеродного скелета молекул в стерически жестких фрагментах структуры (в том числе при двойных связях C=C) проявляются в существенно меньших вариациях индексов.

Значения RI алифатических ениновых спиртов варьируют от 680 приблизительно до 1490, однако их непосредственное рассмотрение с целью сопоставления со структурами молекул нерацио-

59

Рис. 1. Зависимость индексов удерживания изомерных *н*-децинов от положения тройной связи в молекуле (по данным [15]).

нально. Для этого необходимы дополнительные преобразования индексов, например, к форме так называемых гомологических инкрементов, *i*_{RI}. Гомологические инкременты аддитивных свойств (*A*) были введены для представления хроматографических данных при их совместной интерпретации с масс-спектрами в хромато-масс-спектрометрии [20]:

$$i_{\rm A} = A - x \Delta A(\rm CH_2), \qquad (2)$$

где x — целое частное от деления молекулярного массового числа M на 14, x = int(M/14) (14 — массовое число гомологической разности), $\Delta A(CH_2)$ — инкремент свойства A для гомологической разности CH₂.

Подобное преобразование значений различных свойств в гомологические инкременты устраняет их зависимость от положения гомологов в гомологических рядах (от числа атомов углерода в молекуле), тогда как влияние природы функциональных групп и особенностей структуры сохраняется. Следовательно, значения *i*_{RI} после соответствующей статистической обработки характеризуют уже не отдельные гомологи, а ряды в целом.

Если для газохроматографических индексов удерживания гомологов принять такое "естественное" условие, как $\Delta RI(CH_2) \approx 100$, то выражение (2) может быть преобразовано к следующему простому соотношению:

$$\dot{u}_{\rm RI} = \rm RI - 100x. \tag{3}$$

Иногда, например, в обращенно-фазовой ВЭЖХ используют отличные от 100 оценки $\Delta RI(CH_2) \neq 100.$

Значения $i_{\rm RI}$ для всех охарактеризованных ениновых спиртов также приведены в табл. 3. Их вариации достаточно велики (от 172 до 288), что обусловлено влиянием сразу нескольких факторов. Во-первых, структурные фрагменты С-С=СН или С-С=С-С при тройных связях С≡С (иначе – при *sp*-гибридизованных атомах углерода) – жесткие (линейные), что проявляется в увеличении температур кипения и газохроматографических индексов удерживания содержащих такие фрагменты соединений (по сравнению с изомерами). Вариации RI для изомеров других рядов с разным положением связей С≡С достаточно велики (например, для изомерных н-децинов они превышают 50 ед. индекса), а сами зависимости оказываются достаточно сложными [21]. Для их иллюстрации на рис. 1 представлены вариации индексов удерживания н-децинов в зависимости от положения тройной связи С≡С (по данным [1]), для которых, как и для остальных *н*-алкинов максимальные значения RI наблюдаются для 2-изомеров.

Для иллюстрации этой же структурной особенности весьма показательны различия не только индексов удерживания, но и соответственно гомологических инкрементов (Z) и (E)-изомеров 3-гексен-5-ин-2-ола и 3-гептен-5-ин-2-ола. Значения RI изомеров первого спирта составляют 782 и 823, тогда как второго (всего на метиленовую группу больше) — 933 и 988 (увеличение индексов составляет 151 и 165 ед.). Причина этой аномалии в том, что в молекуле первого спирта жесткий фрагмент структуры содержит четыре атома углерода (НС=С-СН=СН-), тогда как второго – пять (СН₃-С≡С-СН=СН-). Отнесение (Z) и (E)-изомеров в смесях (соединения XVII и XVIII) проведено на основании спектров ПМР, причем их соотношения согласуются с газохроматографическими данными.

На "уровне" гомологических инкрементов индексов удерживания более простых структурных аналогов эту особенность можно представить следующим образом. Оценка значений $i_{\rm RI}$ для терминальных алкинов составляет 109 ± 13 (при наличии дополнительного разветвления углеродного скелета она уменьшается до 64 ± 10), а для нетерминальных алкинов она равна 158 ± 18 (вычислено по данным [1]).

Во-вторых, к увеличению значений RI может приводить сопряжение связей С=С и С=С; максимальное значение $i_{RI} = 288$ принадлежит именно такому изомеру – (*E*)-3-гептен-5-ин-2-олу. И, наконец, для алифатических ениновых спиртов характерны аномально большие различия индексов (*E*) и (*Z*)-изомеров. Для пары изомерных 3-гексен-5-ин-2-олов они составляют 41, а для 3-гептен-5-ин-2-олов – 55 ед. индекса. Для сравнения, различие RI(*Z*) и (*E*)-4-октенов составляет всего 4, а 3-октенов – 2 ед. индекса [1]. В результате совместного проявления всех перечисленных факторов стандартное отклонение среднего значения i_{RI} алифатических енинолов оказывается довольно большим: 216 ± 32. Уменьшение неопределен-

Молекулярная формула	$C_nH_{2n+2}O$	$C_n H_{2n} O$	$C_n H_{2n-2} O$	$C_nH_{2n-4}O$	$C_nH_{2n-6}O$
$y \equiv M(\text{mod}14)$	4	2	0	12	10
Формальная непредельность	0	1	2	3	4
n = f(x)		n = x - 1	n = x		
Соотношение $i_{RI} = f(n)$, приведенное	i _{RI}	$= \mathrm{RI} - 100(n +$	$i_{\rm RI} = { m RI} - 100n$		
к единой шкале					

Таблица 4. Иллюстрация изменения соотношения между гомологическими инкрементами индексов удерживания и числом атомов углерода в молекуле в последовательности соединений различной формальной непредельности при переходе через граничное значение *y* = 0

ности подобных оценок возможно только в результате более подробной структурной классификации рассматриваемых соединений, однако этому препятствует сравнительно небольшое число объектов (N = 14), что делает их дальнейшее разделение на подгруппы нерациональным.

Выше отмечено, что два ениновых спирта из перечисленных в табл. 1 гомологов (3-метил-1октен-4-ин-3-ол и дегидролиналоол) содержат третичные гидроксильные группы. Подобный структурный фрагмент проявляется в существенном уменьшении значений i_{RI} до 101 и 124. Их можно охарактеризовать средним значением (112 ± 16) , однако из-за малого числа объектов эту оценку следует рассматривать исключительно как предварительную. Шесть соединений в заключительной части табл. 1 содержат дополнительное функциональные группы (фенильный, триалкилсилильные и 2-фурильный заместители). Из них специальных комментариев заслуживают только фенилзамещенные ениновые спирты, для которых можно выявить элементы аддитивности индексов удерживания относительно алифатических соединений этого класса. Данные базы [1] позволяют охарактеризовать инкремент замещения атома водорода при связях С≡С и C=С фенильным фрагментом C_6H_5 (676 ± 35). Как отмечено выше, уменьшение стандартного отклонения этой средней величины возможно только в результате более детальной классификации структур молекул. Тогда, исходя из индекса удерживания 1-пентен-4-ин-3-ола (680 \pm 1), можно оценить значения RI 5-фенил-1-пентен-4-ин-3-ола и 1-фенил-1-пентен-4-ин-3-ола: 680 + $+(676 \pm 35) \approx 1356 \pm 35$ (экспериментальные величины 1380 и 1402).

Сравнение гомологических инкрементов газохроматографических индексов удерживания структурных аналогов. Важной особенностью гомологических инкрементов индексов удерживания, которую необходимо учитывать при сравнении данных для структурных аналогов, является "скачок" в 100 ед. индекса при переходе номеров гомологических групп таких аналогов (y) через значение y = 0. Номера гомологических групп y были введены одновременно с параметрами *х* как вычеты массовых чисел ионов (здесь рассматриваем только молекулярные массовые числа) по модулю 14 [20]:

$$y \equiv M(\text{mod}14). \tag{4}$$

Все многообразие органических соединений по значениям *у* можно классифицировать на 14 гомологических групп, $0 \le y \le 13$ [14]. Допустим, мы сравниваем соединения различной формальной непредельности, например, с молекулярными формулами последовательности $C_nH_{2n+k}X \rightarrow C_nH_{2n+k-2}X \rightarrow C_nH_{2n+k-4}X \rightarrow \dots$ Если номера гомологических групп молекулярных массовых чисел "пересекают" значение y = 0, то величина *x* скачкообразно уменьшается на единицу. Учитывая важность этой особенности параметров *x*, ее целесообразно рассмотреть подробнее, например, для последовательности молекулярных формул $C_nH_{2n+2}O \rightarrow C_nH_{2n}O \rightarrow C_nH_{2n-2}O \rightarrow C_nH_{2n-4}O \rightarrow \dots$, что иллюстрируют данные табл. 4.

Все соединения, относящиеся к первым трем молекулярным формулам этой последовательности ($C_nH_{2n+2}O$, $C_nH_{2n}O$ и $C_nH_{2n-2}O$) и, следовательно, принадлежащие к гомологическим группам 4, 2 и 0 соответственно, характеризуются одинаковым соотношением, связывающим значения параметра x (определяются непосредственно из значений M) и число атомов углерода в молекуле, а именно n = x - 1. В справочных таблицах руководства [20] подобные соотношения приведены для различных молекулярных формул. Однако при переходе к соединениям с молекулярной формулой C_nH_{2n-4}O и, следовательно, при увеличении ФН до 3, это соотношение трансформируется в n = x. Это означает, что в первых трех случаях связь гомологических инкрементов индексов удерживания с числом атомов углерода в молекуле имеет вид $i_{\rm RI} = {\rm RI} - 100(n+1)$, тогда как в последнем оно иное: $i_{\rm RI} = {\rm RI} - 100n$. Следовательно, для обеспечения возможности сравнения соединений с различными молекулярными формулами между собой последнюю из величин *i*_{RI} необходимо скорректировать на (-100) ед. индек-

Группа гомологов, ссылка	$n_{\rm C} = f(x)$	Ζ	Диапазон <i>п</i> С	Число соединений	$i_{\rm RI} \pm s_{\rm i(RI)}$
втор-Алканолы [1]	x-1	0	C ₃ -C ₇	9	85 ± 4
		1	$C_4 - C_7$	7	53 ± 19
трет-Алканолы [1]		0	C_4-C_8	11	24 ± 13
втор-Алкенолы [1]	x-1	0	C ₄ -C ₇	11	63 ± 15
трет-Алкенолы [1]		0	C_5-C_6	2	24 ± 32
втор-Алкинолы [2]	x-1	0, 1	C ₄ -C ₁₀	11	111 ± 25
трет-Алкинолы [2]		1, >1	$C_{5}-C_{10}$	10	23 ± 21
<i>втор</i> -Алкенинолы (данная работа)	x	1, >1	C ₃ -C ₁₃	14	216 ± 32 [116 ± 32]*
<i>трет-</i> Алкенинолы (данная работа)		0, 1	C ₉ -C ₁₀	2	112 ± 16 [12 ± 16]*

Таблица 5. Сравнение алифатических ениновых спиртов и некоторых их структурных аналогов по значениям гомологических инкрементов индексов удерживания

*В квадратных скобках указаны значения i_{RI} ± s_{i(RI)} алифатических ениновых спиртов, скорректированные с учетом условия (-100) для сравнения с данными для их структурных аналогов.

са. При уменьшении формальной непредельности, т.е. в последовательности молекулярных формул в направлении увеличения значений *у* при "пересечении" границы $y = 13 \rightarrow y = 0$, для обеспечения возможности такого сравнения к значениям *i*_{RI} нужно прибавить 100. Необходимость применения этого правила возникает при сравнении гомологических инкрементов индексов удерживания характеризуемых алифатических ениновых спиртов с данными для их структурных аналогов, результаты которого представлены в табл. 5.

В этой таблице обращают на себя внимание сразу несколько примеров хорошего совпадения значений $i_{RI} \pm s_{i(RI)}$. Прежде всего, они закономерно близки для втор-алканолов (85 ± 4) и втор-алкенолов (63 \pm 15). Вторую подобную пару образуют *втор*-алкинолы (111 \pm 25) и впервые охарактеризованные в данной работе вторичные алкениновые спирты (116 \pm 32). Заметим, что в последнем случае сравнение как раз и предполагает использование обсуждавшейся выше поправки (-100 ед. инд.). Увеличение значений $i_{\rm RI} \pm s_{\rm i(RI)}$ при наличии связей С≡С в молекулах обусловлено отмеченной выше жесткостью фрагментов С-С≡С-С или С−С≡СН. И, наконец, присутствие третичных гидроксильных групп проявляется в практическом совпадении гомологических инкрементов индексов удерживания всех алифатических спиртов с различными значениями ФН, перечисленных в табл. 3: *трет*-алканолов (24 ± 13), *трет*-алкенолов (24 ± 32), *трет*-алкинолов (23 ± 21) и *трет*-алкенинолов (12 ± 16). Последняя величина, как и для вторичных спиртов этой же группы, получена с учетом поправки (-100 ед. индекса) для сравнения со спиртами другой непредельности.

Подобное совпадение аналитических характеристик различных соединений, во-первых, представляет интерес как важная закономерность, которой подчиняются газохроматографические параметры удерживания структурных аналогов с одинаковыми функциональными группами, но различающихся формальной непредельностью. Во-вторых, это условие фактически представляет собой важный критерий проверки правильности результатов для впервые характеризуемых классов соединений, не требующий сложных вычислений, а основанный на сопоставлении данных для структурных аналогов.

Авторы благодарят К.В. Гордона (Тольяттинский государственный университет) за выполнение элементных анализов.

СПИСОК ЛИТЕРАТУРЫ

- The NIST Mass Spectral Library (NIST/EPA/NIH EI MS Library, 2017 Release). Software/Data Version; NIST Standard Reference Database, Number 69, August 2017. National Institute of Standards and Technology, Gaithersburg, MD 20899: http://webbook.nist.gov (дата обращения: март 2022 г.).
- Арцыбашева Ю.П., Зенкевич И.Г. Хроматографическая характеристика α-алкинолов // Журн. общей химии. 2014. Т. 84. № 3. С. 391. https://doi.org/10.1134/S1070363214030074
- 3. Ротару К.И., Зенкевич И.Г., Костиков Р.Р. Хроматомасс-спектрометрическая характеристика монозамещенных гидразонов этилового эфира глиоксалевой кислоты // Масс-спектрометрия. 2015. Т. 12. № 4. С. 73. (Rotaru K.I., Zenkevich I.G., Kostikov R.R.

GC/MS Characterization of monosubstituted hydrazones of glyoxylic acid ethyl esters // J. Anal. Chem. 2016. V. 71. № 14. P. 1377.) https://doi.org/10.1134/S1061934816140136

- Zenkevich I.G., Nosova V.E. Comparative gas chromatographic/mass spectrometric characterization of di- and trialkyl phosphites // Rapid Commun. Mass Spectrom. 2019. V. 33. № 16. P. 1324. https://doi.org/10.1002/rcm.8473
- 5. Зенкевич И.Г., Лукина В.М. Хроматомасс-спектрометрическая характеристика диэтилкеталей алифатических карбонильных соединений // Аналитика и контроль. 2019. Т. 23. № 3. С. 410. https://doi.org/10.15826/analitika.2019.23.3.009
- 6. Зенкевич И.Г., Носова В.Е. Газохроматографические индексы удерживания в хроматомасс-спектрометрической идентификации алкилдихлорфосфатов, диалкилхлорфосфатов и их тиоаналогов // Масс-спектрометрия. 2019. Т. 16. № 1. С. 58. (Zenkevich I.G., Nosova V.E. Gas chromatographic retention indices in GC/MS identification of alkyldichlorophosphates, dialkylchlorophosphates, and their thio analogues // J. Anal. Chem. 2019. V. 74. № 14. Р. 1421. https://doi.org/10.1134/S1061934819140120) https://doi.org/10.25703/MS.2019.16.18
- 7. Елисеенков Е.В., Зенкевич И.Г. Хроматомасс-спектрометрическая характеристика замещенных 1,3диоксоланов и 1,3-диоксанов // Масс-спектрометрия. 2020. Т. 176. № 1. С. 48. (Eliseenkov E.V., Zenkevich I.G. Characterization of substituted 1,3-dioxolanes and 1,3-dioxanes by gas chromatography – mass spectrometry // J. Anal. Chem. 2020. V. 75. № 14. Р. 1790. https://doi.org/10.1134/S1061934820140087) https://doi.org/10.25703/NS.2020.17.15
- Зенкевич И.Г., Елисеенков Е.В. Принципы контроля правильности газохроматографических индексов удерживания ранее не охарактеризованных аналитов (на примере 2-арил-1,3-диоксоланов и 1,3-диоксанов) // Журн. аналит. химии. 2020. Т. 75. № 12. С. 1129. (Zenkevich I.G., Eliseenkov E.V. Principles of controlling the correctness of gas-chromatographic retention indices of previously uncharacterized analytes (based on an example of 2-aryl-1,3-dioxolanes and 2-aryl-1,3-dioxanes) // J. Anal. Chem. 2020. V. 75. № 12. Р. 1608. https://doi.org/10.1134/S1061934820120

https://doi.org/10.31857/S0044450220120154

 Macak J., Nabivach V., Buryan P, Sindler J. Dependence of retention indices of alkylbenzenes on their molecular structures // J. Chromatogr. A. 1982. V. 234. P. 285.

https://doi.org/10.1016/S0021-967(00)81867-1

- 10. Shivashankar S., Roy T.K., Moorthy P.N.R. Headspace solid phase microextraction and GC/MS analysis of the volatile components in seed and cake of Azadirachata indica A. juss // Chem. Bull "Politechnika", Timisoara, Romania. 2012. V. 57 (71). № 1. P. 1.
- Nivinslien R., Gudalevic A., Mockute D., Meskaskiene V., Grigalinnaite B. Influence of urban environment on chemical composition of *Tilia cordata* essential oil // Chemija. 2007. V. 18. № 1. P. 44.
- Moldao-Martin M., Beirao-da-Costa S., Neves C., Cavaleiros C., Salqueiro L., Beirao-da-Costa M.L. // Olive oil flavored by the essential oil of Mentha piperita and Thymus mastichina L. // Food Qual. Pref. 2004. V. 15. P. 447.
- Brandsma L. Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques. Amsterdam: Elsevier, 2004. 469 p.
- Jones E.R.H., McCombie J.T. Studies in the polyene. Part VI. The preparation of ethinylcarbinols from α,βunsaturated aldehydes // J. Chem. Soc. 1942. P. 733.
- Golovanov A.A., Odin I.S., Gusev D.M., Vologzhanina A.V., Sosnin I.M., Grabovskiy S.A. Reactivity of cross-conjugated enynones in cyclocondensations with hydrazines: Synthesis of pyrazoles and pyrazolines // J. Org. Chem. 2021. V. 86. № 10. P. 7229. https://doi.org/10.1021/acs.joc.1c00569
- Skattebøl L., Jones E.R.H., Whiting M.C. 1-Phenyl-1penten-4-yn-3-ol // Org. Synth. 1959. V. 39. № 10. P. 56.
- 17. Landgreb J.A., Rynbrandt R.H. Synthesis of o-, m-, and p-ethynylbenzyl chloride and closely related structures. The electronic nature of the acetylene group // J. Org. Chem. 1966. V. 31. № 8. P. 2585.
- Климова В.А. Основные микрометоды анализа органических соединений. М.: Химия, 1975. С. 51.
- Kovats'retention index system / Encyclopedia of Chromatography / Ed. J. Cazes. J. 3rd Ed. Boca Raton: CRC Press (Taylor & Francis Group), 2010. P. 1304.
- Зенкевич И.Г., Иоффе Б.В. Интерпретация массспектров органических соединений. Л.: Химия, 1986. 176 с.
- Kuningas K., Rang S., Kailas T. Relationships between the structure and retention of n-alkenes and n-alkynes on silicone phases // J. Chromatogr. 1990. V. 520. P. 137. https://doi.org/10.1016/0021-9673(90)85094-C

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 78 № 1 2023