——— ОРИГИНАЛЬНЫЕ СТАТЬИ ——

УДК 543

МАТЕМАТИЧЕСКАЯ ОЦЕНКА СУММАРНОЙ СТАНДАРТНОЙ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ ПРИ ИСПОЛЬЗОВАНИИ ГРАДУИРОВКИ ПО ОТНОШЕНИЯМ КОНЦЕНТРАЦИЙ В АТОМНО-ЭМИССИОННОЙ СПЕКТРОМЕТРИИ С ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМОЙ

© 2023 г. С. Н. Романов*

Институт физико-органической химии и углехимии им. Л.М. Литвиненко ул. Розы Люксембург, 70, Донецк, 283114 Россия *e-mail: romanov.application@gmail.com Поступила в редакцию 17.11.2022 г. После доработки 19.12.2022 г. Принята к публикации 22.12.2022 г.

Проведена математическая оценка влияния источников неопределенности на результаты измерения при использовании градуировки по отношениям концентраций в атомно-эмиссионной спектрометрии с индуктивно связанной плазмой. Выведены формулы расчета относительной стандартной неопределенности различных составляющих. Показано, что в случае разных вариантов применения градуировки по отношениям концентраций суммарная стандартная неопределенность в основном зависит только от повторяемости измерения отношения интенсивности аналитической линии определяемого элемента к аналитической линии основного матричного компонента образца.

Ключевые слова: неопределенность, градуировка по отношениям концентраций, атомно-эмиссионная спектрометрия с индуктивно связанной плазмой, метод взвешенных наименьших квадратов, повторяемость.

DOI: 10.31857/S0044450223050122, **EDN:** MIRHKB

Развитие науки и технологий приводит к постоянному расширению перечня контролируемых показателей в различных материалах. В итоге растет интерес к многоэлементным методам анализа, однако при этом не меньшее внимание уделяется обеспечению точности проводимых измерений.

Атомно-эмиссионная спектрометрия с индуктивно связанной плазмой (АЭС-ИСП) имеет ряд особенностей, которые трудно переоценить: широкий спектр определяемых элементов, экспрессность, многоэлементность, простота градуировки, а для ряда инструментальных реализаций — и истинная одновременность регистрации отклика. При этом увеличивается набор математических алгоритмов обработки такого отклика для повышения точности.

Ранее сообщалось [1] об использовании особого приема – градуировки в отношениях концентраций (ГОК) на АЭС-ИСП-спектрометрах производства "Thermo Fisher Scientific". Автор работы [1] показал, что при использовании этого подхода удается выполнять анализ бронзы и золота с точностью, сравнимой с классическими методами, причем как для примесных элементов, так и для элементов основы. Точность оценивалась по результатам анализа аттестованных стандартных образцов, при этом анализ по всем компонентам выполнялся из единой навески, прошедшей единую пробоподготовку (кислотное растворение). Сравнение результатов определения марганца в ферромарганце по ГОСТ 16591.3-94 и предлагаемым методом АЭС-ИСП продемонстрировало хорошую точность при значительном сокращении общей продолжительности анализа.

В других работах авторы получили впечатляющие результаты при использовании ГОК в АЭС-ИСП при анализе различных материалов, не относящихся к металлам и сплавам: анализе геологических материалов [2], силикатном анализе карбонатных пород [3], анализе железорудного сырья [4]. Результаты, полученные при анализе стандартных образов, позволили авторам констатировать, что использование ГОК в АЭС-ИСП дает показатели точности, сопоставимые со стандартизованными методиками, в комплексе со значительным уменьшением общего времени анализа за счет одновременного определения компонентов образца [4].

Несмотря на получение экспериментальных данных, подтверждающих высокую точность результатов анализа, ранее не предпринималось попыток математически обосновать получаемую точность и оценить вклад различных составляющих в суммарную стандартную неопределенность при использовании ГОК в АЭС-ИСП.

Цель настоящей работы — оценка источников неопределенности при использовании ГОК в АЭС-ИСП и оценка суммарной стандартной неопределенности конечных результатов при использовании этого приема в количественном анализе различных материалов.

МАТЕМАТИЧЕСКИЙ АППАРАТ ГРАДУИРОВКИ В ОТНОШЕНИЯХ КОНЦЕНТРАЦИЙ В АТОМНО-ЭМИССИОННОЙ СПЕКТРОМЕТРИИ С ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМОЙ

Градуировка в отношениях концентраций традиционно широко применяется в эмиссионных спектрометрах с искровым возбуждением спектра или с тлеющим разрядом при анализе металлов и сплавов, суть ее заключается в следующей системе уравнений [1]:

$$C_{\text{OCH}} + C_a + C_b + \dots + C_r = 100\%, \tag{1}$$

где $C_{\text{осн}}$ – содержание основного матричного элемента образца; C_a , C_b , ... – содержания элементов $a, b, ...; C_r$ – суммарное содержание элементов, не определяемых методом (сумма неопределяемых компонентов, **СНК**).

$$1 + C_a^R + C_b^R + \dots = (100 \% - C_r) / C_{\rm och}, \qquad (2)$$

где C_a^R , C_b^R , ... – отношения содержаний элементов *a*, *b*, ... к содержанию основного матричного компонента образца, т.е. для *i*-го элемента:

$$C_i^R = C_i / C_{\rm och}. \tag{3}$$

Отношение содержаний C_i^R каждого *i*-го элемента определяется на основании следующего уравнения:

$$C_i^R = a_i + b_i I_i / I_{\rm och} + c_i (I_i / I_{\rm och})^2, \qquad (4)$$

где a_i, b_i, c_i — коэффициенты градуировочной зависимости каждого *i*-го элемента, определяемые экспериментально путем анализа растворов стандартных образцов и/или искусственных модельных смесей, в которых C_i^R известна, равно как общая неопределенность этого значения.

В случае анализа металлов и сплавов ГОК реализуется достаточно легко, особенно в отношении драгоценных металлов, где все значимые примеси определяются методом АЭС-ИСП. В случае анализа других объектов приходится принимать во внимание СНК (C_r), компонентами которой чаще всего являются:

• в цветной металлургии в некоторых сплавах: азот и водород;

• в черной металлургии: углерод.

В таком случае каждый результат, получаемый при АЭС-ИСП, пересчитывают в результат анализа с учетом величины C_r , которую определяют сторонними методами (например, в случае углерода в черных металлах и сплавах — по ГОСТ 22536.1-88 [5] или ГОСТ 2604.1-77 [6]). При этом пересчет проводят по формуле:

$$C'_{i} = \frac{C_{i} \times (100 - C_{r})}{100},$$
(5)

где C'_i — итоговое содержание *i*-го компонента, мас. %; C_i — содержание *i*-го компонента в мас. % согласно измерениям на спектрометре; C_r — CHK, мас. %.

В случае анализа неметаллических материалов, где, очевидно, сумма всех определяемых компонентов не может составлять 100% ввиду того, что методом АЭС-ИСП не определяется их форма нахождения, авторы принимают следующее.

Во-первых, при анализе геологических материалов [2, 3] считается, что все определяемые элементы присутствуют в образце в оксидной форме: SiO₂, Al₂O₃, Fe₂O₃ (в эту форму пересчитывается все общее содержание железа), MgO, CaO, Na₂O, K₂O, TiO₂, MnO (в эту форму пересчитывается общее содержание марганца), P₂O₅; содержание элементов от Ag и As до Zn и Zr представляется в основной (элементарной, не оксидной) форме; C_r принимается равным потерям при прокаливании; $C_{\text{осн}}$ принимается равным содержанию SiO₂ в силикатных породах и CaO в карбонатных, конечный пересчет в целом аналогичен выражению (5).

Во-вторых, в случае анализа железорудного сырья [4] принимается, что все элементы представлены в оксидной форме за исключением серы и мышьяка, т.е. Al₂O₃, MoO₂, As, Na₂O, BaO, NiO, CaO, P₂O₅, CoO, PbO, Cr₂O₃, S, CuO, SiO₂, Fe₂O₃, TiO₂, K₂O, V₂O₅, MgO, ZnO, MnO. Поскольку железо в анализируемых материалах может быть представлено как в форме FeO, так и Fe₂O₃, математический аппарат усложняется. В обязательном порядке учитываются потери при прокаливании, определяемые по ГОСТ 23581.13-79 [7]. $C_{\text{осн}}$ принимается равным содержанию общего железа C_{Fe} в пересчете на Fe₂O₃ по следующей формуле:

$$C_{\rm Fe} = \left(C_{\rm Fe,O_3} + 1.1113C_{\rm FeO}\right)K,\tag{6}$$

где $C_{\text{Fe}_2\text{O}_3}$ — содержание оксида железа(III), мас. %; 1.1113 — отношение массовой доли железа в виде FeO к массовой доле железа в виде Fe₂O₃; C_{FeO} содержание FeO, мас. %; K — коэффициент пересчета, рассчитываемый по формуле:

$$K = \frac{100}{100 - \Pi \Pi \Pi + 0.1113C_{\text{FeO}}},\tag{7}$$

где ППП — потери при прокаливании, мас. %, по ГОСТ 23581.13-79 [7]; 0.1113 — поправка ППП, учитывающая количество кислорода, необходимое для окисления железа(II) в железо(III) при прокаливании; C_{FeO} — содержание FeO, мас. %.

Результаты АЭС-ИСП-анализа пересчитывают в результаты анализа с учетом потерь при прокаливании и содержания оксида железа(II), определяемых отдельно по ГОСТ 23581.13-79 [7] и ГОСТ 23581.3-79 [8] соответственно, а также с обратным пересчетом из Fe_2O_3 в элементарное железо в каждом конкретном образце по формулам:

$$C'_{\text{Fe}} = \frac{C_{\text{Fe}}(100 - \Pi\Pi\Pi + 0.1113C_{\text{FeO}}) \times 0.6994}{100} = (8)$$
$$= \frac{C_{\text{Fe}}(100 - \Pi\Pi\Pi + 0.1113C_{\text{FeO}})}{142.98},$$
$$C'_{\text{Fe}} = \frac{C_i(100 - \Pi\Pi\Pi + 0.1113C_{\text{FeO}})}{142.98},$$

$$C'_{i} = \frac{C_{i}(100 - 11111 + 0.1113C_{\text{FeO}})}{100}, \qquad (9)$$

где C'_{Fe} — итоговое содержание общего железа, мас. %; C'_i — итоговое содержание *i*-го компонента, мас. %; C_{Fe} — содержание общего железа согласно измерениям на спектрометре, мас. %; 0.1113 — поправка ППП, учитывающая количество кислорода, необходимое для окисления железа(II) в железо(III) при прокаливании; 0.6994 —

массовая доля железа в Fe₂O₃; C_i —содержание *i*-го компонента согласно измерениям на спектрометре, мас. %; ППП — потери при прокаливании, мас. %, по ГОСТ 23581.13-79 [7]; C_{FeO} — содержание оксида железа(II), мас. %, по ГОСТ 23581.3-79 [8].

На основании представленного математического аппарата ГОК далее определим основные составляющие суммарной стандартной неопределенности конечного результата при использовании ГОК в АЭС-ИСП.

ОЦЕНКА СУММАРНОЙ СТАНДАРТНОЙ НЕОПРЕДЕЛЕННОСТИ ПРИ ИСПОЛЬЗОВАНИИ ГРАДУИРОВКИ В ОТНОШЕНИЯХ КОНЦЕНТРАЦИЙ В АТОМНО-ЭМИССИОННОЙ СПЕКТРОМЕТРИИ С ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМОЙ

Если некоторая величина *у* связана с *x* функцией y = f(x), то в случае некоррелированных оце-

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 78 № 5 2023

нок x_i суммарную стандартную неопределенность $u_c(y)$ вычисляют по формуле [9, 10]:

$$u_{c}(y) = \sqrt{\sum \left(\frac{\partial f}{\partial x_{i}}\right)^{2}} u^{2}(x_{i}), \qquad (10)$$

где $u(x_i)$ — стандартная неопределенность x_i , являющаяся дисперсией или ковариацией x_i ; в простейшем случае это величина среднего квадратического отклонения.

При выполнении градуировки методом ГОК в самом простом случае определяются градуировочные коэффициенты a, b и c формулы (4). Для этого проводят эксперимент с использованием серии аттестованных стандартных образцов с известным значением C_i^R . При выполнении этой процедуры регистрируется не интенсивность излучения каждого определяемого элемента, а отношение интенсивностей $I_i/I_{осн}$.

Введем понятие относительной интенсивно-

сти I_i^R , равной отношению интенсивности аналитической линии *i*-го элемента к аналитической линии основного матричного компонента образца:

$$I_i^R = I_i / I_{\rm och}, \tag{11}$$

и тогда формула (4) преобразуется в

$$C_i^R = a_i + b_i I_i^R + c_i I_i^{R2}.$$
 (12)

Принимая во внимание уравнение (10), получаем, что относительная стандартная неопределенность (отношение стандартной неопределенности к значению оценки измеряемой величины) измерения C_i^R как функции I_i^R равна отношению частной производной функции по I_i^R к самой функции, умноженной на стандартную неопределенность I_i^R :

$$\delta_{C_i^R} = \left| \frac{\partial C_i^R}{\partial I_i^R} \right| \Delta_{I_i^R} / \left(a_i + b_i I_i^R + c_i \left(I_i^R \right)^2 \right) = \frac{b + 2c_i}{a_i + b_i I_i^R + c_i \left(I_i^R \right)^2} \Delta_{I_i^R},$$
(13)

где $\delta_{C_i^R}$ — относительная стандартная неопределенность измерения C_i^R — содержания *i*-го компонента, связанная со стандартной неопределенно-

стью $\Delta_{I_i^R}$ измерения относительной интенсивности I_i^R .

Следует отметить, что в большинстве случаев в силу особенностей метода АЭС-ИСП используется линейная регрессия, поскольку рассматриваемый метод характеризуется близкой к линейной зависимостью аналитического сигнала от определяемой концентрации [11]. В сфере использования ГОК в редких случаях необходимо в единой градуировке охватить столь широкие диапазоны измеряемых значений, когда требуется нелинейная регрессия, к тому же данная задача успешно решается автоматическим переключением на линии с меньшей чувствительностью. Но даже в случае использования регрессии квадратной функцией (13) значение коэффициента *с* достаточно мало, чтобы им пренебрегать в оценке величины относительной стандартной неопределенности. Кроме того, градуировочный график при правильном учете фонового сигнала и отсутствии загрязнений градуировочных растворов исходит из физического нуля [11], т.е. коэффициент *а* также пренебрежимо мал. Тогда

$$\delta_{C_i^R} = \frac{b_i}{b_i I_i^R} \Delta_{I_i^R} = \delta_{I_i^R}, \qquad (14)$$

где $\delta_{I_i^R}$ — относительная стандартная неопределенность измерения относительной интенсивности I_i^R .

Таким образом, фактически повторяемость определения C_i^R будет равна повторяемости измерения I_i^R .

Согласно документации средств измерительной техники – спектрометров АЭС-ИСП [12, 13], используемых авторами работ [1-4], относительное среднее квадратическое отклонение выходного сигнала (при концентрации, превышающей более чем в 1000 раз предел обнаружения) составляет не более 1%. Может сложиться впечатление, что повторяемость измерения I_i^R представляет собой сумму повторяемости измерения I_i и $I_{\text{осн}}$ [14], т.е. 2%. Однако приведенная выше оценка ухудшения повторяемости справедлива, если *I_i* и I_{осн} представляют собой независимые величины. Принимая во внимание требования к измерительному оборудованию, а именно: необходимость обеспечения истинно одновременной регистрации I_i и $I_{\text{осн}}$ [1], очевидно, что при измерении отношения интенсивностей их повторяемость будет лучше в связи с исключением ряда случайных факторов, влияющих на эту величину: пульсаций перистальтического насоса, неравномерности распыления, флуктуаций подвода мощности и газовых потоков к плазменному разряду, недостаточной спектральной стабильности, а в ряде случаев – недостаточной стабильности электропитания [11]. Все эти факторы будут математически "сокращаться" при отношении интенсивностей, измеренных единовременно.

Следует отметить, однако, что на практике существенного улучшения повторяемости измерения не наблюдается. Так, авторы работы [2] лишь для ряда компонентов добились двухкратного улучшения повторяемости, выраженной как относительное стандартное отклонение результатов 20 параллельных измерений, при этом для других компонентов этот показатель даже ухудшился — вплоть до 2.5% (табл. 1). К сожалению, на данный момент в литературе отсутствуют достаточные экспериментальные данные, демонстрирующие влияние ГОК на повторяемость, авторы оригинальных работ в основном обращают внимание на точность анализа, в то время как именно повторяемость показала бы очевидное достоинство измерения отношений интенсивностей как аналитического сигнала с целью минимизации случайных факторов, ухудшающих его прецизионность.

Обратим еще раз внимание на то, что документация средств измерительной техники регламентирует повторяемость при условии концентрации, превышающей более чем в 1000 раз предел обнаружения. Это означает, что критически важно при выборе элемента основы при использовании ГОК обеспечить, чтобы концентрация этого элемента в анализируемом растворе не оказалась ниже 1000-кратного значения предела обнаружения на аналитической линии, выбранной в конкретной методике как $I_{\rm och}$. В противном случае это может привести к существенному ухудшению повторяемости измерения $I_{\rm och}$, что автоматически

ухудшит повторяемость I_i^R и отразится на всех определяемых элементах. В опубликованных работах, где использовалась ГОК, коэффициент разбавления при выполнении пробоподготовки составлял 200–500, что означает, что для соблюдения указанного выше требования аналитические линии элемента-основы должны характеризоваться пределами обнаружения не хуже:

$$\Pi pO = \frac{w_{\rm och} \times 10^7}{500 \times 1000} = 20 w_{\rm och}, \tag{15}$$

где ПрО — минимальное значение предела обнаружения аналитической линии основы, ppb (мкг/л); 10^7 — коэффициент пересчета долей в процентах в ppb; 500 — максимальный коэффициент разбавления; 1000 — критерий соответствия требованиям документации средств измерительной техники; $w_{\rm och}$ — минимальная массовая доля основного компонента в анализируемых объектах, мас. %.

Влияние величины суммы неопределяемых компонентов при анализе металлов, сплавов и геологических материалов. Отметим, что полученная оценка стандартной неопределенности не учитывает СНК. Однако эта величина учитывается при пересчете конечных результатов, а в ряде случаев — и при пересчете значений градуировочных стандартов. Оценим, критично ли влияние СНК на суммарную стандартную неопределенность.

Компонент	Диапазон определяемых содержаний, мас. %	Градуировочные графики в абсолютных интенсивностях	Градуировочные графики с внутренним стандартом индием	Градуировочные графики в относительных концентрациях
Al ₂ O ₃	5.0-20.0	1.4	1.7	1.3
CaO	0.25-15.00	1.2	1.6	1.1
Fe ₂ O ₃	0.50-15.00	1.4	1.6	0.5
K ₂ O	0.50-5.00	2.8	2.2	0.7
MgO	0.10-15.00	1.3	2.2	0.5
MnO	0.030-0.500	1.5	2.1	1.0
Na ₂ O	0.50-10.00	2.2	2.0	1.2
P ₂ O ₅	0.010-0.300	1.5	1.2	2.5
SiO ₂	40.0-75.0	1.1	2.1	0.4
TiO ₂	0.050-2.00	1.7	1.9	0.5

Таблица 1. Относительное стандартное отклонение повторяемости, отн. % (n = 20) [2]

Как уже упоминалось выше, в случаях, когда анализируемый объект содержит значимую сумму неопределяемых методом АЭС-ИСП компонентов (СНК), для получения конечных результатов анализа необходимо выполнить пересчет, в котором используется значение C_r , определяемое сторонними аналитическими методами. Очевидно, что это значение будет получено с неопределенностью, которой характеризуется соответствующая аналитическая методика, а поскольку данная величина будет участвовать в расчетах конечных значений — ее неопределенность должна быть также учтена.

В случае анализа металлов и сплавов, а также геологических материалов конечный пересчет результатов выполняется по формуле (5), следовательно, относительная стандартная неопределен-

ность измерения C'_i как функции C_r будет равна отношению частной производной функции по C_r к самой функции, умноженной на стандартную неопределенность C_r [14]:

$$\delta'_{i} = \left| \frac{\partial C'_{i}}{\partial C_{r}} \right| \Delta_{C_{r}} / C'_{i} =$$

$$= \frac{C_{i}}{100} \Delta_{C_{r}} / \frac{C_{i}(100 - C_{r})}{100} = \frac{\Delta_{C_{r}}}{100 - C_{r}},$$
(16)

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 78 № 5 2023

где δ'_i – относительная стандартная неопределенность измерения C'_i – итогового содержания *i*-го компонента, связанная с Δ_{C_r} – стандартной неопределенностью измерения СНК.

В случае металлов и сплавов C_r обычно не превышает 10 мас. %: так, даже в заэвтектических марках чугуна содержание углерода не превышает 7 мас. %. В случае же цветных металлов величина СНК еще ниже. При этом даже такие высокие содержания углерода существующие стандартные методики позволяют определять с максимальным допускаемым расхождением менее 0.1 мас. % [5, 6], поэтому можно принять, что в случае анализа металлов и сплавов относительная стандартная неопределенность измерения C'_i не превышает 0.0011 (или 0.11%).

При анализе геологических материалов C_r принимается равным потерям при прокаливании, величина которых для ряда материалов может быть значительной и достигать десятков процентов. Однако все методики определения этого показателя являются гравиметрическими и характеризуются высокой точностью, поэтому даже для высоких значений потерь при прокаливании стандартная неопределенность не превышает 0.4 мас. % при значениях потерь при прокаливании на уровне 30 мас. % [15–17]. Таким образом, в случае геологических материалов относитель-

POMAHOB

ная стандартная неопределенность измерения C'_i не превышает 0.0060 (или 0.60%).

Влияние величины суммы неопределяемых компонентов при анализе железорудного сырья. При анализе железорудного сырья необходимо учесть влияние всех параметров, принимающих участие в пересчетах величин.

Как уже упоминалось выше, $C_{\text{осн}}$ для всех объектов, в том числе и стандартов, принимающих участие в градуировке, рассчитывается по формулам (6) и (7), объединив которые получим

$$C_{\text{Fe}} = (C_{\text{Fe}_{2}\text{O}_{3}} + 1.1113C_{\text{Fe}\text{O}}) \times \frac{100}{100 - \Pi\Pi\Pi + 0.1113C_{\text{Fe}\text{O}}} = (17)$$
$$= \frac{100C_{\text{Fe}_{2}\text{O}_{3}} + 111.13C_{\text{Fe}\text{O}}}{100 - \Pi\Pi\Pi + 0.1113C_{\text{Fe}\text{O}}},$$

Аналогично (16),

$$\delta_{\text{Fe}}^{\text{Cra}} = \left(\left| \frac{\partial C_{\text{Fe}}}{\partial C_{\text{Fe}_2O_3}} \right| \Delta_{C_{\text{Fe}_2O_3}} + \left| \frac{\partial C_{\text{Fe}}}{\partial C_{\text{Fe}_0}} \right| \Delta_{C_{\text{Fe}}} + \left| \frac{\partial C_{\text{Fe}}}{\partial \Pi \Pi \Pi} \right| \Delta_{\Pi\Pi\Pi} \right) \right) / C_{\text{Fe}} = \left(\frac{\left| \frac{100}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} \right|}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} - 0.1113 \times (100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}) \right|}{(100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0})^2} \right| \Delta_{C_{\text{Fe}_0}} + \frac{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} \right|} = \frac{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}}} = \left(18 \right) = \frac{1}{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}} + \frac{100\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{1000\Delta_{C_{\text{Fe}_2O_3}} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100C_{\text{Fe}_2O_3} + 111.13C_{\text{Fe}_0}}{100 - \Pi \Pi + 0.1113C_{\text{Fe}_0}} + \frac{100C_{\text{Fe}_2$$

где $\delta_{Fe}^{C_{TR}}$ — относительная стандартная неопределенность содержания общего железа C_{Fe} в пересчете на Fe₂O₃, связанная с $\Delta_{C_{FeO}}$ — стандартной неопределенностью содержания закиси железа, $\Delta_{C_{FeO}}$ — стандартной неопределенностью содержания оксида железа(III) и $\Delta_{\Pi\Pi\Pi}$ — стандартной неопределенностью потерь при прокаливании.

Таким образом, $\delta_{Fe}^{C_{TA}}$ для каждого градировочного образца будет иметь свое значение, зависящее от паспортных значений соответствующих показателей содержаний оксидов железа и потерь при прокаливании.

Учитывая метрологические характеристики общепринятых стандартных методик определения потерь при прокаливании, содержания оксида железа(II) и результаты определения общего содержания железа в железорудном сырье (ГОСТ 23581.13-79 [7], ГОСТ 23581.3-79 [8] и ГОСТ 32517.1-2013 [18] соответственно), приведенные в табл. 2–4, а также принимая, что $C_{\text{Fe}_2\text{O}_3}$ равно содержанию железа общего, умноженного на коэффициент 1.4298 (вследствие пересчета в форму оксида железа(III)), можно рассчитать значение

 δ_{Fe}^{Crg} , при этом оказывается, что оно не превышает 0.02 (или 2%). Следует отметить, что в стандартных образцах материалов значения неопределенностей содержаний обычно ниже, чем в соответствующих стандартных методиках, поэтому оценка 0.02 является даже несколько завышенной.

Для расчета неопределенности, привносимой в итоговые значения содержания общего железа и отдельных компонентов железорудного сырья при перерасчете, из формул (8) и (9) получаем: Таблица 2. Показатели точности и доверительные границы погрешности определения потерь при прокаливании в железорудном сырье согласно ГОСТ 23581.13-79 [7]

Таблица 3. Показатели точности и доверительные границы погрешности определения оксида железа(II) в железорудном сырье согласно ГОСТ 23581.3-79 [8]

Потеря массы при прокаливании, мас. %	Показатель точности, доверительные границы погрешности и ±Δ при <i>P</i> = 0.95	Массовая доля оксида железа(II), мас. %	Показатель точности, доверительные границы погрешности и $\pm \Delta$ при $P = 0.95$
<0.5	± 0.04	0.5-1	± 0.1
0 5-1	+0.06	1-2	± 0.15
1 2		2-5	± 0.2
1-2	土0.1	5-10	± 0.25
2-5	± 0.2	10-20	± 0.3
5-10	± 0.25	20-30	±0.35
10-20	± 0.35	30-45	± 0.4

$$\delta_{\rm Fe}^{\rm Pe3} = \left(\left| \frac{\partial C_{\rm Fe}'}{\partial C_{\Pi\Pi\Pi}} \right| \Delta_{\Pi\Pi\Pi} + \left| \frac{\partial C_{\rm Fe0}'}{\partial C_{\rm Fe0}} \right| \Delta_{C_{\rm Fe0}} \right) \middle/ C_{\rm Fe}' = \\ = \left(\frac{C_{\rm Fe}}{142.98} \Delta_{\Pi\Pi\Pi} + \frac{0.1113C_{\rm Fe}}{142.98} \Delta_{C_{\rm Fe0}} \right) \middle/ \frac{C_{\rm Fe} (100 - \Pi\Pi\Pi + 0.1113C_{\rm Fe0})}{142.98} =$$
(19)
$$= \frac{\Delta_{\Pi\Pi\Pi} + 0.1113\Delta_{C_{\rm Fe0}}}{100 - \Pi\Pi\Pi + 0.1113C_{\rm Fe0}},$$

$$\delta_{i}' = \left(\left| \frac{\partial C_{i}'}{\partial C_{\Pi\Pi\Pi}} \right| \Delta_{\Pi\Pi\Pi} + \left| \frac{\partial C_{i}'}{\partial C_{\rm Fe0}} \right| \Delta_{C_{\rm Fe0}} \right) \middle/ C_{i}' = \\ = \left(\frac{C_{i}}{100} \Delta_{\Pi\Pi\Pi} + \frac{0.1113C_{i}}{100} \Delta_{C_{\rm Fe0}} \right) \middle/ \frac{C_{i} (100 - \Pi\Pi\Pi + 0.1113C_{\rm Fe0})}{100} = \\ = \frac{\Delta_{\Pi\Pi\Pi} + 0.1113\Delta_{C_{\rm Fe0}}}{100 - \Pi\Pi\Pi + 0.1113C_{\rm Fe0}} = \delta_{\rm Fe}^{\rm Pe3},$$
 (20)

где $\delta_{Fe}^{Pe_3}-$ относительная стандартная неопределенность определения содержания общего железа

 $C_{\rm Fe}$ в пересчете на Fe₂O₃, а δ'_i – относительная стандартная неопределенность определения итогового содержания *i*-го компонента, связанные с $\Delta_{C_{\rm Fe0}}$ – стандартной неопределенностью определения содержания оксида железа(II) и $\Delta_{\Pi\Pi\Pi}$ – стандартной неопределенностью определения

потерь при прокаливании; очевидно, что $\delta_{Fe}^{Pe_3} = \delta'_i$.

Вновь обращаясь к метрологическим характеристикам общепринятых стандартных методик определения потерь при прокаливании и содержания оксида железа(II) в железорудном сырье, приведенным в табл. 2 и 3, можно рассчитать мак-

симальное значение δ'_i :

$$\delta'_i = \frac{0.35 + 0.1113 \times 0.4}{100 - 20 + 0.1113 \times 45} = 0.0046$$
 (или 0.46%).

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 78 № 5 2023

Неопределенность градуировки. При использовании ГОК определение градуировочной зависимости в целом не отличается от аналогичной задачи при традиционной градуировке и заключается в математической регрессии с определением градуировочных коэффициентов *a*, *b* и *c* регрессионного уравнения второго порядка (в случае ГОК – формула (4)). Для решения этой задачи

Таблица 4. Показатели точности и доверительные границы погрешности определения содержания железа общего согласно ГОСТ 32517.1-2013 [18]

Массовая доля железа общего, мас.%	Показатель точности, доверительные границы погрешности и $\pm \Delta$ при $P = 0.95$	
10-20	± 0.20	
20-50	± 0.30	
50-75	± 0.40	

обычно используют метод взвешенных наименьших квадратов, в котором в зависимости от того, является ли определяемый компонент основным или примесным, устанавливают равный статистический вес всех точек либо же вес, обратный соответствующей величине C_i^R . Последнее позволяет повысить значимость точек с низкими содержаниями определяемых компонентов, что критично именно для примесных элементов.

Неопределенность градуировки при использовании метода наименьших квадратов выражается стандартным отклонением S_{v-x} [19]:

$$S_{y-x} = \sqrt{\frac{N-1}{N-2} \left(S_y^2 - br S_x S_y \right)},$$
 (21)

где N – количество используемых градуировочных стандартов; S_y – стандартное отклонение определяемой величины во всем массиве используемых градуировочных стандартов (C_i^R – в ГОК, C_i – при традиционной градуировке); b – коэффициент градуировочной зависимости; r – коэффициент корреляции; S_x – стандартное отклонение аналитического сигнала во всем массиве ис-

пользуемых градуировочных стандартов $(I_i^R - в \Gamma OK, I_i - при традиционной градуировке).$

Таким образом, принимая во внимание то, что фактически регрессия при выполнении традиционной градуировки и ГОК проводится по одним и тем же стандартам с одинаковым распределением вдоль градуировочной кривой, можно принять, что неопределенность градуировки будет такой же, как и при выполнении традиционной градуировки — при условии, что значения C_i^R и I_i^R будут характеризоваться неопределенностью не хуже, чем в искомых градуировочных стандартах [18].

Выше показано, что повторяемости измерений как индивидуальной интенсивности аналитической линии, так и I_i^R имеют соразмеряемые экспериментальные значения. Также очевидно, что применительно к анализу металлов и сплавов, а также геологических образцов ГОК имеет более низкие значения неопределенности C_i^R , поскольку используются исключительно данные паспортов стандартных образцов. При этом погрешности взвешивания, разбавления и прочих операций пробоподготовки градуировочных стандартов в этом случае не влияют на конечный результат, в отличие от традиционных процедур градуировки.

Применительно к анализу железорудных материалов $\delta_{\rm Fe}^{\rm Стд}$ — относительная стандартная неопределенность содержания общего железа $C_{\rm Fe}$ в пересчете на Fe₂O₃ – имеет значение не более 0.02 (2%), что существенно меньше неопределенно-

сти, получаемой вследствие используемых при

пробоподготовке градуировочных стандартов процедур при традиционной градуировке.

Таким образом, можно утверждать, что неопределенность градуировки в случае ГОК будет ниже, чем при традиционной градуировке с использованием того же комплекта градуировочных стандартов.

Оценка суммарной стандартной неопределенности. Мы провели математическую оценку вкладов различных составляющих в суммарную стандартную неопределенность. Для того чтобы рассчитать окончательное значение этой величины при использовании ГОК, приведем все найденные относительные стандартные неопределенности к елиной величине.

Из формул (3), (5) и (9) очевидно, что

1)
$$\frac{\Delta_{C_i^R}}{\Delta_{C_i}} = \frac{\partial C_i^R}{\partial C_i} = \frac{1}{C_{\text{осн}}},$$

2)
$$\frac{\Delta_{C_i}}{\Delta_{C_i}} = \frac{\partial C'_i}{\partial C_i} = \frac{100 - C_r}{100}$$
 (влияние СНК для ме-

таллов, сплавов и геологических материалов),

3)
$$\frac{\Delta_{C_i}}{\Delta_{C_i}} = \frac{\partial C'_i}{\partial C_i} = \frac{100 - \Pi \Pi \Pi + 0.1113C_{\text{FeO}}}{100}$$
 (влия-

ние СНК для железорудного сырья).

Тогда

1)
$$\Delta_{C_i} = \Delta_{C_i^R} C_{\text{och}} = \delta_{C_i^R} C_i^R C_{\text{och}} = \delta_{C_i^R} C_i,$$

2) $\Delta_{C_i} = \frac{100\Delta_{C_i}}{100 - C_r} = \frac{100\delta_{C_i}C_i}{100 - C_r}$ (влияние СНК для металлов, сплавов и геологических материалов),

3)
$$\Delta_{C_i} = \frac{100\Delta_{C_i}}{100 - \Pi\Pi\Pi + 0.1113C_{\text{FeO}}} =$$

 $\frac{100\delta_{C_i}C_i'}{100 - \Pi\Pi\Pi + 0.1113C_{\text{FeO}}}$ (влияние СНК для железорудного сырья).

При этом согласно оценкам выше:

• $\delta_{C^R} \leq 0.025;$

δ'_i ≤ 0.0011 в случае металлов и сплавов;

• $\delta'_i \leq 0.0060$ в случае геологических материалов;

• δ'_i ≤ 0.0046 в случае железорудного сырья;
• C_r ≤ 10 в случае чугуна, для цветных металлов и сплавов – значительно ниже;

• $C_r \le 30$ в случае геологических материалов;

• $(100 - \Pi\Pi\Pi + 0.1113C_{\text{FeO}}) \ge 80$, исходя из теоретических экстремальных значений 20% для потерь при прокаливании по ГОСТ 23581.13-79 [7] и отсутствия оксида железа(II).

Принимая во внимание формулу (10) в случае практических применений ГОК значение суммарной стандартной неопределенности измерений *D* представляет собой:

• для металлов и сплавов:

$$D \leq \sqrt{(0.025C_i)^2 + \left(\frac{100 \times 0.0011}{100 - 10}C_i\right)^2 + (S_{iy-x})^2} = \sqrt{0.000626C_i^2 + (S_{iy-x})^2},$$

• для геологических материалов:

$$D \le \sqrt{\left(0.025C_i\right)^2 + \left(\frac{100 \times 0.0060}{100 - 30}C_i\right)^2 + \left(S_{iy-x}\right)^2} = \sqrt{0.000698C_i^2 + \left(S_{iy-x}\right)^2},$$

• для железорудного сырья:

$$D \leq \sqrt{\left(0.025C_{i}\right)^{2} + \left(\frac{100 \times 0.0046}{80}C_{i}\right)^{2} + \left(S_{iy-x}\right)^{2}} = \sqrt{0.000658C_{i}^{2} + \left(S_{iy-x}\right)^{2}}.$$

Поскольку S_{iy-x} – стандартное отклонение градуировки для *i*-го элемента — при использовании ГОК равно или менее аналогичного показателя в случае традиционной градуировки, пренебрегаем данным членом, и получаем, что

- для металлов и сплавов $D \le 0.0250C_i$,
- для геологических материалов $D \le 0.0264C_i$,
- для железорудного сырья $D \le 0.0256C_i$.

Полученная расчетная величина хорошо согласуется с экспериментальными данными, полученными авторами работ [1-4].

Очевидно, что основной вклад в суммарную стандартную неопределенность вносит повторяемость измерения относительной интенсивности I_i^R , поэтому при дальнейшей разработке методик с использованием ГОК этой величине не-

* * *

обходимо уделять особое внимание.

Проведена математическая оценка суммарной стандартной неопределенности измерений при использовании градуировки по отношениям концентраций в атомно-эмиссионной спектрометрии с индуктивно связанной плазмой. Показаны основные источники неопределенности, выполнен их расчет на основании экспериментальных результатов и данных стандартизованных методик. С применением математической модели предложен критерий отбора аналитических линий основного матричного элемента образца.

ЖУРНАЛ АНАЛИТИЧЕСКОЙ ХИМИИ том 78 Nº 5 2023

Показано, что в рассмотренных случаях применения ГОК в АЭС-ИСП основным значимым источником неопрелеленности является повторяемость измерения отношения интенсивности аналитической линии определяемого элемента к аналитической линии основного матричного элемента образца. При этом ГОК позволяет исключить иные источники неопределенности, возникающие при процедурах взвешивания и разбавления, применяемых в традиционных методиках, что существенно повышает точность измерений. К сожалению, большая часть публикаций, посвященных измерениям с использованием ГОК, не освещает величину повторяемости аналитического сигнала, а в единственном источнике [2] приводится значение этого показателя, аномально более высокое, чем достигаемое при традиционной градуировке. Тем не менее даже с таким параметром удается добиться впечатляющих результатов по точности, совместив в единой методике определение примесей с высокой чувствительностью и матричных элементов с высокой точностью.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бухбиндер Г.Л. Определение макроколичеств элементов на спектрометрах серий іСАР 6000 и іСАР 7000 с использованием градуировки в относительных концентрациях // Заводск. лаборатория. Диагностика материалов. 2013. Т. 79. № 12. С. 16. (Bukhbinder G.L. Determination of the macroamounts of elements on iCAP 6000 and iCAP 7000 spectrometers using calibration in relative concentrations // Industrial Laboratory. 2013. V. 79. № 12. P. 16.)
- 2. Каримова Т.А., Бухбиндер Г.Л. Анализ геологических материалов методом атомно-эмиссионной спектрометрии с индуктивно-связанной плазмой с градуировкой в относительных концентрациях // Заводск. лаборатория. Диагностика материалов. 2019. T. 85. № 6. C. 24. (Karimova T.A., Buchbinder G.L. Analysis of geological materials by ICP-AES with calibration in concentration ratio // Industrial Laboratory. 2019. V. 85. № 6. P. 24.)

https://doi.org/10.26896/1028-6861-2019-85-6-24-29

3. Каримова Т.А., Бухбиндер Г.Л., Качин С.В. Силикатный анализ карбонатных пород методом атомноэмиссионной спектрометрии с индуктивно-связанной плазмой с градуировкой по отношениям концентраций // Заводск. лаборатория. Диагностика материалов. 2020. Т. 86. № 5. С. 16. (Karimova T.A., Buchbinder G.L., Kachin S.V. Silicate analysis of carbonated rocks using ICP-AES with calibration by the concentration ratio // Industrial Laboratory. 2020. V. 86. № 5. P. 16.)

https://doi.org/10.26896/1028-6861-2020-86-5-16-21

4. Каримова Т.А., Бухбиндер Г.Л., Романов С.Н., Качин С.В. Анализ железорудного сырья методом атомно-эмиссионной спектрометрии с индуктивносвязанной плазмой // Заводск. лаборатория. Диагностика материалов. 2021. Т. 87. № 6. С. 20. (Karimova T.A, Buchbinder G.L., Romanov S.N.,

Kachin S.V. Analysis of iron ores by ICP-AES // Industrial Laboratory. 2021. V. 87. № 6. P. 20.) https://doi.org/10.26896/1028-6861-2021-87-6-20-24

- 5. ГОСТ 22536.1-88. Сталь углеродистая и чугун нелегированный. Методы определения общего углерода и графита. М.: Стандартинформ. 2006. 10 с.
- 6. ГОСТ 2604.1-77. Чугун легированный. Метолы определения углерода. М.: Изд-во стандартов, 1977. 9 c.
- 7. ГОСТ 23581.13-79. Руды железные, концентраты агломераты и окатыши. Методы определения потери массы при прокаливании. М.: Изд-во станлартов, 1979. 8 с.
- 8. ГОСТ 23581.3-79. Руды железные, концентраты, агломераты и окатыши. Метод определения двухвалентного железа в пересчете на закись. М.: Издво стандартов, 1983. 8 с.
- 9. РМГ 43-2001. Государственная система обеспечения единства измерений. Применение "Руководства по выражению неопределенности измерений". М.: Стандартинформ, 2005. 24 с.
- 10. Бланк А.Б. Неопределенность измерений и химический анализ // Журн. аналит. химии. 2005. Т. 60. № 12. C. 1316. (Blank A.B. Uncertainty in measurements and chemical analysis // J. Anal. Chem. 2005. V. 60. № 12. P. 1316.)

https://doi.org/10.1007/s10809-005-0262-z

- 11. ICP Emission Spectrometry. A Practical Guide, 2nd Ed. / Ed. Nolte J. Wiley-VCH, 2021. 288 p.
- 12. Приложение к свидетельству № 54192 об утверждении типа средств измерений. М.: ГЦИ СИ ФГУП "ВНИИМ им. Д.И. Менделеева", 2014. 4 с.
- 13. Приложение к свидетельству № 42358 об утверждении типа средств измерений. М.: ГЦИ СИ ФГУП "ВНИИМ им. Д.И. Менделеева", 2011. 4 с.
- 14. Батунер Л.М., Позин М.Е. Математические метолы в химической технике. Изд. 6-е / Под ред. Позина М.Е. Л.: Химия, 1971. 824 с.
- 15. ГОСТ 14657.1-96. Боксит. Метод определения потери массы при прокаливании. Минск: Межгосударственный совет по стандартизации, метрологии и сертификации, 1996. 6 с.
- 16. ГОСТ 26318.14-84. Материалы неметаллорудные. Метод определения потери массы при прокаливании. М.: Изл-во станлартов. 1991. 4 с.
- 17. ГОСТ 19609.13-89. Каолин обогашенный. Метод определения потери массы при прокаливании. М.: Изд-во стандартов, 1989. 4 с.
- 18. ГОСТ 32517.1-2013. Руды железные, концентраты, агломераты и окатыши. Методы определения железа общего. М.: Стандартинформ, 2014. 11 с.
- 19. Cornbleet P.J., Gochman N. Incorrect least-squares regression coefficients in method-comparison analysis // Clin. Chem. 1979. V. 25. № 3. P. 432.